1
|
Zhu M, Wang Z, Yang Y, Wang Z, Mu W, Liu J. Multi-omics reveal differentiation and maintenance of dimorphic flowers in an alpine plant on the Qinghai-Tibet Plateau. Mol Ecol 2023; 32:1411-1424. [PMID: 35363913 DOI: 10.1111/mec.16449] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022]
Abstract
Dimorphic flowers growing on a single individual plant play a critical role in extreme adaption and reproductive assurance in plants and have high ecological and evolutionary significance. However, the omics bases underlying such a differentiation and maintenance remain largely unknown. We aimed to investigate this through genomic, transcriptome and metabolomic analyses of dimorphic flowers in an alpine biennial, Sinoswertia tetraptera (Gentianaceae). A high-quality chromosome-level genome sequence (903 Mb) was first assembled for S. tetraptera with 31,359 protein-coding genes annotated. Two rounds of recent independent whole-genome duplication (WGD) were revealed. Numerous genes from the recent species-specific WGD were found to be differentially expressed in the two types of flowers, and this may have helped contribute to the origin of this innovative trait. The genes with contrasting expressions between flowers were related to biosynthesis of hormones, floral pigments (carotenoids and flavonoids) and iridoid compounds, which are involved in both flower development and colour. Metabolomic analyses similarly suggested differential concentrations of these chemicals in the two types of flowers. The expression interactions between multiple genes may together lead to contrasting morphology and chemical concentration and open versus closed pollination of the dimorphic flowers in this species for reproductive assurance.
Collapse
Affiliation(s)
- Mingjia Zhu
- State Key Laboratory of Grassland and Agro-ecosystems, Institute of Innovation Ecology, School of Life Science and the Supercomputing Center, Lanzhou University, Lanzhou, China
| | - Zhenyue Wang
- State Key Laboratory of Grassland and Agro-ecosystems, Institute of Innovation Ecology, School of Life Science and the Supercomputing Center, Lanzhou University, Lanzhou, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland and Agro-ecosystems, Institute of Innovation Ecology, School of Life Science and the Supercomputing Center, Lanzhou University, Lanzhou, China
| | - Zefu Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wenjie Mu
- State Key Laboratory of Grassland and Agro-ecosystems, Institute of Innovation Ecology, School of Life Science and the Supercomputing Center, Lanzhou University, Lanzhou, China
| | - Jianquan Liu
- State Key Laboratory of Grassland and Agro-ecosystems, Institute of Innovation Ecology, School of Life Science and the Supercomputing Center, Lanzhou University, Lanzhou, China.,Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Tackett M, Berg C, Simmonds T, Lopez O, Brown J, Ruggiero R, Weber J. Breeding system and geospatial variation shape the population genetics of Triodanis perfoliata. Ecol Evol 2022; 12:e9382. [PMID: 36248672 PMCID: PMC9547245 DOI: 10.1002/ece3.9382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Both intrinsic and extrinsic forces work together to shape connectivity and genetic variation in populations across the landscape. Here we explored how geography, breeding system traits, and environmental factors influence the population genetic patterns of Triodanis perfoliata, a widespread mix-mating annual plant in the contiguous US. By integrating population genomic data with spatial analyses and modeling the relationship between a breeding system and genetic diversity, we illustrate the complex ways in which these forces shape genetic variation. Specifically, we used 4705 single nucleotide polymorphisms to assess genetic diversity, structure, and evolutionary history among 18 populations. Populations with more obligately selfing flowers harbored less genetic diversity (π: R 2 = .63, p = .01, n = 9 populations), and we found significant population structuring (F ST = 0.48). Both geographic isolation and environmental factors played significant roles in predicting the observed genetic diversity: we found that corridors of suitable environments appear to facilitate gene flow between populations, and that environmental resistance is correlated with increased genetic distance between populations. Last, we integrated our genetic results with species distribution modeling to assess likely patterns of connectivity among our study populations. Our landscape and evolutionary genetic results suggest that T. perfoliata experienced a complex demographic and evolutionary history, particularly in the center of its distribution. As such, there is no singular mechanism driving this species' evolution. Together, our analyses support the hypothesis that the breeding system, geography, and environmental variables shape the patterns of diversity and connectivity of T. perfoliata in the US.
