1
|
Indira Cervantes-Díaz C, Patiño-Conde V, González-Rodríguez A, Quesada M, Cuevas E. Molecular and morphological evidence of hybridization between two dimorphic sympatric species of Fuchsia (Onagraceae). AOB PLANTS 2024; 16:plad089. [PMID: 38213511 PMCID: PMC10783250 DOI: 10.1093/aobpla/plad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024]
Abstract
Hybridization is commonly reported in angiosperms, generally based on morphology, and in few cases confirmed by molecular markers. Fuchsia has a long tradition of ornamental cultivars with different hybrids produced by artificial crosses, so natural hybridization between sympatric Fuchsia species could be common. Natural hybridization between F. microphylla and F. thymifolia was tested using six newly developed microsatellites for F. microphylla in addition to other molecular markers with codominant and maternal inheritance. Geometric morphometrics of leaves and floral structures were also used to identify putative hybrids. Hybrids showed a different degree of genetic admixture between both parental species. Chloroplast DNA (cpDNA) sequences indicated that hybridization occurs in both directions, in fact, some of the hybrids showed new haplotypes for cpDNA and ITS (internal transcriber spacer of nuclear ribosomal RNA genes) sequences. The morphology of hybrid individuals varied between the two parental species, but they could be better identified by their leaves and floral tubes. Our study is the first to confirm the hybridization in natural populations of Fuchsia species and suggests that hybridization has probably occurred repeatedly throughout the entire distribution of the species. Phylogeographic analysis of both species will be essential to understanding the impact of hybridization throughout their complete distribution.
Collapse
Affiliation(s)
- Cinthya Indira Cervantes-Díaz
- Laboratorio Nacional de Análisis y Síntesis Ecológica (LANASE), Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia 58190, Michoacán, México
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo 58000, Morelia, Michoacán, México
| | - Violeta Patiño-Conde
- Laboratorio Nacional de Análisis y Síntesis Ecológica (LANASE), Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia 58190, Michoacán, México
| | - Antonio González-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia 58190, Michoacán, México
| | - Mauricio Quesada
- Laboratorio Nacional de Análisis y Síntesis Ecológica (LANASE), Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia 58190, Michoacán, México
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia 58190, Michoacán, México
| | - Eduardo Cuevas
- Laboratorio Nacional de Análisis y Síntesis Ecológica (LANASE), Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia 58190, Michoacán, México
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo 58000, Morelia, Michoacán, México
| |
Collapse
|
2
|
Izquierdo JV, Costas SM, Castillo S, Baranzelli MC, Sazatornil F, Benitez-Vieyra S. Local adaptation to hummingbirds and bees in Salvia stachydifolia: insights into pollinator shifts in a Southern Andean sage. ANNALS OF BOTANY 2023; 132:1119-1130. [PMID: 37616580 PMCID: PMC10809053 DOI: 10.1093/aob/mcad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND AND AIMS Differences among populations in pollinator assemblages can lead to local adaptation mosaics in which plants evolve different floral morphologies and attractive traits. Mountain habitats may promote local adaptation because of differences in environmental conditions with altitude, causing changes in pollinators, and because mountaintops can act as isolated habitats. We studied if the differences in floral shape, size and nectar traits in Salvia stachydifolia can be attributed to variations in the relative contribution of hummingbirds and insects. METHODS We studied eight populations of S. stachydifolia in natural and under common garden conditions, to assess whether population differences have a genetic component. We recorded pollinators, their behaviour and visitation rates, and characterized pollinator assemblages. In addition, we measured nectar volume and concentration, and collected flowers to describe floral shape and size variation using geometric morphometric methods. We then applied an unsupervised learning algorithm to identify ecotypes based on morphometric traits. Finally, we explored whether populations with different pollinator assemblages had different climatic and/or elevation preferences. KEY RESULTS We found that variation in the identity of the main pollinators was associated with differences among populations in all traits, as expected under a local adaptation scenario. These differences persisted in the common garden, suggesting that they were not due to phenotypic plasticity. We found S. stachydifolia populations were pollinated either by bees, by hummingbirds or had mixed pollination. We identified two ecotypes that correspond to the identity of the main pollinator guilds, irrespective of climate or altitude. CONCLUSIONS Variation in S. stachydifolia floral traits did not follow any evident association with bioclimatic factors, suggesting that populations may have diverged as the product of historical isolation on mountaintops. We suggest that differences among populations point to incipient speciation and an ongoing pollinator shift.
