1
|
Oláh V, Appenroth KJ, Sree KS. Duckweed: Research Meets Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:3307. [PMID: 37765471 PMCID: PMC10535908 DOI: 10.3390/plants12183307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
The Special Issue "Duckweed: Research Meets Applications" of the journal Plants (ISSN 2223-7747) presents a comprehensive update of the current progress in the field [...].
Collapse
Affiliation(s)
- Viktor Oláh
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Klaus-Juergen Appenroth
- Matthias Schleiden Institute–Plant Physiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - K. Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
| |
Collapse
|
2
|
Sun Z, Zhao X, Li G, Yang J, Chen Y, Xia M, Hwang I, Hou H. Metabolic flexibility during a trophic transition reveals the phenotypic plasticity of greater duckweed (Spirodela polyrhiza 7498). THE NEW PHYTOLOGIST 2023; 238:1386-1402. [PMID: 36856336 DOI: 10.1111/nph.18844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The greater duckweed (Spirodela polyrhiza 7498) exhibits trophic diversity (photoautotrophic, heterotrophic, photoheterotrophic, and mixotrophic growth) depending on the availability of exogenous organic carbon sources and light. Here, we show that the ability to transition between various trophic growth conditions is an advantageous trait, providing great phenotypic plasticity and metabolic flexibility in S. polyrhiza 7498. By comparing S. polyrhiza 7498 growth characteristics, metabolic acclimation, and cellular ultrastructure across these trophic modes, we show that mixotrophy decreases photosynthetic performance and relieves the CO2 limitation of photosynthesis by enhancing the CO2 supply through the active respiration pathway. Proteomic and metabolomic analyses corroborated that S. polyrhiza 7498 increases its intracellular CO2 and decreases reactive oxygen species under mixotrophic and heterotrophic conditions, which substantially suppressed the wasteful photorespiration and oxidative-damage pathways. As a consequence, mixotrophy resulted in a higher biomass yield than the sum of photoautotrophy and heterotrophy. Our work provides a basis for using trophic transitions in S. polyrhiza 7498 for the enhanced accumulation of value-added products.
Collapse
Affiliation(s)
- Zuoliang Sun
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Yan Chen
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Manli Xia
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Inhwan Hwang
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Yoshida A, Taoka KI, Hosaka A, Tanaka K, Kobayashi H, Muranaka T, Toyooka K, Oyama T, Tsuji H. Characterization of Frond and Flower Development and Identification of FT and FD Genes From Duckweed Lemna aequinoctialis Nd. FRONTIERS IN PLANT SCIENCE 2021; 12:697206. [PMID: 34707626 PMCID: PMC8542802 DOI: 10.3389/fpls.2021.697206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/31/2021] [Indexed: 06/12/2023]
Abstract
Duckweeds (Araceae: Lemnoideae) are aquatic monocotyledonous plants that are characterized by their small size, rapid growth, and wide distribution. Developmental processes regulating the formation of their small leaf-like structures, called fronds, and tiny flowers are not well characterized. In many plant species, flowering is promoted by the florigen activation complex, whose major components are florigen FLOWERING LOCUS T (FT) protein and transcription factor FD protein. How this complex is regulated at the molecular level during duckweed flowering is also not well understood. In this study, we characterized the course of developmental changes during frond development and flower formation in Lemna aequinoctialis Nd, a short-day plant. Detailed observations of frond and flower development revealed that cell proliferation in the early stages of frond development is active as can be seen in the separate regions corresponding to two budding pouches in the proximal region of the mother frond. L. aequinoctialis produces two stamens of different lengths with the longer stamen growing more rapidly. Using high-throughput RNA sequencing (RNA-seq) and de novo assembly of transcripts from plants induced to flower, we identified the L. aequinoctialis FT and FD genes, whose products in other angiosperms form a transcriptional complex to promote flowering. We characterized the protein-protein interaction of duckweed FT and FD in yeast and examined the functions of the two gene products by overexpression in Arabidopsis. We found that L. aequinoctialis FTL1 promotes flowering, whereas FTL2 suppresses flowering.
