1
|
Guo L, Wang S, Jiao X, Ye X, Deng D, Liu H, Li Y, Van de Peer Y, Wu W. Convergent and/or parallel evolution of RNA-binding proteins in angiosperms after polyploidization. THE NEW PHYTOLOGIST 2024; 242:1377-1393. [PMID: 38436132 DOI: 10.1111/nph.19656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Increasing studies suggest that the biased retention of stress-related transcription factors (TFs) after whole-genome duplications (WGDs) could rewire gene transcriptional networks, facilitating plant adaptation to challenging environments. However, the role of posttranscriptional factors (e.g. RNA-binding proteins, RBPs) following WGDs has been largely ignored. Uncovering thousands of RBPs in 21 representative angiosperm species, we integrate genomic, transcriptomic, regulatomic, and paleotemperature datasets to unravel their evolutionary trajectories and roles in adapting to challenging environments. We reveal functional enrichments of RBP genes in stress responses and identify their convergent retention across diverse angiosperms from independent WGDs, coinciding with global cooling periods. Numerous RBP duplicates derived from WGDs are then identified as cold-induced. A significant overlap of 29 orthogroups between WGD-derived and cold-induced RBP genes across diverse angiosperms highlights a correlation between WGD and cold stress. Notably, we unveil an orthogroup (Glycine-rich RNA-binding Proteins 7/8, GRP7/8) and relevant TF duplicates (CCA1/LHY, RVE4/8, CBF2/4, etc.), co-retained in different angiosperms post-WGDs. Finally, we illustrate their roles in rewiring circadian and cold-regulatory networks at both transcriptional and posttranscriptional levels during global cooling. Altogether, we underline the adaptive evolution of RBPs in angiosperms after WGDs during global cooling, improving our understanding of plants surviving periods of environmental turmoil.
Collapse
Affiliation(s)
- Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xi Jiao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xiaoxue Ye
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Deyin Deng
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Hua Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, VIB - UGent Center for Plant Systems Biology, Ghent University, B-9052, Ghent, Belgium
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| |
Collapse
|
2
|
Hendrix S. From the archives: Lignin chemistry and vascular cell capacity, chromosome organization in rice meiosis, and circadian clock setting by imbibition. THE PLANT CELL 2023; 36:4-5. [PMID: 37877459 PMCID: PMC10734564 DOI: 10.1093/plcell/koad267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023]
Affiliation(s)
- Sophie Hendrix
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
3
|
Huang P, Ding Z, Duan M, Xiong Y, Li X, Yuan X, Huang J. OsLUX Confers Rice Cold Tolerance as a Positive Regulatory Factor. Int J Mol Sci 2023; 24:ijms24076727. [PMID: 37047700 PMCID: PMC10094877 DOI: 10.3390/ijms24076727] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
During the early seedling stage, rice (Oryza sativa L.) must overcome low-temperature stress. While a few cold-tolerance genes have been characterized, further excavation of cold-resistance genes is still needed. In this study, we identified a cold-induced transcription factor—LUX ARRHYTHMO (LUX)—in rice. OsLUX was found to be specifically expressed in leaf blades and upregulated by both cold stress and circadian rhythm. The full-length OsLUX showed autoactivation activity, and the OsLUX protein localized throughout the entire onion cell. Overexpressing OsLUX resulted in increased cold tolerance and reduced ion leakage under cold-stress conditions during the seedling stage. In contrast, the knockout of OsLUX decreased seedling cold tolerance and showed higher ion leakage compared to the wild type. Furthermore, overexpressing OsLUX upregulated the expression levels of oxidative stress-responsive genes, which improved reactive oxygen species (ROS) scavenging ability and enhanced tolerance to chilling stress. Promoter analysis showed that the OsLUX promoter contains two dehydration-responsive element binding (DREB) motifs at positions −510/−505 (GTCGGa) and −162/−170 (cCACCGccc), which indicated that OsDREB1s and OsDREB2s probably regulate OsLUX expression by binding to the motif to respond to cold stress. Thus, OsLUX may act as a downstream gene of the DREB pathway. These results demonstrate that OsLUX serves as a positive regulatory factor of cold stress and that overexpressing OsLUX could be used in rice breeding programs to enhance abiotic stress tolerance.