Collapse
Affiliation(s)
- Juliana V Izquierdo
- Instituto Multidisciplinario de Biología Vegetal (Universidad Nacional de Córdoba – CONICET), CC 495 (X5000ZAA), Córdoba, Argentina
| | - Santiago M Costas
- Instituto Multidisciplinario de Biología Vegetal (Universidad Nacional de Córdoba – CONICET), CC 495 (X5000ZAA), Córdoba, Argentina
| | - Santiago Castillo
- Instituto Multidisciplinario de Biología Vegetal (Universidad Nacional de Córdoba – CONICET), CC 495 (X5000ZAA), Córdoba, Argentina
| | - Matíias C Baranzelli
- Instituto Multidisciplinario de Biología Vegetal (Universidad Nacional de Córdoba – CONICET), CC 495 (X5000ZAA), Córdoba, Argentina
| | - Federico Sazatornil
- Instituto Multidisciplinario de Biología Vegetal (Universidad Nacional de Córdoba – CONICET), CC 495 (X5000ZAA), Córdoba, Argentina
| | - Santiago Benitez-Vieyra
- Instituto Multidisciplinario de Biología Vegetal (Universidad Nacional de Córdoba – CONICET), CC 495 (X5000ZAA), Córdoba, Argentina
| |
Collapse
|
3
|
Eisen KE, Powers JM, Raguso RA, Campbell DR. An analytical pipeline to support robust research on the ecology, evolution, and function of floral volatiles. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1006416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Research on floral volatiles has grown substantially in the last 20 years, which has generated insights into their diversity and prevalence. These studies have paved the way for new research that explores the evolutionary origins and ecological consequences of different types of variation in floral scent, including community-level, functional, and environmentally induced variation. However, to address these types of questions, novel approaches are needed that can handle large sample sizes, provide quality control measures, and make volatile research more transparent and accessible, particularly for scientists without prior experience in this field. Drawing upon a literature review and our own experiences, we present a set of best practices for next-generation research in floral scent. We outline methods for data collection (experimental designs, methods for conducting field collections, analytical chemistry, compound identification) and data analysis (statistical analysis, database integration) that will facilitate the generation and interpretation of quality data. For the intermediate step of data processing, we created the R package bouquet, which provides a data analysis pipeline. The package contains functions that enable users to convert chromatographic peak integrations to a filtered data table that can be used in subsequent statistical analyses. This package includes default settings for filtering out non-floral compounds, including background contamination, based on our best-practice guidelines, but functions and workflows can be easily customized as necessary. Next-generation research into the ecology and evolution of floral scent has the potential to generate broadly relevant insights into how complex traits evolve, their genomic architecture, and their consequences for ecological interactions. In order to fulfill this potential, the methodology of floral scent studies needs to become more transparent and reproducible. By outlining best practices throughout the lifecycle of a project, from experimental design to statistical analysis, and providing an R package that standardizes the data processing pipeline, we provide a resource for new and seasoned researchers in this field and in adjacent fields, where high-throughput and multi-dimensional datasets are common.
Collapse
|
4
|
Behling AH, Winter DJ, Ganley ARD, Cox MP. Cross-kingdom transcriptomic trends in the evolution of hybrid gene expression. J Evol Biol 2022; 35:1126-1137. [PMID: 35830478 PMCID: PMC9546207 DOI: 10.1111/jeb.14059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Abstract
Hybridization is a route to speciation that occurs widely across the eukaryote tree of life. The success of allopolyploids (hybrid species with increased ploidy) and homoploid hybrids (with unchanged ploidy) is well documented. However, their formation and establishment is not straightforward, with a suite of near‐instantaneous and longer term biological repercussions faced by the new species. Central to these challenges is the rewiring of gene regulatory networks following the merger of distinct genomes inherited from both parental species. Research on the evolution of hybrid gene expression has largely involved studies on a single hybrid species or a few gene families. Here, we present the first standardized transcriptome‐wide study exploring the fates of genes following hybridization across three kingdoms: animals, plants and fungi. Within each kingdom, we pair an allopolyploid system with a closely related homoploid hybrid to decouple the influence of increased ploidy from genome merger. Genome merger, not changes in ploidy, has the greatest effect on posthybridization expression patterns across all study systems. Strikingly, we find that differentially expressed genes in parent species preferentially switch to more similar expression in hybrids across all kingdoms, likely as a consequence of regulatory trans‐acting cross‐talk within the hybrid nucleus. We also highlight the prevalence of gene loss or silencing among extremely differentially expressed genes in hybrid species across all kingdoms. These shared patterns suggest that the evolutionary process of hybridization leads to common high‐level expression outcomes, regardless of the particular species or kingdom.