Collapse
Affiliation(s)
- Akiko Yoshida
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Ken-ichiro Taoka
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Aoi Hosaka
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Hisato Kobayashi
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
- Department of Embryology, Nara Medical University, Nara, Japan
| | | | - Kiminori Toyooka
- Technology Platform Division, Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Tokitaka Oyama
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hiroyuki Tsuji
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
4
|
Yang J, Zhao X, Li G, Hu S, Hou H. Frond architecture of the rootless duckweed Wolffia globosa. BMC PLANT BIOLOGY 2021; 21:387. [PMID: 34416853 PMCID: PMC8377843 DOI: 10.1186/s12870-021-03165-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The plant body in duckweed species has undergone reduction and simplification from the ancient Spirodela species towards more derived Wolffia species. Among the five duckweed genera, Wolffia members are rootless and represent the smallest and most reduced species. A better understanding of Wolffia frond architecture is necessary to fully explore duckweed evolution. RESULTS We conducted a comprehensive study of the morphology and anatomy of Wolffia globosa, the only Wolffia species in China. We first used X-ray microtomography imaging to reveal the three-dimensional and internal structure of the W. globosa frond. This showed that new fronds rapidly budded from the hollow reproductive pocket of the mother fronds and that several generations at various developmental stages could coexist in a single W. globosa frond. Using light microscopy, we observed that the meristem area of the W. globosa frond was located at the base of the reproductive pocket and composed of undifferentiated cells that continued to produce new buds. A single epidermal layer surrounded the W. globosa frond, and the mesophyll cells varied from small and dense palisade-like parenchyma cells to large, vacuolated cells from the ventral to the dorsal part. Furthermore, W. globosa fronds contained all the same organelles as other angiosperms; the most prominent organelles were chloroplasts with abundant starch grains. CONCLUSIONS Our study revealed that the reproductive strategy of W. globosa plants enables the rapid accumulation of biomass and the wide distribution of this species in various habitats. The reduced body plan and size of Wolffia are consistent with our observation that relatively few cell types are present in these plants. We also propose that W. globosa plants are not only suitable for the study of structural reduction in higher plants, but also an ideal system to explore fundamental developmental processes of higher plants that cannot be addressed using other model plants.
Collapse
Affiliation(s)
- Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shiqi Hu
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Zhejiang Marine Development Research Institute, Zhoushan, 316021, China
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
5
|
Chen G, Stepanenko A, Borisjuk N. Mosaic Arrangement of the 5S rDNA in the Aquatic Plant Landoltia punctata (Lemnaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:678689. [PMID: 34249048 PMCID: PMC8264772 DOI: 10.3389/fpls.2021.678689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Duckweeds are a group of monocotyledonous aquatic plants in the Araceae superfamily, represented by 37 species divided into five genera. Duckweeds are the fastest growing flowering plants and are distributed around the globe; moreover, these plants have multiple applications, including biomass production, wastewater remediation, and making pharmaceutical proteins. Dotted duckweed (Landoltia punctata), the sole species in genus Landoltia, is one of the most resilient duckweed species. The ribosomal DNA (rDNA) encodes the RNA components of ribosomes and represents a significant part of plant genomes but has not been comprehensively studied in duckweeds. Here, we characterized the 5S rDNA genes in L. punctata by cloning and sequencing 25 PCR fragments containing the 5S rDNA repeats. No length variation was detected in the 5S rDNA gene sequence, whereas the nontranscribed spacer (NTS) varied from 151 to 524 bp. The NTS variants were grouped into two major classes, which differed both in nucleotide sequence and the type and arrangement of the spacer subrepeats. The dominant class I NTS, with a characteristic 12-bp TC-rich sequence present in 3-18 copies, was classified into four subclasses, whereas the minor class II NTS, with shorter, 9-bp nucleotide repeats, was represented by two identical sequences. In addition to these diverse subrepeats, class I and class II NTSs differed in their representation of cis-elements and the patterns of predicted G-quadruplex structures, which may influence the transcription of the 5S rDNA. Similar to related duckweed species in the genus Spirodela, L. punctata has a relatively low rDNA copy number, but in contrast to Spirodela and the majority of other plants, the arrangement of the 5S rDNA units demonstrated an unusual, heterogeneous pattern in L. punctata, as revealed by analyzing clones containing double 5S rDNA neighboring units. Our findings may further stimulate the research on the evolution of the plant rDNA and discussion of the molecular forces driving homogenization of rDNA repeats in concerted evolution.