Collapse
Affiliation(s)
- Peng Huang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhengquan Ding
- Jiaxing Academy of Agricultural Sciences, Jiaxing 314016, China
| | - Min Duan
- Taizhou Academy Agricultural of Sciences, Taizhou 317000, China
| | - Yi Xiong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xinxin Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xi Yuan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ji Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Paradiso R, Proietti S. Light-Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. JOURNAL OF PLANT GROWTH REGULATION 2022; 41:742-780. [PMID: 0 DOI: 10.1007/s00344-021-10337-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/01/2021] [Indexed: 05/27/2023]
Abstract
AbstractLight quantity (intensity and photoperiod) and quality (spectral composition) affect plant growth and physiology and interact with other environmental parameters and cultivation factors in determining the plant behaviour. More than providing the energy for photosynthesis, light also dictates specific signals which regulate plant development, shaping and metabolism, in the complex phenomenon of photomorphogenesis, driven by light colours. These are perceived even at very low intensity by five classes of specific photoreceptors, which have been characterized in their biochemical features and physiological roles. Knowledge about plant photomorphogenesis increased dramatically during the last years, also thanks the diffusion of light-emitting diodes (LEDs), which offer several advantages compared to the conventional light sources, such as the possibility to tailor the light spectrum and to regulate the light intensity, depending on the specific requirements of the different crops and development stages. This knowledge could be profitably applied in greenhouse horticulture to improve production schedules and crop yield and quality. This article presents a brief overview on the effects of light spectrum of artificial lighting on plant growth and photomorphogenesis in vegetable and ornamental crops, and on the state of the art of the research on LEDs in greenhouse horticulture. Particularly, we analysed these effects by approaching, when possible, each single-light waveband, as most of the review works available in the literature considers the influence of combined spectra.
Collapse
|
5
|
Xu Y, Asadi-Zeydabadi M, Tagg R, Shindell O. Universality in kinetic models of circadian rhythms in [Formula: see text]. J Math Biol 2021; 83:51. [PMID: 34657966 DOI: 10.1007/s00285-021-01677-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/20/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022]
Abstract
Biological evolution has endowed the plant Arabidopsis thaliana with genetically regulated circadian rhythms. A number of authors have published kinetic models for these oscillating chemical reactions based on a network of interacting genes. To investigate the hypothesis that the Arabidopsis circadian dynamical system is poised near a Hopf bifurcation like some other biological oscillators, we varied the kinetic parameters in the models and searched for bifurcations. Finding that each model does exhibit a supercritical Hopf bifurcation, we performed a weakly nonlinear analysis near the bifurcation points to derive the Stuart-Landau amplitude equation. To illustrate a common dynamical structure, we scaled the numerical solutions to the models with the asymptotic solutions to the Stuart-Landau equation to collapse the circadian oscillations onto two universal curves-one for amplitude, and one for frequency. However, some models are close to bifurcation while others are far, some models are post-bifurcation while others are pre-bifurcation, and kinetic parameters that lead to a bifurcation in some models do not lead to a bifurcation in others. Future kinetic modeling can make use of our analysis to ensure models are consistent with each other and with the dynamics of the Arabidopsis circadian rhythm.
Collapse
Affiliation(s)
- Yian Xu
- Physics and Astronomy, Trinity University, San Antonio, TX, 78212, USA
| | | | - Randall Tagg
- Physics, University of Colorado Denver, Denver, CO, 80203, USA
| | - Orrin Shindell
- Physics and Astronomy, Trinity University, San Antonio, TX, 78212, USA.
