1
|
Karaboué A, Innominato PF, Wreglesworth NI, Duchemann B, Adam R, Lévi FA. Why does circadian timing of administration matter for immune checkpoint inhibitors' efficacy? Br J Cancer 2024; 131:783-796. [PMID: 38834742 PMCID: PMC11369086 DOI: 10.1038/s41416-024-02704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/26/2024] [Accepted: 04/24/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Tolerability and antitumour efficacy of chemotherapy and radiation therapy can vary largely according to their time of administration along the 24-h time scale, due to the moderation of their molecular and cellular mechanisms by circadian rhythms. Recent clinical data have highlighted a striking role of dosing time for cancer immunotherapy, thus calling for a critical evaluation. METHODS Here, we review the clinical data and we analyse the mechanisms through which circadian rhythms can influence outcomes on ICI therapies. We examine how circadian rhythm disorders can affect tumour immune microenvironment, as a main mechanism linking the circadian clock to the 24-h cycles in ICIs antitumour efficacy. RESULTS Real-life data from 18 retrospective studies have revealed that early time-of-day (ToD) infusion of immune checkpoint inhibitors (ICIs) could enhance progression-free and/or overall survival up to fourfold compared to late ToD dosing. The studies involved a total of 3250 patients with metastatic melanoma, lung, kidney, bladder, oesophageal, stomach or liver cancer from 9 countries. Such large and consistent differences in ToD effects on outcomes could only result from a previously ignored robust chronobiological mechanism. The circadian timing system coordinates cellular, tissue and whole-body physiology along the 24-h timescale. Circadian rhythms are generated at the cellular level by a molecular clock system that involves 15 specific clock genes. The disruption of circadian rhythms can trigger or accelerate carcinogenesis, and contribute to cancer treatment failure, possibly through tumour immune evasion resulting from immunosuppressive tumour microenvironment. CONCLUSIONS AND PERSPECTIVE Such emerging understanding of circadian rhythms regulation of antitumour immunity now calls for randomised clinical trials of ICIs timing to establish recommendations for personalised chrono-immunotherapies with current and forthcoming drugs.
Collapse
Affiliation(s)
- Abdoulaye Karaboué
- UPR "Chronotherapy, Cancer and Transplantation", Medical School, Paris-Saclay University, 94800, Villejuif, France
- Medical Oncology Unit, GHT Paris Grand Nord-Est, Le Raincy-Montfermeil, 93770, Montfermeil, France
| | - Pasquale F Innominato
- North Wales Cancer Centre, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, LL57 2PW, UK
- Cancer Chronotherapy Team, Division of Biomedical Sciences, Medical School, Warwick University, Coventry, CV4 7AL, UK
| | - Nicholas I Wreglesworth
- North Wales Cancer Centre, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, LL57 2PW, UK
- School of Medical Sciences, Bangor University, Bangor, LL57 2PW, UK
| | - Boris Duchemann
- UPR "Chronotherapy, Cancer and Transplantation", Medical School, Paris-Saclay University, 94800, Villejuif, France
- Thoracic and Medical Oncology Unit, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, 93000, Bobigny, France
| | - René Adam
- UPR "Chronotherapy, Cancer and Transplantation", Medical School, Paris-Saclay University, 94800, Villejuif, France
- Hepato-Biliary Center, Paul Brousse Hospital, Assistance Publique-Hopitaux de Paris, 94800, Villejuif, France
| | - Francis A Lévi
- UPR "Chronotherapy, Cancer and Transplantation", Medical School, Paris-Saclay University, 94800, Villejuif, France.
- Gastro-intestinal and Medical Oncology Service, Paul Brousse Hospital, 94800, Villejuif, France.
- Department of Statistics, University of Warwick, Coventry, UK.
| |
Collapse
|
2
|
Geronikolou SA, Pavlopoulou A, Uça Apaydin M, Albanopoulos K, Cokkinos DV, Chrousos G. Non-Hereditary Obesity Type Networks and New Drug Targets: An In Silico Approach. Int J Mol Sci 2024; 25:7684. [PMID: 39062927 PMCID: PMC11277295 DOI: 10.3390/ijms25147684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity, a chronic, preventable disease, has significant comorbidities that are associated with a great human and financial cost for society. The aim of the present work is to reconstruct the interactomes of non-hereditary obesity to highlight recent advances of its pathogenesis, and discover potential therapeutic targets. Obesity and biological-clock-related genes and/or gene products were extracted from the biomedical literature databases PubMed, GeneCards and OMIM. Their interactions were investigated using STRING v11.0 (a database of known and predicted physical and indirect associations among genes/proteins), and a high confidence interaction score of >0.7 was set. We also applied virtual screening to discover natural compounds targeting obesity- and circadian-clock-associated proteins. Two updated and comprehensive interactomes, the (a) stress- and (b) inflammation-induced obesidomes involving 85 and 93 gene/gene products of known and/or predicted interactions with an average node degree of 9.41 and 10.8, respectively, were produced. Moreover, 15 of these were common between the two non-hereditary entities, namely, ADIPOQ, ADRB2/3, CCK, CRH, CXCL8, FOS, GCG, GNRH1, IGF1, INS, LEP, MC4R, NPY and POMC, while phelligridin E, a natural product, may function as a potent FOX1-DBD interaction blocker. Molecular networks may contribute to the understanding of the integrated regulation of energy balance/obesity pathogenesis and may associate chronopharmacology schemes with natural products.