Collapse
Affiliation(s)
- Guimin Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
6
|
Tiny Plants with Enormous Potential: Phylogeny and Evolution of Duckweeds. THE DUCKWEED GENOMES 2020. [DOI: 10.1007/978-3-030-11045-1_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Bog M, Appenroth KJ, Sree KS. Duckweed (Lemnaceae): Its Molecular Taxonomy. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00117] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Liu Y, Wang Y, Xu S, Tang X, Zhao J, Yu C, He G, Xu H, Wang S, Tang Y, Fu C, Ma Y, Zhou G. Efficient genetic transformation and CRISPR/Cas9-mediated genome editing in Lemna aequinoctialis. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2143-2152. [PMID: 30972865 PMCID: PMC6790374 DOI: 10.1111/pbi.13128] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 05/13/2023]
Abstract
The fast growth, ease of metabolic labelling and potential for feedstock and biofuels production make duckweeds not only an attractive model system for understanding plant biology, but also a potential future crop. However, current duckweed research is constrained by the lack of efficient genetic manipulation tools. Here, we report a case study on genome editing in a duckweed species, Lemna aequinoctialis, using a fast and efficient transformation and CRISPR/Cas9 tool. By optimizing currently available transformation protocols, we reduced the duration time of Agrobacterium-mediated transformation to 5-6 weeks with a success rate of over 94%. Based on the optimized transformation protocol, we generated 15 (14.3% success rate) biallelic LaPDS mutants that showed albino phenotype using a CRISPR/Cas9 system. Investigations on CRISPR/Cas9-mediated mutation spectrum among mutated L. aequinoctialis showed that most of mutations were short insertions and deletions. This study presents the first example of CRISPR/Cas9-mediated genome editing in duckweeds, which will open new research avenues in using duckweeds for both basic and applied research.
Collapse
Affiliation(s)
- Yu Liu
- College of Resources and EnvironmentQingdao Agricultural UniversityQingdaoChina
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Yu Wang
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Shuqing Xu
- Institute for Evolution and BiodiversityUniversity of MünsterMünsterGermany
| | - Xianfeng Tang
- College of Resources and EnvironmentQingdao Agricultural UniversityQingdaoChina
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Jinshan Zhao
- College of Resources and EnvironmentQingdao Agricultural UniversityQingdaoChina
| | - Changjiang Yu
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Guo He
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Hua Xu
- College of Resources and EnvironmentQingdao Agricultural UniversityQingdaoChina
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Shumin Wang
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Yali Tang
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Chunxiang Fu
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Yubin Ma
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Gongke Zhou
- College of Resources and EnvironmentQingdao Agricultural UniversityQingdaoChina
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| |
Collapse
|
9
|
Hoang PNT, Michael TP, Gilbert S, Chu P, Motley ST, Appenroth KJ, Schubert I, Lam E. Generating a high-confidence reference genome map of the Greater Duckweed by integration of cytogenomic, optical mapping, and Oxford Nanopore technologies. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:670-684. [PMID: 30054939 DOI: 10.1111/tpj.14049] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Duckweeds are the fastest growing angiosperms and have the potential to become a new generation of sustainable crops. Although a seed plant, Spirodela polyrhiza clones rarely flower and multiply mainly through vegetative propagation. Whole-genome sequencing using different approaches and clones yielded two reference maps. One for clone 9509, supported in its assembly by optical mapping of single DNA molecules, and one for clone 7498, supported by cytogenetic assignment of 96 fingerprinted bacterial artificial chromosomes (BACs) to its 20 chromosomes. However, these maps differ in the composition of several individual chromosome models. We validated both maps further to resolve these differences and addressed whether they could be due to chromosome rearrangements in different clones. For this purpose, we applied sequential multicolor fluorescence in situ hybridization (mcFISH) to seven S. polyrhiza clones, using 106 BACs that were mapped onto the 39 pseudomolecules for clone 7498. Furthermore we integrated high-depth Oxford Nanopore (ON) sequence data for clone 9509 to validate and revise the previously assembled chromosome models. We found no major structural rearrangements between these seven clones, identified seven chimeric pseudomolecules and Illumina assembly errors in the previous maps, respectively. A new S. polyrhiza genome map with high contiguity was produced with the ON sequence data and genome-wide synteny analysis supported the occurrence of two Whole Genome Duplication events during its evolution. This work generated a high confidence genome map for S. polyrhiza at the chromosome scale, and illustrates the complementarity of independent approaches to produce whole-genome assemblies in the absence of a genetic map.