| |
Collapse
|
6
|
Circadian Rhythms in Legumes: What Do We Know and What Else Should We Explore? Int J Mol Sci 2021; 22:ijms22094588. [PMID: 33925559 PMCID: PMC8123782 DOI: 10.3390/ijms22094588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
The natural timing devices of organisms, commonly known as biological clocks, are composed of specific complex folding molecules that interact to regulate the circadian rhythms. Circadian rhythms, the changes or processes that follow a 24-h light–dark cycle, while endogenously programmed, are also influenced by environmental factors, especially in sessile organisms such as plants, which can impact ecosystems and crop productivity. Current knowledge of plant clocks emanates primarily from research on Arabidopsis, which identified the main components of the circadian gene regulation network. Nonetheless, there remain critical knowledge gaps related to the molecular components of circadian rhythms in important crop groups, including the nitrogen-fixing legumes. Additionally, little is known about the synergies and trade-offs between environmental factors and circadian rhythm regulation, especially how these interactions fine-tune the physiological adaptations of the current and future crops in a rapidly changing world. This review highlights what is known so far about the circadian rhythms in legumes, which include major as well as potential future pulse crops that are packed with nutrients, particularly protein. Based on existing literature, this review also identifies the knowledge gaps that should be addressed to build a sustainable food future with the reputed “poor man’s meat”.
Collapse
|
7
|
Liang L, Zhang Z, Cheng N, Liu H, Song S, Hu Y, Zhou X, Zhang J, Xing Y. The transcriptional repressor OsPRR73 links circadian clock and photoperiod pathway to control heading date in rice. PLANT, CELL & ENVIRONMENT 2021; 44:842-855. [PMID: 33377200 DOI: 10.1111/pce.13987] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 05/24/2023]
Abstract
The phase transition from vegetative to reproductive growth is triggered by internal and external signals that participate in circadian clock in plants. We identified a rice floral inhibitor OsPRR73 encoding a CONSTANS protein. Overexpression of OsPRR73 resulted in late heading under both long-day (LD) and short-day (SD) conditions. Knockout mutants led to early heading under LD conditions but no change under SD. OsPRR73 mRNA accumulated at noon and exhibited a robust oscillation under constant light (LL) and constant darkness (DD) conditions. OsPRR73 overexpression exerted negative feedback on endogenous OsPRR73 expression and altered diurnal expressions of key flowering genes and circadian clock genes. OsPRR73 bound to the promoters of the floral gene Ehd1 and the circadian gene OsLHY, and significantly suppressed their expression at dawn. In LL and DD, the oscillatory patterns of the circadian genes OsLHY, OsTOC1, OsGI and OsELF3 were varied in OsPRR73OX and osprr73 mutants. OsPRR73 expression was decreased in osphyb mutants, and overexpression of OsPRR73 complemented the early heading date phenotype of osphyb, indicating OsPRR73 works downstream of OsPhyB. Therefore, OsPRR73 is involved in a feedback loop of the rice clock and connects the photoperiod flowering pathway by binding to the Ehd1 promoter in rice.
Collapse
Affiliation(s)
- Liwen Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhanyi Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Niannian Cheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Haiyang Liu
- College of Agriculture, Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| | - Song Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yong Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiangchun Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jia Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
van Hoogdalem M, Shapulatov U, Sergeeva L, Busscher-Lange J, Schreuder M, Jamar D, van der Krol AR. A temperature regime that disrupts clock-controlled starch mobilization induces transient carbohydrate starvation, resulting in compact growth. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab075. [PMID: 33617638 DOI: 10.1093/jxb/erab075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 06/12/2023]
Abstract
In nature plants are usually subjected to a light/temperature regime of warm day and cold night (referred to as +DIF). Compared to growth under +DIF, Arabidopsis plants show compact growth under the same photoperiod, but with an inverse temperature regime (cold day and warm night: -DIF). Here we show that -DIF differentially affects the phase and amplitude of core clock gene expression. Under -DIF the phase of the morning clock gene CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) is delayed, similar to that of plants grown on low sucrose. Indeed, under -DIF carbohydrate (CHO) starvation marker genes are specifically upregulated at the End of the Night (EN) in Arabidopsis rosettes. However, only in inner-rosette tissue (small sink leaves and petioles of older leaves) sucrose levels are lower under -DIF compared to under +DIF, suggesting that sucrose in source leaf blades is not sensed for CHO status and that sucrose transport from source to sink may be impaired at EN. CHO-starvation under -DIF correlated with increased starch breakdown during the night and decreased starch accumulation during the day. Moreover, we demonstrate that different ways of inducing CHO-starvation all link to reduced growth of sink leaves. Practical implications for control of plant growth in horticulture are discussed.
