1
|
Zhou JY, Lu YN, Shen XY, Quan YZ, Lu JM, Jin GN, Liu YM, Zhang SH, Xu GH, Xu X, Piao LX. Coixol mitigates Toxoplasma gondii infection-induced liver injury by inhibiting the Toxoplasma gondii HSP70/TLR4/NF-κB signaling pathway in hepatic macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118694. [PMID: 39147001 DOI: 10.1016/j.jep.2024.118694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/12/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coix seed, the dry mature seed kernel of the gramineous plant coix (Coix lacryma-jobi L. var. ma-yuen Stapf), is widely consumed as a traditional Chinese medicine and functional food in China and South Korea. We have previously demonstrated the protective effect of coixol, a polyphenolic compound extracted from coix, against Toxoplasma gondii (T. gondii) infection-induced lung injury. However, the protective effect of coixol on hepatic injury induced by T. gondii infection have not yet been elucidated. AIM OF THE STUDY This study explores the impact of coixol on T. gondii infection-induced liver injury and elucidates the underlying molecular mechanisms. MATERIALS AND METHODS Female BALB/c mice and Kupffer cells (KCs) were employed to establish an acute T. gondii infection model in vivo and an inflammation model in vitro. The study examined coixol's influence on the T. gondii-derived heat shock protein 70 (T.g.HSP70)/toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB signaling pathway in T. gondii-infected liver macrophages. Furthermore, a co-culture system of KCs and NCTC-1469 hepatocytes was developed to observe the impact of liver macrophages infected with T. gondii on hepatocyte injury. RESULTS Coixol notably inhibited the proliferation of tachyzoites and the expression of T.g.HSP70 in mouse liver and KCs, and attenuated pathological liver injury. Moreover, coixol decreased the production of high mobility group box 1, tumor necrosis factor-α, and inducible nitric oxide synthase by suppressing the TLR4/NF-κB signaling pathway in vitro and in vivo. Coixol also mitigated KCs-mediated hepatocyte injury. CONCLUSIONS Coixol protects against liver injury caused by T. gondii infection, potentially by diminishing hepatocyte injury through the suppression of the inflammatory cascade mediated by the T.g.HSP70/TLR4/NF-κB signaling pathway in KCs. These findings offer new perspectives for developing coixol as a lead compound for anti-T. gondii drugs.
Collapse
Affiliation(s)
- Jin-Yi Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yu-Nan Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Xin-Yu Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yan-Zhu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jing-Mei Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Guang-Nan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yi-Ming Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Si-Hui Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Guang-Hua Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Lian-Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
2
|
Jin GN, Wang Y, Liu YM, Lu YN, Lu JM, Wang JH, Ma JW, Quan YZ, Gao HY, Cui YX, Xu X, Piao LX. Arctiin Mitigates Neuronal Injury by Modulating the P2X7R/NLPR3 Inflammasome Signaling Pathway. Inflammation 2024:10.1007/s10753-024-02117-z. [PMID: 39154088 DOI: 10.1007/s10753-024-02117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
Depression, recognized globally as a primary cause of disability, has its pathogenesis closely related to neuroinflammation and neuronal damage. Arctiin (ARC), the major bioactive component of Fructus arctii, has various pharmacological activities, such as anti-inflammatory and neuroprotective effects. Building on previous findings that highlighted ARC's capability to mitigate depression by dampening microglial hyperactivation and thereby reducing neuroinflammatory responses and cortical neuronal damage in mice, the current study delves deeper into ARC's therapeutic potential by examining its impact on hippocampal neuronal damage in depression. Utilizing both chronic unpredictable mild stress (CUMS)-induced depression model in mice and corticosterone (CORT)-stimulated PC12 cell model of neuronal damage, the techniques including Nissl staining, immunohistochemistry, western blotting, ELISA, lactate dehydrogenase assays, colony formation assays, immunofluorescence staining and molecular docking were employed to unravel the mechanisms behind ARC's neuroprotective effects. The findings revealed that ARC not only mitigates hippocampal neuropathological damage and reduces serum CORT levels in CUMS-exposed mice but also enhances cell activity while reducing lactate dehydrogenase release in CORT-stimulated PC12 cells. ARC attenuated neuroinflammatory responses and neuronal apoptosis by inhibiting the overactivation of the P2X7 receptor (P2X7R)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling pathway, similar to the effect of A438079 (P2X7R antagonist). Interestingly, pretreatment with A438079 blocked the neuroprotective effect of ARC. Computer modeling predicted that both ARC and A438079 have strong binding with P2X7R and they have the same binding site. These results suggested that ARC may exert a neuroprotective role by binding to P2X7R, thereby inhibiting the P2X7R/NLRP3 inflammasome signaling pathway.