Collapse
Affiliation(s)
- Phuong N T Hoang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Stadt Seeland, D-06466, Germany
- Dalat University, Lamdong Province, Vietnam
| | | | - Sarah Gilbert
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Philomena Chu
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | | | - Klaus J Appenroth
- Department of Plant Physiology, Matthias-Schleiden-Institute, Friedrich-Schiller- University of Jena, Jena, D-07743, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Stadt Seeland, D-06466, Germany
| | - Eric Lam
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
10
|
Cao HX, Wang W, Le HTT, Vu GTH. The Power of CRISPR-Cas9-Induced Genome Editing to Speed Up Plant Breeding. Int J Genomics 2016; 2016:5078796. [PMID: 28097123 PMCID: PMC5206445 DOI: 10.1155/2016/5078796] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 12/26/2022] Open
Abstract
Genome editing with engineered nucleases enabling site-directed sequence modifications bears a great potential for advanced plant breeding and crop protection. Remarkably, the RNA-guided endonuclease technology (RGEN) based on the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) is an extremely powerful and easy tool that revolutionizes both basic research and plant breeding. Here, we review the major technical advances and recent applications of the CRISPR-Cas9 system for manipulation of model and crop plant genomes. We also discuss the future prospects of this technology in molecular plant breeding.
Collapse
Affiliation(s)
- Hieu X. Cao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben, 06466 Stadt Seeland, Germany
| | - Wenqin Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Hien T. T. Le
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Giang T. H. Vu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben, 06466 Stadt Seeland, Germany
| |
Collapse
|
11
|
Cao HX, Vu GTH, Wang W, Appenroth KJ, Messing J, Schubert I. The map-based genome sequence of Spirodela polyrhiza aligned with its chromosomes, a reference for karyotype evolution. THE NEW PHYTOLOGIST 2016; 209:354-363. [PMID: 26305472 DOI: 10.1111/nph.13592] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/03/2015] [Indexed: 06/04/2023]
Abstract
Duckweeds are aquatic monocotyledonous plants of potential economic interest with fast vegetative propagation, comprising 37 species with variable genome sizes (0.158-1.88 Gbp). The genomic sequence of Spirodela polyrhiza, the smallest and the most ancient duckweed genome, needs to be aligned to its chromosomes as a reference and prerequisite to study the genome and karyotype evolution of other duckweed species. We selected physically mapped bacterial artificial chromosomes (BACs) containing Spirodela DNA inserts with little or no repetitive elements as probes for multicolor fluorescence in situ hybridization (mcFISH), using an optimized BAC pooling strategy, to validate its physical map and correlate it with its chromosome complement. By consecutive mcFISH analyses, we assigned the originally assembled 32 pseudomolecules (supercontigs) of the genomic sequences to the 20 chromosomes of S. polyrhiza. A Spirodela cytogenetic map containing 96 BAC markers with an average distance of 0.89 Mbp was constructed. Using a cocktail of 41 BACs in three colors, all chromosome pairs could be individualized simultaneously. Seven ancestral blocks emerged from duplicated chromosome segments of 19 Spirodela chromosomes. The chromosomally integrated genome of S. polyrhiza and the established prerequisites for comparative chromosome painting enable future studies on the chromosome homoeology and karyotype evolution of duckweed species.