Collapse
Affiliation(s)
- Styliani A. Geronikolou
- Clinical, Translational Research and Experimental Surgery Centre, Biomedical Research Foundation of the Academy of Athens, 4, Soranou Ephessiou Str., 11527 Athens, Greece; (D.V.C.); (G.C.)
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, Levadias 8, 11527 Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Türkiye; (A.P.)
- Izmir International Biomedicine and Genome Institute, Genomics and Molecular Biotechnology Department, Dokuz Eylül University, 35340 Izmir, Türkiye
| | - Merve Uça Apaydin
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Türkiye; (A.P.)
- Izmir International Biomedicine and Genome Institute, Genomics and Molecular Biotechnology Department, Dokuz Eylül University, 35340 Izmir, Türkiye
| | | | - Dennis V. Cokkinos
- Clinical, Translational Research and Experimental Surgery Centre, Biomedical Research Foundation of the Academy of Athens, 4, Soranou Ephessiou Str., 11527 Athens, Greece; (D.V.C.); (G.C.)
| | - George Chrousos
- Clinical, Translational Research and Experimental Surgery Centre, Biomedical Research Foundation of the Academy of Athens, 4, Soranou Ephessiou Str., 11527 Athens, Greece; (D.V.C.); (G.C.)
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, Levadias 8, 11527 Athens, Greece
| |
Collapse
|
3
|
Holland JG, Prior KF, O'Donnell AJ, Reece SE. Testing the evolutionary drivers of malaria parasite rhythms and their consequences for host-parasite interactions. Evol Appl 2024; 17:e13752. [PMID: 39006006 PMCID: PMC11246599 DOI: 10.1111/eva.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Undertaking certain activities at the time of day that maximises fitness is assumed to explain the evolution of circadian clocks. Organisms often use daily environmental cues such as light and food availability to set the timing of their clocks. These cues may be the environmental rhythms that ultimately determine fitness, act as proxies for the timing of less tractable ultimate drivers, or are used simply to maintain internal synchrony. While many pathogens/parasites undertake rhythmic activities, both the proximate and ultimate drivers of their rhythms are poorly understood. Explaining the roles of rhythms in infections offers avenues for novel interventions to interfere with parasite fitness and reduce the severity and spread of disease. Here, we perturb several rhythms in the hosts of malaria parasites to investigate why parasites align their rhythmic replication to the host's feeding-fasting rhythm. We manipulated host rhythms governed by light, food or both, and assessed the fitness implications for parasites, and the consequences for hosts, to test which host rhythms represent ultimate drivers of the parasite's rhythm. We found that alignment with the host's light-driven rhythms did not affect parasite fitness metrics. In contrast, aligning with the timing of feeding-fasting rhythms may be beneficial for the parasite, but only when the host possess a functional canonical circadian clock. Because parasites in clock-disrupted hosts align with the host's feeding-fasting rhythms and yet derive no apparent benefit, our results suggest cue(s) from host food act as a proxy rather than being a key selective driver of the parasite's rhythm. Alternatively, parasite rhythmicity may only be beneficial because it promotes synchrony between parasite cells and/or allows parasites to align to the biting rhythms of vectors. Our results also suggest that interventions can disrupt parasite rhythms by targeting the proxies or the selective factors driving them without impacting host health.
