1
|
Lian Q, Zhao H, Wang B, Ling P, Li J, Dai P, Ge J, Su X, Wang Z, Qiao S. Enhancing radiosensitivity in osteosarcoma via CDKN2C overexpression: A mechanism involving G1 phase arrest mediated by inhibition of CDK4 expression and Thr172 phosphorylation. Biochem Biophys Res Commun 2024; 735:150840. [PMID: 39426133 DOI: 10.1016/j.bbrc.2024.150840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND The limited radiosensitivity of osteosarcoma poses a challenge in applying radiotherapy, necessitating the search for effective radiosensitizing targets. METHODS The lentiviral vectors were employed to establish CDKN2C-overexpressing (CDKN2C-OE) and CDKN2C-negative control (CDKN2C-NC) HOS and U2OS osteosarcoma cells. Cells were treated with or without irradiation (IR) to assess radiosensitization via viability, proliferation, apoptosis, and cell cycle analysis. A mouse model with subcutaneous tumors from CDKN2C-OE and CDKN2C-NC HOS cells evaluated tumor growth post-IR. Immunohistochemical staining and Western blot analysis were conducted to confirm model establishment and explore mechanisms. RESULTS CDKN2C-OE combined with IR inhibited cell viability and proliferation, promoting apoptosis in vitro and inhibiting tumor growth in vivo. CDKN2C-OE inhibited G1 phase progression post-IR by suppressing Cyclin-dependent kinase 4 (CDK4) expression and Thr172 phosphorylation, reducing retinoblastoma protein (RB) phosphorylation at Ser807/811. CDKN2C-OE did not primarily impact the cell cycle by regulating the expression of CDK6 and Cyclin D1. Furthermore, when CDKN2C-OE was combined with IR, the expression of BAX, Caspase-3, and its active cleavage product, cleaved Caspase-3, was upregulated. CONCLUSIONS Our research results indicate that overexpression of CDKN2C enhances radiosensitivity in osteosarcoma through the induction of G1 phase arrest and subsequent apoptosis. G1 phase arrest is mediated by the suppression of CDK4 expression and Thr172 phosphorylation, which consequently affects the expression of phosphorylated RB at the Ser807/811 sites.
Collapse
Affiliation(s)
- Qiujian Lian
- Department of Orthopedics, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University, Shanghai 201805, China; Department of Orthopedics, Fuzhou Second General Hospital, Fuzhou Fujian 350007, China
| | - Haonan Zhao
- Department of Orthopedics, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University, Shanghai 201805, China
| | - Bingxuan Wang
- Department of Orthopedics, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University, Shanghai 201805, China
| | - Ping Ling
- Department of General Surgery, The 902 Hospital of the PLA Joint Logistic Support Force, Bengbu Anhui 233000, China
| | - Jingyan Li
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou Fujian 350001, China
| | - Peijun Dai
- Department of Orthopedics, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University, Shanghai 201805, China
| | - Junyong Ge
- Department of Orthopedics, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University, Shanghai 201805, China
| | - Xu Su
- Department of Orthopedics, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University, Shanghai 201805, China
| | - Zhiwei Wang
- Department of Orthopedics, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University, Shanghai 201805, China.
| | - Suchi Qiao
- Department of Orthopedics, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University, Shanghai 201805, China.