Collapse
Affiliation(s)
- Morgan Tackett
- Neuroscience Graduate ProgramUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Colette Berg
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Taylor Simmonds
- School of Biological SciencesSouthern Illinois University, CarbondaleCarbondaleIllinoisUSA
| | - Olivia Lopez
- Department of BiologySoutheast Missouri State UniversityCape GirardeauMissouriUSA
| | - Jason Brown
- School of Biological SciencesSouthern Illinois University, CarbondaleCarbondaleIllinoisUSA
| | - Robert Ruggiero
- Department of BiologySoutheast Missouri State UniversityCape GirardeauMissouriUSA
| | - Jennifer Weber
- School of Biological SciencesSouthern Illinois University, CarbondaleCarbondaleIllinoisUSA
| |
Collapse
|
3
|
Gao L, Yu G, Hu F, Li Z, Li W, Peng C. The Patterns of Male and Female Flowers in Flowering Stage May Not Be Optimal Resource Allocation for Fruit and Seed Growth. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122819. [PMID: 34961290 PMCID: PMC8706146 DOI: 10.3390/plants10122819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Changes in the proportions of male and female flowers in monoecious plants in response to external environmental conditions are directly related to the reproductive fitness of plants. The monoecious cucumber (Cucumber sativus) plant was used in this study to assess the responses of sex differentiation and the breeding process to nutrient supply and the degree of artificial pollination using pollen solutions of different concentrations. We found that the nutrient supply significantly improved the number of female flowers, while pollination treatments did not obviously increase the number of male flowers. Continuous pollination changed the number of female flowers especially in the later stage of the pollination experiment. Therefore, pollination changed the ratio of male and female flowers in the flowering stage of cucumber. Pollination treatment affected the fruit growth, seed set, and fruit yield. The number of fruit, fruit set percentage, and total seeds per plant did not increase with the pollination level, but individual fruit weight and seed number in one fruit did increase. The differentiation of male and female flowers in the flowering stage of cucumber is a response to nutrient and pollination resources, but this response is not the optimal resource allocation for subsequent fruit development and seed maturity, which suggests that the response of plants to external environment resources is short-term and direct.
Collapse
|
4
|
Alzate-Marin AL, Rivas PMS, Galaschi-Teixeira JS, Bonifácio-Anacleto F, Silva CC, Schuster I, Nazareno AG, Giuliatti S, da Rocha Filho LC, Garófalo CA, Martinez CA. Warming and elevated CO 2 induces changes in the reproductive dynamics of a tropical plant species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144899. [PMID: 33736351 DOI: 10.1016/j.scitotenv.2020.144899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Tropical plant species are vulnerable to climate change and global warming. Since flowering is a critical factor for plant reproduction and seed-set, warming and elevated atmospheric carbon dioxide concentrations (eCO2) are crucial climate change factors that can affect plant reproductive dynamics and flowering related events in the tropics. Using a combined free-air CO2 enrichment and a free-air temperature-controlled enhancement system, we investigate how warming (+2 °C above ambient, eT) and elevated [CO2] (~600 ppm, eCO2) affect the phenological pattern, plant-insect interactions, and outcrossing rates in the tropical legume forage species Stylosanthes capitata Vogel (Fabaceae). In comparison to the control, a significantly greater number of flowers (NF) per plot (+62%) were observed in eT. Furthermore, in warmed plots flowers began opening approximately 1 h earlier (~09:05), with a canopy temperature of ~23 °C, than the control (~09:59) and eCO2 (~09:55) treatments. Flower closure occurred about 3 h later in eT (~11:57) and control (~13:13), with a canopy temperature of ~27 °C. These changes in flower phenology increased the availability of floral resources and attractiveness for pollinators such as Apis mellifera L. and visitors such as Paratrigona lineata L., with significant interactions between eT treatments and insect visitation per hour/day, especially between 09:00-10:40. In comparison to the control, the additive effects of combined eCO2 + eT enhanced the NF by 137%, while the number of A. mellifera floral visits per plot/week increased by 83% during the period of greatest flower production. Although we found no significant effect of treatments on mating system parameters, the overall mean multilocus outcrossing rate (tm = 0.53 ± 0.03) did confirm that S. capitata has a mixed mating system. The effects of elevated [CO2] and warming on plant-pollinator relationships observed here may have important implications for seed production of tropical forage species in future climate scenarios.