Collapse
Affiliation(s)
- Hieu Xuan Cao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Giang Thi Ha Vu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Wenqin Wang
- Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | | | - Joachim Messing
- Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
- Faculty of Science and Central European Institute of Technology, Masaryk University, CZ-61137, Brno, Czech Republic
| |
Collapse
|
12
|
Van Hoeck A, Horemans N, Monsieurs P, Cao HX, Vandenhove H, Blust R. The first draft genome of the aquatic model plant Lemna minor opens the route for future stress physiology research and biotechnological applications. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:188. [PMID: 26609323 PMCID: PMC4659200 DOI: 10.1186/s13068-015-0381-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/10/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Freshwater duckweed, comprising the smallest, fastest growing and simplest macrophytes has various applications in agriculture, phytoremediation and energy production. Lemna minor, the so-called common duckweed, is a model system of these aquatic plants for ecotoxicological bioassays, genetic transformation tools and industrial applications. Given the ecotoxic relevance and high potential for biomass production, whole-genome information of this cosmopolitan duckweed is needed. RESULTS The 472 Mbp assembly of the L. minor genome (2n = 40; estimated 481 Mbp; 98.1 %) contains 22,382 protein-coding genes and 61.5 % repetitive sequences. The repeat content explains 94.5 % of the genome size difference in comparison with the greater duckweed, Spirodela polyrhiza (2n = 40; 158 Mbp; 19,623 protein-coding genes; and 15.79 % repetitive sequences). Comparison of proteins from other monocot plants, protein ortholog identification, OrthoMCL, suggests 1356 duckweed-specific groups (3367 proteins, 15.0 % total L. minor proteins) and 795 Lemna-specific groups (2897 proteins, 12.9 % total L. minor proteins). Interestingly, proteins involved in biosynthetic processes in response to various stimuli and hydrolase activities are enriched in the Lemna proteome in comparison with the Spirodela proteome. CONCLUSIONS The genome sequence and annotation of L. minor protein-coding genes provide new insights in biological understanding and biomass production applications of Lemna species.
Collapse
Affiliation(s)
- Arne Van Hoeck
- />Biosphere Impact Studies, SCK•CEN, Boeretang 200, 2400 Mol, Belgium
- />Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Nele Horemans
- />Biosphere Impact Studies, SCK•CEN, Boeretang 200, 2400 Mol, Belgium
- />Centre for Environmental Research, University of Hasselt, Universiteitslaan 1, 3590 Diepenbeek, Belgium
| | | | - Hieu Xuan Cao
- />Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, Germany
| | | | - Ronny Blust
- />Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
13
|
Abstract
Soon after the discovery of deuterium, efforts to utilize this stable isotope of hydrogen for labeling of plants began and have proven successful for natural abundance to 20% enrichment. However, isotopic labeling with deuterium ((2)H) in higher plants at the level of 40% and higher is complicated by both physiological responses, particularly water exchange through transpiration, and inhibitory effects of D2O on germination, rooting, and growth. The highest incorporation of 40-50% had been reported for photoheterotrophic cultivation of the duckweed Lemna. Higher substitution is desirable for certain applications using neutron scattering and nuclear magnetic resonance (NMR) techniques. (1)H(2)H NMR and mass spectroscopy are standard methods frequently used for determination of location and amount of deuterium substitution. The changes in infrared (IR) absorption observed for H to D substitution in hydroxyl and alkyl groups provide rapid initial evaluation of incorporation. Short-term experiments with cold-tolerant annual grasses can be carried out in enclosed growth containers to evaluate incorporation. Growth in individual chambers under continuous air perfusion with dried sterile-filtered air enables long-term cultivation of multiple plants at different D2O concentrations. Vegetative propagation from cuttings extends capabilities to species with low germination rates. Cultivation in 50% D2O of annual ryegrass and switchgrass following establishment of roots by growth in H2O produces samples with normal morphology and 30-40% deuterium incorporation in the biomass. Winter grain rye (Secale cereale) was found to efficiently incorporate deuterium by photosynthetic fixation from 50% D2O but did not incorporate deuterated phenylalanine-d8 from the growth medium.
Collapse
Affiliation(s)
- Barbara R Evans
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
| | - Riddhi Shah
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee, USA; Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|