| |
Collapse
|
2
|
Zhang W, Li W, Yin C, Feng C, Liu B, Xu H, Jin X, Tu C, Li Z. PRKDC Induces Chemoresistance in Osteosarcoma by Recruiting GDE2 to Stabilize GNAS and Activate AKT. Cancer Res 2024; 84:2873-2887. [PMID: 38900943 PMCID: PMC11372366 DOI: 10.1158/0008-5472.can-24-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/13/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Chemoresistance is one of the major causes of poor prognosis in osteosarcoma. Alternative therapeutic strategies for osteosarcoma are limited, indicating that increasing sensitivity to currently used chemotherapies could be an effective approach to improve patient outcomes. Using a kinome-wide CRISPR screen, we identified PRKDC as a critical determinant of doxorubicin (DOX) sensitivity in osteosarcoma. The analysis of clinical samples demonstrated that PRKDC was hyperactivated in osteosarcoma, and functional experiments showed that the loss of PRKDC significantly increased sensitivity of osteosarcoma to DOX. Mechanistically, PRKDC recruited and bound GDE2 to enhance the stability of protein GNAS. The elevated GNAS protein levels subsequently activated AKT phosphorylation and conferred resistance to DOX. The PRKDC inhibitor AZD7648 and DOX synergized and strongly suppressed the growth of osteosarcoma in mouse xenograft models and human organoids. In conclusion, the PRKDC-GDE2-GNAS-AKT regulatory axis suppresses DOX sensitivity and comprises targetable candidates for improving the efficacy of chemotherapy in osteosarcoma. Significance: Targeting PRKDC suppresses AKT activation and increases sensitivity to doxorubicin in osteosarcoma, which provides a therapeutic strategy for overcoming chemoresistance.
Collapse
Affiliation(s)
- Wenchao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China.
| | - Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Chi Yin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China.
| | - Chengyao Feng
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China.
| | - Binfeng Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China.
| | - Haodong Xu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China.
- Changsha Medical University, Changsha, China.
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China.
- Shenzhen Research Institute of Central South University, Guangdong, China.
- FuRong Laboratory, Changsha, China.
| |
Collapse
|
3
|
Yan L, Zhou R, Feng Y, Li R, Zhang L, Pan Y, Qiao X, Li P, Wei X, Xu C, Li Y, Niu X, Sun X, Lv Z, Tian Z. MiR-134-5p inhibits the malignant phenotypes of osteosarcoma via ITGB1/MMP2/PI3K/Akt pathway. Cell Death Discov 2024; 10:193. [PMID: 38664375 PMCID: PMC11045734 DOI: 10.1038/s41420-024-01946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Micro RNAs (miRs) have been implicated in various tumorigenic processes. Osteosarcoma (OS) is a primary bone malignancy seen in adolescents. However, the mechanism of miRs in OS has not been fully demonstrated yet. Here, miR-134-5p was found to inhibit OS progression and was also expressed at significantly lower levels in OS tissues and cells relative to normal controls. miR-134-5p was found to reduce vasculogenic mimicry, proliferation, invasion, and migration of OS cells, with miR-134-5p knockdown having the opposite effects. Mechanistically, miR-134-5p inhibited expression of the ITGB1/MMP2/PI3K/Akt axis, thus reducing the malignant features of OS cells. In summary, miR-134-5p reduced OS tumorigenesis by modulation of the ITGB1/MMP2/PI3K/Akt axis, suggesting the potential for using miR-134-5p as a target for treating OS.
Collapse
Affiliation(s)
- Lei Yan
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
| | - Ruhao Zhou
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
| | - Yi Feng
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
| | - Ruoqi Li
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Long Zhang
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yongchun Pan
- Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaochen Qiao
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of Orthopedics, JinZhong Hospital Affiliated to Shanxi Medical University, 689 Huitong South Road, Jinzhong, Shanxi, 030600, China
| | - Pengcui Li
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Shanxi Bethune Hospital, Shanxi, China
| | - Xiaochun Wei
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
| | - Chaojian Xu
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
| | - Yuan Li
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
| | - Xiaochen Niu
- The Fifth Clinical Medical College of Shanxi Medical University, Shanxi, China
| | - Xiaojuan Sun
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China.
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China.
| | - Zhi Lv
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China.
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China.
| | - Zhi Tian
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China.