Collapse
Affiliation(s)
- Guang-Nan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yu Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yi-Ming Liu
- Department of Neurology, Yanbian University Hospital, Yanbian University, Yanji, 133000, Jilin Province, China
| | - Yu-Nan Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jing-Mei Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jing-He Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jing-Wen Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yan-Zhu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Hong-Yan Gao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yue-Xian Cui
- Department of Neurology, Yanbian University Hospital, Yanbian University, Yanji, 133000, Jilin Province, China.
| | - Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Lian-Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
3
|
Fei F, Chen Z, Tao Y, Jiang X, Xu X, Ma Y, Feng P, Wang P. Comparison of CUMS at different pregnancy stages, maternal separation, and their effects on offspring in postpartum depression mouse models. Heliyon 2024; 10:e35363. [PMID: 39166014 PMCID: PMC11334627 DOI: 10.1016/j.heliyon.2024.e35363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Due to the diversity of postpartum depression (PPD) patients and the complexity of associated pathophysiological changes, most current animal models cannot accurately simulate PPD-like symptoms. In this study, we established a reliable animal model for PPD by inducing chronic unpredictable mild stress (CUMS) at different stages (pre-pregnancy, pregnancy, or postnatal) in female mice, followed by maternal separation (MS) from day 2-21 after delivery. The results for female mice subjected to pre-pregnancy stress were not statistically significant due to a lower conception rate. However, female mice exposed to CUMS during either the gestational or postnatal stage, followed by MS, successfully exhibited PPD-like symptoms. The models were deemed effective based on observed behavioral abnormalities, impaired hippocampal neuron functioning, and reduced serum concentrations of neurotransmitters (5-HT, GABA, and NE). Additionally, mice that underwent gestational CUMS followed by MS displayed a more dysfunctional hypothalamic-pituitary-adrenal (HPA) axis and more severe uterine inflammation. The study also investigated the impact of PPD on the behavior and neurodevelopment of adolescent offspring through behavioral tests, enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin (HE) staining, and western blotting (WB). The results indicated that adolescent offspring of mothers with PPD exhibited behavioral and neurodevelopmental disorders, with male offspring being more susceptible than females. Female mice exposed to both CUMS and MS during the postnatal period had more severe adverse effects on their offspring compared to the other model groups.
Collapse
Affiliation(s)
- Fei Fei
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ziwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yi Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xinliang Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xinyue Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yifeng Ma
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Peishi Feng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- ZJUT-Jinhua Innovation Joint Research Institute, Jinhua, 321001, People's Republic of China
| |
Collapse
|
4
|
Lu JM, Xu X, Aosai F, Zhang MY, Zhou LL, Piao LX. Protective effect of arctiin against Toxoplasma gondii HSP70-induced allergic acute liver injury by disrupting the TLR4-mediated activation of cytosolic phospholipase A 2 and platelet-activating factor. Int Immunopharmacol 2024; 126:111254. [PMID: 37995571 DOI: 10.1016/j.intimp.2023.111254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Toxoplasma gondii (T. gondii)-derived heat shock protein 70 (T.g.HSP70) is a toxic protein that downregulates host defense responses against T. gondii infection. T.g.HSP70 was proven to induce fatal anaphylaxis in T. gondii infected mice through cytosolic phospholipase A2 (cPLA2) activated-platelet-activating factor (PAF) production via Toll-like receptor 4 (TLR4)-mediated signaling. In this study, we investigated the effect of arctiin (ARC; a major lignan compound of Fructus arctii) on allergic liver injury using T.g.HSP70-stimulated murine liver cell line (NCTC 1469) and a mouse model of T. gondii infection. Localized surface plasmon resonance, ELISA, western blotting, co-immunoprecipitation, and immunofluorescence were used to investigate the underlying mechanisms of action of ARC on T. gondii-induced allergic acute liver injury. The results showed that ARC suppressed the T.g.HSP70-induced allergic liver injury in a dose-dependent manner. ARC could directly bind to T.g.HSP70 or TLR4, interfering with the interaction between these two factors, and inhibiting activation of the TLR4/mitogen-activated protein kinase/nuclear factor-kappa B signaling, thereby inhibiting the overproduction of cPLA2, PAF, and interferon-γ. This result suggested that ARC ameliorates T.g.HSP70-induced allergic acute liver injury by disrupting the TLR4-mediated activation of inflammatory mediators, providing a theoretical basis for ARC therapy to improve T.g.HSP70-induced allergic liver injury.