Collapse
Affiliation(s)
- Jacob G. Holland
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| | | | | | - Sarah E. Reece
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
- Institute of Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
| |
Collapse
|
4
|
Carvalho Cabral P, Stegeman SK, Olivier M, Cermakian N. Circadian Regulation of Leishmania Parasite Internalisation in Macrophages and Downstream Cellular Events. Parasite Immunol 2024; 46:e13053. [PMID: 38817112 DOI: 10.1111/pim.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
Leishmania spp. parasites use macrophages as a host cell during infection. As a result, macrophages have a dual role: clearing the parasite as well as acting as host cells. Recently, studies have shown that macrophages harbour circadian clocks, which affect many of their functions such as phagocytosis, receptor expression and cytokine release. Interestingly, Leishmania major infection in hosts was also shown to be under circadian control. Therefore, we decided to investigate what underlies the rhythms of L. major infection within macrophages. Using a culture model of infection of bone marrow-derived macrophages with L. major promastigotes, we show that the parasites are internalised into macrophages with a 24-h variation dependent on a functional circadian clock in the cells. This was associated with a variation in the number of parasites per macrophage. The cell surface expression of parasite receptors was not controlled by the cells' circadian clock. In contrast, the expression of the components of the endocytic pathway, EEA1 and LC3b, varied according to the time of infection. This was paralleled by variations in parasite-induced ROS production as well as cytokine tumour necrosis factor α. In summary, we have uncovered a time-dependent regulation of the internalisation of L. major promastigotes in macrophages, controlled by the circadian clock in these cells, as well as subsequent cellular events in the endocytic pathway, intracellular signalling and cytokine production.
Collapse
Affiliation(s)
| | - Sophia K Stegeman
- Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| | - Martin Olivier
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Nicolas Cermakian
- Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Carvalho Cabral P, Richard VR, Borchers CH, Olivier M, Cermakian N. Circadian Control of the Response of Macrophages to Plasmodium Spp.-Infected Red Blood Cells. Immunohorizons 2024; 8:442-456. [PMID: 38916585 PMCID: PMC11220744 DOI: 10.4049/immunohorizons.2400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
Malaria is a serious vector-borne disease characterized by periodic episodes of high fever and strong immune responses that are coordinated with the daily synchronized parasite replication cycle inside RBCs. As immune cells harbor an autonomous circadian clock that controls various aspects of the immune response, we sought to determine whether the intensity of the immune response to Plasmodium spp., the parasite causing malaria, depends on time of infection. To do this, we developed a culture model in which mouse bone marrow-derived macrophages are stimulated with RBCs infected with Plasmodium berghei ANKA (iRBCs). Lysed iRBCs, but not intact iRBCs or uninfected RBCs, triggered an inflammatory immune response in bone marrow-derived macrophages. By stimulating at four different circadian time points (16, 22, 28, or 34 h postsynchronization of the cells' clock), 24-h rhythms in reactive oxygen species and cytokines/chemokines were found. Furthermore, the analysis of the macrophage proteome and phosphoproteome revealed global changes in response to iRBCs that varied according to circadian time. This included many proteins and signaling pathways known to be involved in the response to Plasmodium infection. In summary, our findings show that the circadian clock within macrophages determines the magnitude of the inflammatory response upon stimulation with ruptured iRBCs, along with changes of the cell proteome and phosphoproteome.
Collapse
Affiliation(s)
| | - Vincent R. Richard
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Christoph H. Borchers
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Martin Olivier
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Nicolas Cermakian
- Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Carvalho Cabral P, Weinerman J, Olivier M, Cermakian N. Time of day and circadian disruption influence host response and parasite growth in a mouse model of cerebral malaria. iScience 2024; 27:109684. [PMID: 38680656 PMCID: PMC11053314 DOI: 10.1016/j.isci.2024.109684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/20/2023] [Accepted: 04/04/2024] [Indexed: 05/01/2024] Open
Abstract
Malaria is a disease caused by infection with parasite Plasmodium spp. We studied the circadian regulation of host responses to the parasite, in a mouse model of cerebral malaria. The course of the disease was markedly affected by time of infection, with decreased parasitemia and increased inflammation upon infection in the middle of the night. At this time, there were fewer reticulocytes, which are target cells of the parasites. We next investigated the effects of desynchronization of host clocks on the infection: after 10 weeks of recurrent jet lags, mice showed decreased parasite growth and lack of parasite load rhythmicity, paralleled by a loss of glucose rhythm. Accordingly, disrupting host metabolic rhythms impacted parasite load rhythmicity. In summary, our findings of a circadian modulation of malaria parasite growth and infection shed light on aspects of the disease relevant to human malaria and could contribute to new therapeutic or prophylactic measures.