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
4
|
Pei Y, Guo Y, Wang W, Wang B, Zeng F, Shi Q, Xu J, Guo L, Ding C, Xie X, Ren T, Guo W. Extracellular vesicles as a new frontier of diagnostic biomarkers in osteosarcoma diseases: a bibliometric and visualized study. Front Oncol 2024; 14:1359807. [PMID: 38500663 PMCID: PMC10944918 DOI: 10.3389/fonc.2024.1359807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
The use of liquid biopsy in cancer research has grown exponentially, offering potential for early detection, treatment stratification, and monitoring residual disease and recurrence. Exosomes, released by cancer cells, contain tumor-derived materials and are stable in biofluids, making them valuable biomarkers for clinical evaluation. Bibliometric research on osteosarcoma (OS) and exosome-derived diagnostic biomarkers is scarce. Therefore, we aimed to conduct a bibliometric evaluation of studies on OS and exosome-derived biomarkers. Using the Web of Science Core Collection database, Microsoft Excel, the R "Bibliometrix" package, CiteSpace, and VOSviewer software, quantitative analyses of the country, author, annual publications, journals, institutions, and keywords of studies on exosome-derived biomarkers for OS from 1995 to 2023 were performed. High-quality records (average citation rate ≥ 10/year) were filtered. The corresponding authors were mainly from China, the USA, Australia, and Canada. The University of Kansas Medical Center, National Cancer Center, Japan, and University of Kansas were major institutions, with limited cooperation reported by the University of Kansas Medical Center. Keyword analysis revealed a shift from cancer progression to mesenchymal stem cells, exosome expression, biogenesis, and prognostic biomarkers. Qualitative analysis highlighted exosome cargo, including miRNAs, circRNAs, lncRNAs, and proteins, as potential diagnostic OS biomarkers. This research emphasizes the rapid enhancement of exosomes as a diagnostic frontier, offering guidance for the clinical application of exosome-based liquid biopsy in OS, contributing to the evolving landscape of cancer diagnosis.
Collapse
Affiliation(s)
- Yanhong Pei
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Yu Guo
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Wei Wang
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Boyang Wang
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Fanwei Zeng
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Qianyu Shi
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Jiuhui Xu
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Lei Guo
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Chaowei Ding
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Xiangpang Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cangnan Hospital of Wenzhou Medical University, Cangnan, Zhejiang, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| |
Collapse
|
5
|
Zhao R, Chen Y, Wang D, Zhang C, Song H, Ni G. Role of irisin in bone diseases. Front Endocrinol (Lausanne) 2023; 14:1212892. [PMID: 37600697 PMCID: PMC10436578 DOI: 10.3389/fendo.2023.1212892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Bone diseases are common among middle-aged and elderly people, and harm to activities of daily living (ADL) and quality of life (QOL) for patients. It is crucial to search for key regulatory factors associated with the development of bone diseases and explore potential therapeutic targets for bone diseases. Irisin is a novel myokine that has been discovered in recent years. Accumulating evidence indicates that irisin has beneficial effects in the treatment of various diseases such as metabolic, cardiovascular and neurological disorders, especially bone-related diseases. Recent studies had shown that irisin plays the role in various bone diseases such as osteoarthritis, osteoporosis and other bone diseases, suggesting that irisin may be a potential molecule for the prevention and treatment of bone diseases. Therefore, in this review, by consulting the related domestic and international literature of irisin and bone diseases, we summarized the specific regulatory mechanisms of irisin in various bone diseases, and provided a systematic theoretical basis for its application in the diagnosis and treatment of the bone diseases.