Collapse
Affiliation(s)
- Anna H Behling
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - David J Winter
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Austen R D Ganley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Murray P Cox
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
5
|
Moré M, Soteras F, Ibañez AC, Dötterl S, Cocucci AA, Raguso RA. Floral Scent Evolution in the Genus Jaborosa (Solanaceae): Influence of Ecological and Environmental Factors. PLANTS (BASEL, SWITZERLAND) 2021; 10:1512. [PMID: 34451557 PMCID: PMC8398055 DOI: 10.3390/plants10081512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Floral scent is a key communication channel between plants and pollinators. However, the contributions of environment and phylogeny to floral scent composition remain poorly understood. In this study, we characterized interspecific variation of floral scent composition in the genus Jaborosa Juss. (Solanaceae) and, using an ecological niche modelling approach (ENM), we assessed the environmental variables that exerted the strongest influence on floral scent variation, taking into account pollination mode and phylogenetic relationships. Our results indicate that two major evolutionary themes have emerged: (i) a 'warm Lowland Subtropical nectar-rewarding clade' with large white hawkmoth pollinated flowers that emit fragrances dominated by oxygenated aromatic or sesquiterpenoid volatiles, and (ii) a 'cool-temperate brood-deceptive clade' of largely fly-pollinated species found at high altitudes (Andes) or latitudes (Patagonian Steppe) that emit foul odors including cresol, indole and sulfuric volatiles. The joint consideration of floral scent profiles, pollination mode, and geoclimatic context helped us to disentangle the factors that shaped floral scent evolution across "pollinator climates" (geographic differences in pollinator abundance or preference). Our findings suggest that the ability of plants in the genus Jaborosa to colonize newly formed habitats during Andean orogeny was associated with striking transitions in flower scent composition that trigger specific odor-driven behaviors in nocturnal hawkmoths and saprophilous fly pollinators.
Collapse
Affiliation(s)
- Marcela Moré
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Florencia Soteras
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Ana C. Ibañez
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Stefan Dötterl
- Department of Biosciences, Paris-Lodron-University of Salzburg, 5020 Salzburg, Austria;
| | - Andrea A. Cocucci
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Robert A. Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Stavenga DG, Leertouwer HL, Dudek B, van der Kooi CJ. Coloration of Flowers by Flavonoids and Consequences of pH Dependent Absorption. FRONTIERS IN PLANT SCIENCE 2021; 11:600124. [PMID: 33488645 PMCID: PMC7820715 DOI: 10.3389/fpls.2020.600124] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/08/2020] [Indexed: 05/13/2023]
Abstract
Flavonoid pigments are key determinants of flower colors. As absorption spectra of flavonoids are known to be severely pH-dependent, cellular pH will play a crucial role in flower coloration. The flavonoids are concentrated in the vacuoles of the flowers' epidermal cells, and thus the pigments' absorption spectra are modulated by the vacuolar pH. Here we study the pH dependence of flavonoid absorption spectra in extracts from flowers of two poppy species Papaver dubium (red) and Meconopsis cambrica (orange), and a white and red Mandevilla sanderi variety. In the red poppy and Mandevilla flowers, absorption spectra of the cyanidin- and pelargonidin-based anthocyanins peak in the blue-green-wavelength range at low pH, but exhibit a distinct bathochromic shift at higher pH. This shift to longer wavelengths is not found for the blue-absorbing nudicaulin derivatives of M. cambrica, which have a similar absorption spectrum at low and high pH. The pH-dependent absorption changes of the white M. sanderi's flavonoid remained restricted to the UV. An analysis of the spectra with logistic functions suggests that the pH-dependent characteristics of the basic states of flavonols and anthocyanins are related. The implications of tuning of pH and pigment absorption spectra for studies on flower color evolution are discussed.
Collapse
Affiliation(s)
- Doekele G. Stavenga
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Hein L. Leertouwer
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Bettina Dudek
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Casper J. van der Kooi
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Stavenga DG, Staal M, van der Kooi CJ. Conical epidermal cells cause velvety colouration and enhanced patterning in Mandevilla flowers. Faraday Discuss 2020; 223:98-106. [PMID: 32719835 DOI: 10.1039/d0fd00055h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The majority of angiosperms have flowers with conical epidermal cells, which are assumed to have various functions, such as enhancing the visual signal to pollinators, but detailed optical studies on how conical epidermal cells determine the flower's visual appearance are scarce. Here we report that conical epidermal cells of Mandevilla sanderi flowers effectively reduce surface gloss and create a velvety appearance. Owing to the reduction in surface gloss, the flower further makes more efficient use of floral pigments and light scattering structures inside the flower. The interior backscattering yields a cosine angular dependence of reflected light, meaning that the flowers approximate near-perfect (Lambertian) diffusers, creating a visual signal that is visible across a wide angular space. Together with the large flowers and the tilted corolla tips, this generates a distinct visual pattern, which may enhance the visibility to pollinators.
Collapse
Affiliation(s)
- Doekele G Stavenga
- Surfaces and Thin Films, Zernike Institute for Advanced Materials, University of Groningen, NL-9747 AG Groningen, The Netherlands.
| | | | | |
Collapse
|