Collapse
Affiliation(s)
- Priscilla Carvalho Cabral
- Douglas Research Centre, McGill University, Montréal, QC H4H 1R3, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Joelle Weinerman
- Douglas Research Centre, McGill University, Montréal, QC H4H 1R3, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Nicolas Cermakian
- Douglas Research Centre, McGill University, Montréal, QC H4H 1R3, Canada
| |
Collapse
|
7
|
Owolabi ATY, Schneider P, Reece SE. Virulence is associated with daily rhythms in the within-host replication of the malaria parasite Plasmodium chabaudi. Evol Appl 2024; 17:e13696. [PMID: 38721594 PMCID: PMC11078297 DOI: 10.1111/eva.13696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/10/2024] [Indexed: 01/06/2025] Open
Abstract
Most malaria (Plasmodium spp.) parasite species undergo asexual replication synchronously within the red blood cells of their vertebrate host. Rhythmicity in this intraerythrocytic developmental cycle (IDC) enables parasites to maximise exploitation of the host and align transmission activities with the time of day that mosquito vectors blood feed. The IDC is also responsible for the major pathologies associated with malaria, and plasticity in the parasite's rhythm can confer tolerance to antimalarial drugs. Both the severity of infection (virulence) and synchrony of the IDC vary across species and between genotypes of Plasmodium; however, this variation is poorly understood. The theory predicts that virulence and IDC synchrony are negatively correlated, and we tested this hypothesis using two closely related genotypes of the rodent malaria model Plasmodium chabaudi that differ markedly in virulence. We also test the predictions that, in response to perturbations to the timing (phase) of the IDC schedule relative to the phase of host rhythms (misalignment), the virulent parasite genotype recovers the correct phase relationship faster, incurs less fitness losses and so hosts benefit less from misalignment when infected with a virulent genotype. Our predictions are partially supported by results suggesting that the virulent parasite genotype is less synchronous in some circumstances and recovers faster from misalignment. While hosts were less anaemic when infected by misaligned parasites, the extent of this benefit did not depend on parasite virulence. Overall, our results suggest that interventions to perturb the alignment between the IDC schedule, and host rhythms and increase synchrony between parasites within each IDC, could alleviate disease symptoms. However, virulent parasites, which are better at withstanding conventional antimalarial treatment, would also be intrinsically better able to tolerate such interventions.
Collapse
Affiliation(s)
- Alíz T. Y. Owolabi
- School of Biological Sciences, Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| | - Petra Schneider
- School of Biological Sciences, Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| | - Sarah E. Reece
- School of Biological Sciences, Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| |
Collapse
|
8
|
Lin Y, He L, Cai Y, Wang X, Wang S, Li F. The role of circadian clock in regulating cell functions: implications for diseases. MedComm (Beijing) 2024; 5:e504. [PMID: 38469551 PMCID: PMC10925886 DOI: 10.1002/mco2.504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
The circadian clock system orchestrates daily behavioral and physiological rhythms, facilitating adaptation to environmental and internal oscillations. Disruptions in circadian rhythms have been linked to increased susceptibility to various diseases and can exacerbate existing conditions. This review delves into the intricate regulation of diurnal gene expression and cell function by circadian clocks across diverse tissues. . Specifically, we explore the rhythmicity of gene expressions, behaviors, and functions in both immune and non-immune cells, elucidating the regulatory effects and mechanisms imposed by circadian clocks. A detailed discussion is centered on elucidating the complex functions of circadian clocks in regulating key cellular signaling pathways. We further review the circadian regulation in diverse diseases, with a focus on inflammatory diseases, cancers, and systemic diseases. By highlighting the intimate interplay between circadian clocks and diseases, especially through clock-controlled cell function, this review contributes to the development of novel disease intervention strategies. This enhanced understanding holds significant promise for the design of targeted therapies that can exploit the circadian regulation mechanisms for improved treatment efficacy.