Collapse
Affiliation(s)
- Ruobing Zhao
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yan Chen
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Chunyu Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Henan Song
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guoxin Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Huang B, Jin P, Yi K, Duan J. MAPK-interacting kinases inhibition by eFT508 overcomes chemoresistance in preclinical model of osteosarcoma. Hum Exp Toxicol 2023; 42:9603271231158047. [PMID: 36840478 DOI: 10.1177/09603271231158047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The MAPK-interacting kinases 1 and 2 (MNK1/2) have generated increasing interest as therapeutic targets for many cancers with little known in osteosarcoma. This study evaluated the efficacy of eFT508, a highly selective inhibitor of MNK1/2, as single drug alone and in combination with paclitaxel in preclinical models of osteosarcoma. EFT508 is active against multiple osteosarcoma cell lines via inhibiting growth, survival and migration. It also demonstrates anti-osteosarcoma selectivity with much less toxicity on normal osteoblastic than osteosarcoma cells. Consistent with in vitro findings, eFT508 at non-toxic dose significantly arrested tumor growth in mice throughout the whole duration of treatment. Mechanistically, eEFT508 is highly effective in blocking eIF4E phosphorylation and eIF4E-mediated protein translation. Combination index shows that eFT508 and paclitaxel is synergistic in osteosarcoma cells. Our findings highlight the therapeutic value of MNK1/2 inhibition and suggest eFT508 as a promising candidate for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Bin Huang
- Department of Orthopedics, Xiangyang No.1 People's Hospital, 36841Hubei University of Medicine, Xiangyang, China
| | - Peicheng Jin
- Department of Orthopedics, Xiangyang No.1 People's Hospital, 36841Hubei University of Medicine, Xiangyang, China
| | - Kaijun Yi
- Department of Orthopedics, Xiangyang No.1 People's Hospital, 36841Hubei University of Medicine, Xiangyang, China
| | - Junhu Duan
- Department of Orthopedics, Xiangyang No.1 People's Hospital, 36841Hubei University of Medicine, Xiangyang, China
| |
Collapse
|
7
|
Deng J, Liu S, Li G, Zheng Y, Zhang W, Lin J, Yu F, Weng J, Liu P, Zeng H. pH-sensitive charge-conversion cinnamaldehyde polymeric prodrug micelles for effective targeted chemotherapy of osteosarcoma in vitro. Front Chem 2023; 11:1190596. [PMID: 37206197 PMCID: PMC10188981 DOI: 10.3389/fchem.2023.1190596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction: Chemotherapy is a common strategy for the treatment of osteosarcoma. However, its therapeutic efficacy is not ideal due to the low targeting, lowbioavailability, and high toxicity of chemotherapy drugs. Nanoparticles can improve the residence time of drugs at tumor sites through targeted delivery. This new technology can reduce the risk to patients and improve survival rates. To achieve this goal, we developed a pHsensitive charge-conversion polymeric micelle [mPEG-b-P(C7-co-CA) micelles] for osteosarcoma-targeted delivery of cinnamaldehyde (CA). Methods: First, an amphiphilic cinnamaldehyde polymeric prodrug [mPEG-b-P(C7-co-CA)] was synthesized through Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT) polymerization and post-modification, and self-assembled into mPEG-b-P(C7-co-CA) micelles in an aqueous solution. The physical properties of mPEG-b-P(C7-co-CA) micelles, such as critical micelle concentration (CMC), size, appearance, and Zeta potential were characterized. The CA release curve of mPEG-b-P(C7-co-CA) micelles at pH 7.4, 6.5 and 4.0 was studied by dialysis method, then the targeting ability of mPEG-b-P(C7-co-CA) micelles to osteosarcoma 143B cells in acidic environment (pH 6.5) was explored by cellular uptakeassay. The antitumor effect of mPEG-b-P(C7-co-CA) micelles on 143B cells in vitro was studied by MTT method, and the level of reactive oxygen species (ROS) in 143B cells after mPEG-b-P(C7-co-CA) micelles treatment was detected. Finally, the effects of mPEG-b-P(C7-co-CA) micelles on the apoptosis of 143B cells were detected by flow cytometry and TUNEL assay. Results: An amphiphilic cinnamaldehyde polymeric prodrug [mPEG-b-P(C7-co-CA)] was successfully synthesized and self-assembled into spheric micelles with a diameter of 227 nm. The CMC value of mPEG-b-P(C7-co-CA) micelles was 25.2 mg/L, and it showed a pH dependent release behavior of CA. mPEG-b-P(C7-co-CA) micelles can achieve chargeconversion from a neutral to a positive charge with decreasing pHs. This charge-conversion property allows mPEG-b-P(C7-co-CA) micelles to achieve 143B cell targeting at pH 6.5. In addition, mPEG-b-P(C7-co-CA) micelles present high antitumor efficacy and intracellular ROS generation at pH 6.5 which can induce 143B cell apoptosis. Discussion: mPEG-b-P(C7-co-CA) micelles can achieve osteosarcoma targeting effectively and enhance the anti-osteosarcoma effect of cinnamaldehyde in vitro. This research provides a promising drug delivery system for clinical application and tumor treatment.