Collapse
Affiliation(s)
- Mark van Hoogdalem
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
- Current Business Unit Greenhouse Horticulture, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Umidjon Shapulatov
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
- Current Department of Botany and Plant Physiology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Lidiya Sergeeva
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Jacqueline Busscher-Lange
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen Plant Research, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Mariëlle Schreuder
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Diaan Jamar
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Alexander R van der Krol
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
| |
Collapse
|
9
|
Werner A, Broeckling CD, Prasad A, Peebles CAM. A comprehensive time-course metabolite profiling of the model cyanobacterium Synechocystis sp. PCC 6803 under diurnal light:dark cycles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:379-388. [PMID: 30889309 DOI: 10.1111/tpj.14320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 05/07/2023]
Abstract
Cyanobacteria are a model photoautotroph and a chassis for the sustainable production of fuels and chemicals. Knowledge of photoautotrophic metabolism in the natural environment of day/night cycles is lacking, yet has implications for improved yield from plants, algae and cyanobacteria. Here, a thorough approach to characterizing diverse metabolites-including carbohydrates, lipids, amino acids, pigments, cofactors, nucleic acids and polysaccharides-in the model cyanobacterium Synechocystis sp. PCC 6803 (S. 6803) under sinusoidal diurnal light:dark cycles was developed and applied. A custom photobioreactor and multi-platform mass spectrometry workflow enabled metabolite profiling every 30-120 min across a 24-h diurnal sinusoidal LD ('sinLD') cycle peaking at 1600 μmol photons m-2 sec-1 . We report widespread oscillations across the sinLD cycle with 90%, 94% and 40% of the identified polar/semi-polar, non-polar and polymeric metabolites displaying statistically significant oscillations, respectively. Microbial growth displayed distinct lag, biomass accumulation and cell division phases of growth. During the lag phase, amino acids and nucleic acids accumulated to high levels per cell followed by decreased levels during the biomass accumulation phase, presumably due to protein and DNA synthesis. Insoluble carbohydrates displayed sharp oscillations per cell at the day-to-night transition. Potential bottlenecks in central carbon metabolism are highlighted. Together, this report provides a comprehensive view of photosynthetic metabolite behavior with high temporal resolution, offering insight into the impact of growth synchronization to light cycles via circadian rhythms. Incorporation into computational modeling and metabolic engineering efforts promises to improve industrially relevant strain design.
Collapse
Affiliation(s)
- Allison Werner
- Cell and Molecular Biology Program, Colorado State University, 1005 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, 2021 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Ashok Prasad
- Cell and Molecular Biology Program, Colorado State University, 1005 Campus Delivery, Fort Collins, CO, 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Christie A M Peebles
- Cell and Molecular Biology Program, Colorado State University, 1005 Campus Delivery, Fort Collins, CO, 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO, 80523, USA
| |
Collapse
|
10
|
Staiger D, Weber APM. Molecular mechanisms of plant acclimation to changing environments. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:3-5. [PMID: 30548965 DOI: 10.1111/plb.12933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- D Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - A P M Weber
- Center of Excellence on Plant Sciences (CEPLAS), Institute of Plant Biochemistry Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
11
|
Beyond Transcription: Fine-Tuning of Circadian Timekeeping by Post-Transcriptional Regulation. Genes (Basel) 2018; 9:genes9120616. [PMID: 30544736 PMCID: PMC6315869 DOI: 10.3390/genes9120616] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022] Open
Abstract
The circadian clock is an important endogenous timekeeper, helping plants to prepare for the periodic changes of light and darkness in their environment. The clockwork of this molecular timer is made up of clock proteins that regulate transcription of their own genes with a 24 h rhythm. Furthermore, the rhythmically expressed clock proteins regulate time-of-day dependent transcription of downstream genes, causing messenger RNA (mRNA) oscillations of a large part of the transcriptome. On top of the transcriptional regulation by the clock, circadian rhythms in mRNAs rely in large parts on post-transcriptional regulation, including alternative pre-mRNA splicing, mRNA degradation, and translational control. Here, we present recent insights into the contribution of post-transcriptional regulation to core clock function and to regulation of circadian gene expression in Arabidopsis thaliana.
Collapse
|