Collapse
Affiliation(s)
- Jing-Mei Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Fumie Aosai
- Department of Infection and Host Defense, Graduate School of Medicine, Shinshu University, Matsumoto, Japan
| | - Ming-Yue Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Lu-Lu Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Lian-Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
5
|
Wakid MH, Alsulami MN, Farid M, El Kholy WA. Potential Anti-Toxoplasmosis Efficiency of Phoenix dactylifera Extracts Loaded on Selenium Nanoparticles. Infect Drug Resist 2023; 16:7743-7758. [PMID: 38144223 PMCID: PMC10749168 DOI: 10.2147/idr.s443047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023] Open
Abstract
Background Toxoplasmosis is a parasitic disease caused by Toxoplasma gondii that infects humans and many types of mammals and birds. Objective To investigate the effect of selenium nanoparticles (SeNPs) and Phoenix dactylifera (Pd) extracts loaded on SeNPs as a new agent to combat chronic T. gondii infections in murine model as an alternative method to standard Spiramycin drug therapy. Methods A total of 64 female mice were randomly divided into eight groups: GI: Normal control, GII: Positive control, GIII: infected and treated with Spiramycin, GIV: infected and treated with SeNPs, GV: infected and treated with aqueous extract of Pd, GVI: infected and treated with methanolic extract of Pd, GVII: infected and treated with aqueous extract of Pd loaded on SeNPs, GVIII: infected and treated with methanolic extract of Pd loaded on SeNPs. Date palm (P. dactylifera) fruits were identified and collected from the farms of Saudi Arabia. Preparation and characterization of SeNPs were done. The parasitological, histopathological examinations and biochemical changes were evaluated in all groups. Results Parasitological results showed significant differences in GVII in comparison to GII while GVIII showed significant differences in comparison to GII and GIII. The histopathological section of the cerebral cortex showed obvious alterations in the infected compared with untreated control groups. Aqueous and methanolic extracts of P. dactylifera loaded on SeNPs treatment showed improvement that indicated by few perivascular cuffing with few inflammatory cell infiltrations. Few granule cells with mild intracellular vacuolation and edema few deformed neurons with deep pyknotic nuclei. Microglia cells expression of Iba-1 and inflammatory cytokines (IL-4, IL-10 and INF-γ) in serum of all groups was higher in GII and lowest in GVIII followed by GVII. Conclusion SeNPs and P. dactylifera extracts loaded on SeNPs could be a potent agent to combat T. gondii infections.