Collapse
Affiliation(s)
- Jiapeng Deng
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Su Liu
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guoqing Li
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yien Zheng
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Weifei Zhang
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fei Yu
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Weng
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Jian Weng, ; Peng Liu, ; Hui Zeng,
| | - Peng Liu
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Jian Weng, ; Peng Liu, ; Hui Zeng,
| | - Hui Zeng
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Jian Weng, ; Peng Liu, ; Hui Zeng,
| |
Collapse
|
8
|
Gou F, Liu J, Zhu J, Wu J. A Multimodal Auxiliary Classification System for Osteosarcoma Histopathological Images Based on Deep Active Learning. Healthcare (Basel) 2022; 10:2189. [PMID: 36360530 PMCID: PMC9690420 DOI: 10.3390/healthcare10112189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 10/29/2023] Open
Abstract
Histopathological examination is an important criterion in the clinical diagnosis of osteosarcoma. With the improvement of hardware technology and computing power, pathological image analysis systems based on artificial intelligence have been widely used. However, classifying numerous intricate pathology images by hand is a tiresome task for pathologists. The lack of labeling data makes the system costly and difficult to build. This study constructs a classification assistance system (OHIcsA) based on active learning (AL) and a generative adversarial network (GAN). The system initially uses a small, labeled training set to train the classifier. Then, the most informative samples from the unlabeled images are selected for expert annotation. To retrain the network, the final chosen images are added to the initial labeled dataset. Experiments on real datasets show that our proposed method achieves high classification performance with an AUC value of 0.995 and an accuracy value of 0.989 using a small amount of labeled data. It reduces the cost of building a medical system. Clinical diagnosis can be aided by the system's findings, which can also increase the effectiveness and verifiable accuracy of doctors.
Collapse
Affiliation(s)
- Fangfang Gou
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Jun Liu
- The Second People’s Hospital of Huaihua, Huaihua 418000, China
| | - Jun Zhu
- The First People’s Hospital of Huaihua, Huaihua 418000, China
- Collaborative Innovation Center for Medical Artificial Intelligence and Big Data Decision Making Assistance, Hunan University of Medicine, Huaihua 418000, China
| | - Jia Wu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
- Research Center for Artificial Intelligence, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
9
|
Tian H, Wu R, Feng N, Zhang J, Zuo J. Recent advances in hydrogels-based osteosarcoma therapy. Front Bioeng Biotechnol 2022; 10:1042625. [PMID: 36312544 PMCID: PMC9597306 DOI: 10.3389/fbioe.2022.1042625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma (OS), as a typical kind of bone tumors, has a high incidence among adolescents. Traditional tumor eradication avenues for OS such as chemotherapy, surgical therapy and radiation therapy usually have their own drawbacks including recurrence and metastasis. In addition, another serious issue in the treatment of OS is bone repair because the bone after tumor invasion usually has difficulty in repairing itself. Hydrogels, as a synthetic or natural platform with a porous three-dimensional structure, can be applied as desirable platforms for OS treatment. They can not only be used as carriers for tumor therapeutic drugs but mimic the extracellular matrix for the growth and differentiation of mesenchymal stem cells (MSCs), thus providing tumor treatment and enhancing bone regeneration at the same time. This review focuses the application of hydrogels in OS suppression and bone regeneration, and give some suggests on future development.