Collapse
Affiliation(s)
- Ana Lilia Alzate-Marin
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; Department of Genetics, Graduate Program in Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| | - Priscila Marlys Sá Rivas
- Department of Genetics, Graduate Program in Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Juliana S Galaschi-Teixeira
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature, University of São Paulo, Av. Bandeirantes 3900, 14040-901 Ribeirão Preto, SP, Brazil
| | - Fernando Bonifácio-Anacleto
- Department of Genetics, Graduate Program in Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Carolina Costa Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Ivan Schuster
- Longping High-Tech, SP-330, km 296, 14140-000 Cravinhos, SP, Brazil
| | - Alison Gonçalves Nazareno
- The Biosciences Institute (IB), University of São Paulo, Rua do Matão, Tv. 14 - Butantã, 05508-090 São Paulo, SP, Brazil; Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627 - Pampulha/Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Silvana Giuliatti
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; Department of Genetics, Graduate Program in Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Léo Correia da Rocha Filho
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature, University of São Paulo, Av. Bandeirantes 3900, 14040-901 Ribeirão Preto, SP, Brazil
| | - Carlos A Garófalo
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature, University of São Paulo, Av. Bandeirantes 3900, 14040-901 Ribeirão Preto, SP, Brazil
| | - Carlos A Martinez
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature, University of São Paulo, Av. Bandeirantes 3900, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
5
|
Ansaldi BH, Franks SJ, Weber JJ. The influence of environmental factors on breeding system allocation at large spatial scales. AOB PLANTS 2018; 10:ply069. [PMID: 30568764 PMCID: PMC6294598 DOI: 10.1093/aobpla/ply069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 05/28/2023]
Abstract
Plant breeding systems can vary widely among populations, yet few studies have investigated abiotic factors contributing to variation across a broad geographic range. Here we investigate variation in reproductive traits of Triodanis perfoliata (Campanulaceae), a species that exhibits dimorphic cleistogamy, a condition in which individual plants have both closed (selfing: cleistogamous: CL) and open (selfing or outcrossing: chasmogamous: CH) flowers. Chasmogamous production is theorized to be more costly because CH flowers have a larger exposed surface area and thus are more likely to lose more water than CL flowers. We examine relationships between abiotic conditions (temperature, precipitation and soil characteristics) and variation in breeding systems across 14 widespread populations using ordinary least squares models. We found that a large proportion of breeding system variation was described by climate and soil variables (R 2 = 0.65-0.92). These results support the hypothesis that variation in the environment drives variation in breeding system allocation. Our broad geographic analyses provide a framework for mechanistic studies of cleistogamy, and employ a novel approach for examining reproductive traits and environmental variation at large scales. Given that two major components of our models were temperature and precipitation, our study further emphasizes the potential for ongoing climate change to alter plant breeding systems.
Collapse
Affiliation(s)
- Beth H Ansaldi
- Department of Biology, Fordham University, Bronx, NY, USA
| | | | - Jennifer J Weber
- Department of Biology, Southeast Missouri State University, Cape Girardeau, USA
| |
Collapse
|