1
|
Lin L, Cai L, Fan L, Ma JC, Yang XY, Hu XJ. Seed dormancy, germination and storage behavior of Magnolia sinica, a plant species with extremely small populations of Magnoliaceae. PLANT DIVERSITY 2022; 44:94-100. [PMID: 35281125 PMCID: PMC8897163 DOI: 10.1016/j.pld.2021.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 06/14/2023]
Abstract
Magnolia sinica is one of the most endangered Magnoliaceae species in China. Seed biology information concerning its long-term ex situ conservation and utilization is insufficient. This study investigated dormancy status, germination requirements and storage behavior of M. sinica. Freshly matured seeds germinated to ca. 86.5% at 25/15 °C but poorly at 30 °C; GA3 and moist chilling promoted germination significantly at 20 °C. Embryos grew at temperatures (alternating or constant) between 20 °C and 25 °C, but not at 5 °C or 30 °C. Our results indicate that M. sinica seeds possibly have non-deep simple morphophysiological dormancy (MPD). Seeds survived desiccation to 9.27% and 4.85% moisture content (MC) as well as a further 6-month storage at -20 °C and in liquid nitrogen, including recovery in vitro as excised embryos. The established protocol ensured that at least 58% of seedlings were obtained after both cold storage and cryopreservation. These results indicate that both conventional seed banking and cryopreservation have potential as long-term ex situ conservation methods, although further optimized approaches are recommended for this critically endangered magnolia species.
Collapse
Affiliation(s)
- Liang Lin
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Lei Cai
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Lei Fan
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jun-Chao Ma
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiang-Yun Yang
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiao-Jian Hu
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| |
Collapse
|
2
|
Visscher AM, Castillo-Lorenzo E, Toorop PE, Junio da Silva L, Yeo M, Pritchard HW. Pseudophoenix ekmanii (Arecaceae) seeds at suboptimal temperature show reduced imbibition rates and enhanced expression of genes related to germination inhibition. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:1041-1051. [PMID: 32609914 DOI: 10.1111/plb.13156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Pseudophoenix ekmanii is a critically endangered palm species that can be found in the southeast of the Dominican Republic. The temperatures to which P. ekmanii seeds are exposed upon dispersal range from 32 to 23 °C (max and min) and can reach a low of approximately 20 °C in January. Our aim was to analyse the effect of suboptimal (20 °C) and optimal (30 °C) germination temperature on seed imbibition, moisture content, embryo growth and gene expression patterns in this tropical palm species. Seed imbibition was tracked using whole seeds, while moisture content was assessed for individual seed sections. Embryo and whole seed size were measured before and after full imbibition. For transcriptome sequencing, mRNA was extracted from embryo tissues only and the resulting reads were mapped against the Elaeis guineensis reference genome. Differentially expressed genes were identified after statistical analysis and subsequently probed for enrichment of Gene Ontology categories 'Biological process' and 'Cellular component'. Our results show that prolonged exposure to 20 °C slows whole seed and embryo imbibition and causes germination to be both delayed and inhibited. Embryonic transcriptome patterns associated with the negative regulation of germination by suboptimal temperature include up-regulation of ABA biosynthesis genes, ABA-responsive genes, as well as other genes previously related to physiological dormancy and inhibition of germination. Thus, our manuscript provides the first insights into the gene expression patterns involved in the response to suboptimal temperature during seed imbibition in a tropical palm species.