Collapse
Affiliation(s)
- Hao Tian
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ronghui Wu
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Na Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinrui Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan, China
- *Correspondence: Jinrui Zhang, ; Jianlin Zuo,
| | - Jianlin Zuo
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Jinrui Zhang, ; Jianlin Zuo,
| |
Collapse
|
10
|
Suppression of osteosarcoma progression by engineered lymphocyte-derived proteomes. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
11
|
Li W, Liu Y, Liu W, Tang ZR, Dong S, Li W, Zhang K, Xu C, Hu Z, Wang H, Lei Z, Liu Q, Guo C, Yin C. Machine Learning-Based Prediction of Lymph Node Metastasis Among Osteosarcoma Patients. Front Oncol 2022; 12:797103. [PMID: 35515104 PMCID: PMC9067126 DOI: 10.3389/fonc.2022.797103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
Background Regional lymph node metastasis is a contributor for poor prognosis in osteosarcoma. However, studies on risk factors for predicting regional lymph node metastasis in osteosarcoma are scarce. This study aimed to develop and validate a model based on machine learning (ML) algorithms. Methods A total of 1201 patients, with 1094 cases from the surveillance epidemiology and end results (SEER) (the training set) and 107 cases (the external validation set) admitted from four medical centers in China, was included in this study. Independent risk factors for the risk of lymph node metastasis were screened by the multifactorial logistic regression models. Six ML algorithms, including the logistic regression (LR), the gradient boosting machine (GBM), the extreme gradient boosting (XGBoost), the random forest (RF), the decision tree (DT), and the multilayer perceptron (MLP), were used to evaluate the risk of lymph node metastasis. The prediction model was developed based on the bestpredictive performance of ML algorithm and the performance of the model was evaluatedby the area under curve (AUC), prediction accuracy, sensitivity and specificity. A homemade online calculator was capable of estimating the probability of lymph node metastasis in individuals. Results Of all included patients, 9.41% (113/1201) patients developed regional lymph node metastasis. ML prediction models were developed based on nine variables: age, tumor (T) stage, metastasis (M) stage, laterality, surgery, radiation, chemotherapy, bone metastases, and lung metastases. In multivariate logistic regression analysis, T and M stage, surgery, and chemotherapy were significantly associated with lymph node metastasis. In the six ML algorithms, XGB had the highest AUC (0.882) and was utilized to develop as prediction model. A homemade online calculator was capable of estimating the probability of CLNM in individuals. Conclusions T and M stage, surgery and Chemotherapy are independent risk factors for predicting lymph node metastasis among osteosarcoma patients. XGB algorithm has the best predictive performance, and the online risk calculator can help clinicians to identify the risk probability of lymph node metastasis among osteosarcoma patients.
Collapse
Affiliation(s)
- Wenle Li
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, China.,Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, China.,Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan, China
| | - Wencai Liu
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhi-Ri Tang
- School of Physics and Technology, Wuhan University, Wuhan, China
| | - Shengtao Dong
- Department of Spine Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wanying Li
- Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China
| | - Kai Zhang
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, China.,Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China
| | - Chan Xu
- Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China
| | - Zhaohui Hu
- Department of Spine Surgery, Liuzhou People's Hospital, Liuzhou, China
| | - Haosheng Wang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhi Lei
- Chronic Disease Division, Luzhou Center for Dcontrol and Prevention, Luzhou, China
| | - Qiang Liu
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, China
| | - Chunxue Guo
- Biostatistics Department, Hengpu Yinuo (Beijing) Technology Co., Ltd, Beijing, China
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| |
Collapse
|
12
|
Zhang Y, Ning R, Wang W, Zhou Y, Chen Y. Synthesis of Fe3O4/PDA Nanocomposites for Osteosarcoma Magnetic Resonance Imaging and Photothermal Therapy. Front Bioeng Biotechnol 2022; 10:844540. [PMID: 35356774 PMCID: PMC8959548 DOI: 10.3389/fbioe.2022.844540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Osteosarcomas commonly develop in the metaphysis of the long diaphysis, resulting in pronounced malignancy and high rates of early pulmonary metastasis. At present, osteosarcoma patients exhibit relatively poor survival rates owing these metastases and to the emergence of tumor chemoresistance. As such, there is an urgent need to identify other approaches to treating affected patients. Herein, we synthesized Fe3O4@PDA nanocomposites that exhibited excellent biocompatibility and low toxicity in human and animal model systems. The resultant nanoparticles were able to improve T2 magnetic resonance imaging and to enhance the signal-to-noise ratio associated with osteosarcoma tumors in animal models. Moreover, we were able to successfully leverage these Fe3O4@PDA particles as a photothermal agent capable of significantly inhibiting the growth of tumors and preventing their metastasis to the lung compartment. Together, these results highlight a novel therapeutic platform that has the potential to guide both the more effective diagnosis and treatment of osteosarcoma patients in clinical applications.