Collapse
Affiliation(s)
- Majed H Wakid
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muslimah N Alsulami
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohamed Farid
- Sciences Academy of Experimental Researches, Special Scientific Foundation, Mansoura, Egypt
| | - Walaa A El Kholy
- Department of Parasitology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Lu YN, Shen XY, Lu JM, Jin GN, Lan HW, Xu X, Piao LX. Resveratrol inhibits Toxoplasma gondii-induced lung injury, inflammatory cascade and evidences of its mechanism of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154522. [PMID: 36332392 DOI: 10.1016/j.phymed.2022.154522] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Toxoplasma gondii is an opportunistic protozoan that can infect host to cause toxoplasmosis. We have previously reported that resveratrol (RSV) has protective effects against liver damage in T. gondii infected mice. However, the effect of RSV on lung injury caused by T. gondii infection and its mechanism of action remain unclear. PURPOSE In this work, we studied the protective effects of RSV on lung injury caused by T. gondii infection and explored the underlying mechanism. METHODS Molecular docking and localized surface plasmon resonance assay were used to detect the molecular interactions between RSV and target proteins. In vitro, the anti-T. gondii effects and potential anti-inflammatory mechanisms of RSV were investigated by quantitative competitive-PCR, RT-PCR, ELISA, Western blotting and immunofluorescence using RAW 264.7 cells infected with tachyzoites of T. gondii RH strain. In vivo, the effects of RSV on lung injury caused by T. gondii infection were assessed by observing pathological changes and the expression of inflammatory factors of lung. RESULTS RSV inhibited T. gondii loads and T. gondii-derived heat shock protein 70 (T.g.HSP70) expression in RAW 264.7 cells and lung tissues. Moreover, RSV interacts with T.g.HSP70 and toll-like receptor 4 (TLR4), respectively, and interferes with the interaction between T.g.HSP70 and TLR4. It also inhibited the overproduction of inducible nitric oxide synthase, TNF-α and high mobility group protein 1 (HMGB1) by down-regulating TLR4/nuclear factor kappa B (NF-κB) signaling pathway, which is consistent with the effect of TLR4 inhibitor CLI-095. In vivo, RSV improved the pathological lung damage produced by T. gondii infection, as well as decreased the number of inflammatory cells in bronchoalveolar lavage fluid and the release of HMGB1 and TNF-α. CONCLUSION These findings indicate that RSV can inhibit the proliferation of T. gondii and T.g.HSP70 expression both in vitro and in vivo. RSV can inhibit excessive inflammatory response by intervening T.g.HSP70 and HMGB1 mediated TLR4/NF-κB signaling pathway activation, thereby ameliorating lung injury caused by T. gondii infection. The present study provides new data that may be useful for the development of RSV as a new agent for the treatment of lung damage caused by T. gondii infection.
Collapse
Affiliation(s)
- Yu Nan Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR. China
| | - Xin Yu Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR. China
| | - Jing Mei Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR. China
| | - Guang Nan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR. China
| | - Hui Wen Lan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR. China
| | - Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR. China.
| | - Lian Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR. China.
| |
Collapse
|
7
|
Jin GN, Lu JM, Lan HW, Lu YN, Shen XY, Xu X, Piao LX. Protective effect of ginsenoside Rh2 against Toxoplasma gondii infection-induced neuronal injury through binding TgCDPK1 and NLRP3 to inhibit microglial NLRP3 inflammasome signaling pathway. Int Immunopharmacol 2022; 112:109176. [PMID: 36067653 DOI: 10.1016/j.intimp.2022.109176] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) is a neurotropic obligate intracellular parasite that can activate microglial and promote neuronal apoptosis, leading to central nervous system diseases. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling complex plays a key role in inducing neuroinflammation. Our previous studies have found that ginsenoside Rh2 (GRh2) inhibits T. gondii infection-induced microglial activation and neuroinflammation by downregulating the Toll-like receptor 4/nuclear factor-kappa B signaling pathway. However, whether GRh2 reduces T. gondii infection-induced neuronal injury through actions on microglial NLRP3 inflammasome signaling has not yet been clarified. METHODS In this study, we employed T. gondii RH strain to establish in vitro and in vivo infection models in BV2 microglia cell line and BALB/c mice. Molecular docking, localized surface plasmon resonance assay, quantitative competitive-PCR, ELISA, western blotting, flow cytometric analysis, and immunofluorescence were performed. RESULTS Our results showed that GRh2 alleviated neuropathological damage and neuronal apoptosis in cortical tissue of T. gondii-infected mice. GRh2 and CY-09 (an inhibitor of NLRP3) exhibited potent anti-T. gondii effects through binding T. gondii calcium-dependent protein kinase 1 (TgCDPK1). GRh2 decreased Iba-1 (a specific microglial marker) and NLRP3 inflammasome signaling pathway-related protein expression by binding NLRP3. Co-culture of microglia/primary cortical neurons revealed that T. gondii-induced microglial activation caused neuronal apoptosis, but GRh2 reduced this effect, consistent with the effects of CY-09. CONCLUSION Taken together, our results show that GRh2 has a protective effect against T. gondii infection-induced neuronal injury by binding TgCDPK1 and NLRP3 to inhibit NLRP3 inflammasome signaling pathway in microglia.
Collapse
Affiliation(s)
- Guang-Nan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Jing-Mei Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Hui-Wen Lan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Yu-Nan Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Xin-Yu Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China.
| | - Lian-Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China.
| |
Collapse
|