Collapse
Affiliation(s)
- A M Visscher
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex, United Kingdom
| | - E Castillo-Lorenzo
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex, United Kingdom
- Department of Natural Capital and Plant Health, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex, United Kingdom
| | - P E Toorop
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex, United Kingdom
| | - L Junio da Silva
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex, United Kingdom
| | - M Yeo
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex, United Kingdom
| | - H W Pritchard
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex, United Kingdom
| |
Collapse
|
3
|
Temperature variability drives within-species variation in germination strategy and establishment characteristics of an alpine herb. Oecologia 2019; 189:407-419. [PMID: 30604086 DOI: 10.1007/s00442-018-04328-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 12/19/2018] [Indexed: 01/19/2023]
Abstract
Plant establishment and subsequent persistence are strongly influenced by germination strategy, especially in temporally and spatially heterogeneous environments. Germination strategy determines the plant's ability to synchronise germination timing and seedling emergence to a favourable growing season and thus variation in germination strategy within species may be key to persistence under more extreme and variable future climates. However, the determinants of variation in germination strategy are not well resolved. To understand the variation of germination strategy and the climate drivers, we assessed seed traits, germination patterns, and seedling establishment traits of Oreomyrrhis eriopoda from 29 populations across its range. Germination patterns were then analysed against climate data to determine the strongest climate correlates influencing the germination strategy. Oreomyrrhis eriopoda exhibits a striking range of germination strategies among populations: varying from immediate to staggered, postponed, and postponed-deep. Seeds from regions with lower temperature variability were more likely to exhibit an immediate germination strategy; however, those patterns depended on the timescale of climatic assessment. In addition, we show that these strategy differences extend to seedling establishment traits: autumn seedlings (from populations with an immediate or staggered germination strategy) exhibited a higher leaf production rate than spring seedlings (of staggered or postponed strategy). Our results demonstrate not only substantial within-species variation in germination strategy across the species distribution range, but also that this variation correlates with environmental drivers. Given that these differences also extend to establishment traits, they may reflect a critical mechanism for persistence in changing climate.
Collapse
|
4
|
Nadarajan J, Benson EE, Xaba P, Harding K, Lindstrom A, Donaldson J, Seal CE, Kamoga D, Agoo EMG, Li N, King E, Pritchard HW. Comparative Biology of Cycad Pollen, Seed and Tissue - A Plant Conservation Perspective. THE BOTANICAL REVIEW; INTERPRETING BOTANICAL PROGRESS 2018; 84:295-314. [PMID: 30174336 PMCID: PMC6105234 DOI: 10.1007/s12229-018-9203-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Cycads are the most endangered of plant groups based on IUCN Red List assessments; all are in Appendix I or II of CITES, about 40% are within biodiversity 'hotspots,' and the call for action to improve their protection is long-standing. We contend that progress in this direction will not be made until there is better understanding of cycad pollen, seed and tissue biology, which at the moment is limited to relatively few (<10%) species. We review what is known about germplasm (seed and pollen) storage and germination, together with recent developments in the application of contemporary technologies to tissues, such as isotype labelling, biomolecular markers and tissue culture. Whilst progress is being made, we conclude that an acceleration of comparative studies is needed to facilitate the integration of in situ and ex situ conservation programmes to better safeguard endangered cycads.
Collapse
Affiliation(s)
- J. Nadarajan
- Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN UK
- Present Address: The New Zealand Institute for Plant & Food Research Ltd, Private Bag 11600, Palmerston North, 4442 New Zealand
| | - E. E. Benson
- Damar Research Scientists, Damar, Cuparmuir, Fife, KY15 5RJ UK
| | - P. Xaba
- South African National Biodiversity Institute, Kirstenbosch National Botanical Garden, Cape Town, Republic of South Africa
| | - K. Harding
- Damar Research Scientists, Damar, Cuparmuir, Fife, KY15 5RJ UK
| | - A. Lindstrom
- Nong Nooch Tropical Botanical Garden, Chonburi, 20250 Thailand
| | - J. Donaldson
- South African National Biodiversity Institute, Kirstenbosch National Botanical Garden, Cape Town, Republic of South Africa
| | - C. E. Seal
- Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN UK
| | - D. Kamoga
- Joint Ethnobotanical Research Advocacy, P.O.Box 27901, Kampala, Uganda
| | | | - N. Li
- Fairy Lake Botanic Garden, Shenzhen, Guangdong People’s Republic of China
| | - E. King
- UNEP-World Conservation Monitoring Centre, Cambridge, UK
| | - H. W. Pritchard
- Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN UK
| |
Collapse
|