Collapse
Affiliation(s)
- Yifei Zhang
- Department of Human Anatomy, West China School of Basic Medicine & Forensic Medicine, Sichuan University, Chengdu, China
- Department of Orthopaedics, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yifei Zhang, ; Yao Chen,
| | - Rende Ning
- Department of Orthopaedics, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wang
- Department of Orthopaedics, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yejin Zhou
- Department of Orthopaedics, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yao Chen
- Department of Human Anatomy, West China School of Basic Medicine & Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Yifei Zhang, ; Yao Chen,
| |
Collapse
|
13
|
Raimondi L, Gallo A, Cuscino N, De Luca A, Costa V, Carina V, Bellavia D, Bulati M, Alessandro R, Fini M, Conaldi PG, Giavaresi G. Potential Anti-Metastatic Role of the Novel miR-CT3 in Tumor Angiogenesis and Osteosarcoma Invasion. Int J Mol Sci 2022; 23:705. [PMID: 35054891 PMCID: PMC8775549 DOI: 10.3390/ijms23020705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor mainly occurring in young adults and derived from primitive bone-forming mesenchyme. OS develops in an intricate tumor microenvironment (TME) where cellular function regulated by microRNAs (miRNAs) may affect communication between OS cells and the surrounding TME. Therefore, miRNAs are considered potential therapeutic targets in cancer and one of the goals of research is to accurately define a specific signature of a miRNAs, which could reflect the phenotype of a particular tumor, such as OS. Through NGS approach, we previously found a specific molecular profile of miRNAs in OS and discovered 8 novel miRNAs. Among these, we deepen our knowledge on the fifth candidate renamed now miR-CT3. MiR-CT3 expression was low in OS cells when compared with human primary osteoblasts and healthy bone. Through TargetScan, VEGF-A was predicted as a potential biological target of miR-CT3 and luciferase assay confirmed it. We showed that enforced expression of miR-CT3 in two OS cell lines, SAOS-2 and MG-63, reduced expression of VEGF-A mRNA and protein, inhibiting tumor angiogenesis. Enforced expression of miR-CT3 also reduced OS cell migration and invasion as confirmed by soft agar colony formation assay. Interestingly, we found that miR-CT3 behaves inducing the activation of p38 MAP kinase pathway and modulating the epithelial-mesenchymal transition (EMT) proteins, in particular reducing Vimentin expression. Overall, our study highlights the novel role of miR-CT3 in regulating tumor angiogenesis and progression in OS cells, linking also to the modulation of EMT proteins.
Collapse
Affiliation(s)
- Lavinia Raimondi
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| | - Alessia Gallo
- IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Department of Research, 90127 Palermo, Italy; (A.G.); (N.C.); (M.B.); (P.G.C.)
| | - Nicola Cuscino
- IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Department of Research, 90127 Palermo, Italy; (A.G.); (N.C.); (M.B.); (P.G.C.)
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| | - Viviana Costa
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| | - Valeria Carina
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| | - Daniele Bellavia
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| | - Matteo Bulati
- IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Department of Research, 90127 Palermo, Italy; (A.G.); (N.C.); (M.B.); (P.G.C.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (B.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy;
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| | - Pier Giulio Conaldi
- IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Department of Research, 90127 Palermo, Italy; (A.G.); (N.C.); (M.B.); (P.G.C.)
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies–SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (A.D.L.); (V.C.); (V.C.); (D.B.); (M.F.); (G.G.)
| |
Collapse
|