Collapse
Affiliation(s)
- Yanke Lin
- Infectious Diseases InstituteGuangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
- Guangdong TCRCure Biopharma Technology Co., Ltd.GuangzhouChina
| | | | - Yuting Cai
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Xiaokang Wang
- Department of PharmacyShenzhen Longhua District Central HospitalShenzhenChina
| | - Shuai Wang
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Feng Li
- Infectious Diseases InstituteGuangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
9
|
Liao X, He J, Wang R, Zhang J, Wei S, Xiao Y, Zhou Q, Zheng X, Zhu Z, Zheng Z, Li J, Zeng Z, Chen D, Chen J. TLR-2 agonist Pam3CSK4 has no therapeutic effect on visceral leishmaniasis in BALB/c mice and may enhance the pathogenesis of the disease. Immunobiology 2023; 228:152725. [PMID: 37562277 DOI: 10.1016/j.imbio.2023.152725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Most of the existing Leishmania-related research about TLR-2 agonists was focusing on their role as adjuvants in the vaccine, few studied its therapeutic effect. This paper aims to explore the therapeutic effect of TLR-2 agonist Pam3CSK4 on Leishmania-infected mice and the underlying immune molecular mechanisms. In L. donovani-infected BALB/c mice, one group was treated with Pam3CSK4 after infection and the other group was not treated. Normal uninfected mice treated with Pam3CSK4 or untreated were used as controls. Parasite load, hepatic pathology and serum antibodies were detected to assess the severity of the infection. The expression of immune-related genes, spleen lymphocyte subsets and liver RNA-seq were employed to reveal possible molecular mechanisms. The results showed that the liver and spleen parasite load of infected mice in Pam3CSK4 treated and untreated groups had no statistical difference, indicating Pam3CSK4 might have no therapeutic effect on visceral leishmaniasis. Infected mice treated with Pam3CSK4 possessed more hepatic inflammation focus, lower IgG and IgG2a antibody titers, and a lower proportion of spleen CD3+CD4+ T cells. Transcriptome analysis revealed that Th1/Th2 differentiation, NK cells, Th17 cell, complement system and calcium signaling pathways were down-regulated post-treatment of Pam3CSK4. In this study, TLR-2 agonist Pam3CSK4 showed no therapeutic effect on visceral leishmaniasis in BALB/c mice and might enhance the pathogenesis of the disease possibly due to the down-regulation of several immune-related pathways, which can improve our understanding of the role of TLR-2 in both treatment and vaccine development.
Collapse
Affiliation(s)
- Xuechun Liao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jinlei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ruanyan Wang
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jianhui Zhang
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Shulan Wei
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yuying Xiao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Qi Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaoting Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zheying Zhu
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhiwan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
| | - Jiao Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
| | - Zheng Zeng
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China; Chong Qing Animal Disease Prevention and Control Center, Chongqing, China
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China.
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China.
| |
Collapse
|
10
|
Myhill LJ, Williams AR. Diet-microbiota crosstalk and immunity to helminth infection. Parasite Immunol 2023; 45:e12965. [PMID: 36571323 DOI: 10.1111/pim.12965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/27/2022]
Abstract
Helminths are large multicellular parasites responsible for widespread chronic disease in humans and animals. Intestinal helminths live in close proximity with the host gut microbiota and mucosal immune network, resulting in reciprocal interactions that closely influence the course of infections. Diet composition may strongly regulate gut microbiota composition and intestinal immune function and therefore may play a key role in modulating anti-helminth immune responses. Characterizing the multitude of interactions that exist between different dietary components (e.g., dietary fibres), immune cells, and the microbiota, may shed new light on regulation of helminth-specific immunity. This review focuses on the current knowledge of how metabolism of dietary components shapes immune response during helminth infection, and how this information may be potentially harnessed to design new therapeutics to manage parasitic infections and associated diseases.
Collapse
Affiliation(s)
- Laura J Myhill
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
11
|
Cadd LC, Crooks B, Marks NJ, Maule AG, Mousley A, Atkinson LE. The Strongyloides bioassay toolbox: A unique opportunity to accelerate functional biology for nematode parasites. Mol Biochem Parasitol 2022; 252:111526. [PMID: 36240960 DOI: 10.1016/j.molbiopara.2022.111526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 12/31/2022]
Abstract
Caenorhabditis elegans is a uniquely powerful tool to aid understanding of fundamental nematode biology. While C. elegans boasts an unrivalled array of functional genomics tools and phenotype bioassays the inherent differences between free-living and parasitic nematodes underscores the need to develop these approaches in tractable parasite models. Advances in functional genomics approaches, including RNA interference and CRISPR/Cas9 gene editing, in the parasitic nematodes Strongyloides ratti and Strongyloides stercoralis provide a unique and timely opportunity to probe basic parasite biology and reveal novel anthelmintic targets in species that are both experimentally and therapeutically relevant pathogens. While Strongyloides functional genomics tools have progressed rapidly, the complementary range of bioassays required to elucidate phenotypic outcomes post-functional genomics remain more limited in scope. To adequately support the exploitation of functional genomic pipelines for studies of gene function in Strongyloides a comprehensive set of species- and parasite-specific quantitative bioassays are required to assess nematode behaviours post-genetic manipulation. Here we review the scope of the current Strongyloides bioassay toolbox, how established Strongyloides bioassays have advanced knowledge of parasite biology, opportunities for Strongyloides bioassay development and, the need for investment in tractable model parasite platforms such as Strongyloides to drive the discovery of novel targets for parasite control.
Collapse
Affiliation(s)
- Luke C Cadd
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Bethany Crooks
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Nikki J Marks
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Aaron G Maule
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Angela Mousley
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Louise E Atkinson
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK.
| |
Collapse
|