1
|
Nicolao R, Gaiero P, Castro CM, Heiden G. Solanum malmeanum, a promising wild relative for potato breeding. FRONTIERS IN PLANT SCIENCE 2023; 13:1046702. [PMID: 36891130 PMCID: PMC9986444 DOI: 10.3389/fpls.2022.1046702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Crop wild relatives are gaining increasing attention. Their use in plant breeding is essential to broaden the genetic basis of crops as well as to meet industrial demands, for global food security and sustainable production. Solanum malmeanum (Solanum sect. Petota, Solanaceae) is a wild relative of potatoes (S. tuberosum) from Southern South America, occurring in Argentina, Brazil, Paraguay and Uruguay. This wild potato has been largely mistaken for or historically considered as conspecific with S. commersonii. Recently, it was reinstated at the species level. Retrieving information on its traits and applied uses is challenging, because the species name has not always been applied correctly and also because species circumscriptions and morphological criteria applied to recognize it have not been consistent. To overcome these difficulties, we performed a thorough literature reference survey, herbaria specimens' identification revision and genebank database queries to review and update the information available on this potato wild relative, contributing to an increase in research on it to fully understand and explore its potential for potato breeding. Scarce studies have been carried out concerning its reproductive biology, resistance against pests and diseases as well as tolerance to abiotic stresses and evaluation of quality traits. The scattered information available makes it less represented in genebanks and genetic studies are missing. We compile, update and present available information for S. malmeanum on taxonomy, geographical distribution, ecology, reproductive biology, relationship with its closest relatives, biotic and abiotic stresses resistance and quality traits and discuss ways to overcome sexual barriers of hybridization and future perspectives for its use in potato breeding. As a final remark, we highlight that this species' potential uses have been neglected and must be unlocked. Thus, further studies on morphological and genetic variability with molecular tools are fundamental for an efficient conservation and applied use of this promising genetic resource.
Collapse
Affiliation(s)
- Rodrigo Nicolao
- Programa de Pós-Graduação em Agronomia/Fitomelhoramento - Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Paola Gaiero
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Caroline M. Castro
- Laboratório de Recursos Genéticos, Embrapa Clima Temperado, Pelotas, RS, Brazil
| | - Gustavo Heiden
- Laboratório de Recursos Genéticos, Embrapa Clima Temperado, Pelotas, RS, Brazil
| |
Collapse
|
2
|
Small RNA Differential Expression Analysis Reveals miRNAs Involved in Dormancy Progression in Sweet Cherry Floral Buds. PLANTS 2022; 11:plants11182396. [PMID: 36145795 PMCID: PMC9500734 DOI: 10.3390/plants11182396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
In sweet cherry (Prunus avium), as in other temperate woody perennials, bud dormancy allows for survival in adverse environmental conditions during winter. During this process, environmental signals such as short days and/or low temperatures trigger internal signals that enable buds to become tolerant to the cold. The process involves tracking chilling units up to chilling the requirement fulfillment to resume growth, a transition involving transcriptional regulation, metabolic signaling, and epigenetic-related regulatory events. Massive sequencing of small RNAs was performed to identify miRNAs involved in sweet cherry dormancy by comparing their expression in field (regular seasonal) and controlled non-stop (continuous) chilling conditions. miRNAs highlighted by sequencing were validated using specific stem-loop PCR quantification, confirming expression patterns for known miRNAs such as miR156e, miR166c, miR172d, miR391, miR482c, and miR535b, as well as for newly proposed miRNAs. In silico prediction of the target genes was used to construct miRNA/target gene nodes. In particular, the involvement of the sweet cherry version for the miR156/SQUAMOSA PROMOTER-BINDING-LIKE PROTEIN genes whose expression was opposite in the two conditions suggests their involvement on dormancy regulation in sweet cherry. miRNA levels indicate that the regulation of stress-related genes and hormone synthesis modulates the expression of calcium metabolism and cell development-associated genes. Understanding the regulatory networks involved in sweet cherry dormancy, particularly in the context of miRNA involvement, represents the first step in the development of new agricultural strategies that may help overcome the increasing challenges presented by global climate change.
Collapse
|
3
|
Li J, Duan Y, Sun N, Wang L, Feng S, Fang Y, Wang Y. The miR169n-NF-YA8 regulation module involved in drought resistance in Brassica napus L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111062. [PMID: 34763855 DOI: 10.1016/j.plantsci.2021.111062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
As an ancient and conserved plant microRNA (miRNA) family, miR169 targets nuclear factor Y subunit alpha (NF-YA) family members. The miR169-NF-YA module is associated with plant development and various stress responses. However, the function of miR169 in response to drought stress in rapeseed (Brassica napus L.) is unclear. In the present study, we showed that miR169n acted as a negative regulator of drought resistance in rapeseed by targeting a nuclear factor Y-A gene, NF-YA8. miR169n was strongly down-regulated by drought stress. Expression of a miR169n target mimicry construct (MIM169n) which functioned as a sponge to trap miR169n resulted in enhanced resistance of transgenic plants to both osmotic stress at the post-germination stage and drought stress at the seedling stage. MIM169n plants had a higher relative water content (RWC) and proline content, lower relative electrolyte leakage (REL), and showed higher antioxidative capability compared with those of control (CK) plants under drought stress. Moreover, NF-YA8 was verified as a target of miR169n, and overexpression of NF-YA8 led to improved tolerance of rapeseed to osmotic stress at the post-germination stage. Overall, our findings implied that the miR169n-NF-YA8 regulatory module could serve as a potential target for genetic improvement of drought resistance in B. napus.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, 225009, Yangzhou, China
| | - Yujing Duan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, 225009, Yangzhou, China
| | - Nianli Sun
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, 225009, Yangzhou, China
| | - Lu Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, 225009, Yangzhou, China
| | - Shanshan Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, 225009, Yangzhou, China
| | - Yujie Fang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, 225009, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, China.
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, 225009, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, China.
| |
Collapse
|
4
|
Esposito S, Aversano R, Tripodi P, Carputo D. Whole-Genome Doubling Affects Pre-miRNA Expression in Plants. PLANTS 2021; 10:plants10051004. [PMID: 34069771 PMCID: PMC8157229 DOI: 10.3390/plants10051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/09/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
Whole-genome doubling (polyploidy) is common in angiosperms. Several studies have indicated that it is often associated with molecular, physiological, and phenotypic changes. Mounting evidence has pointed out that micro-RNAs (miRNAs) may have an important role in whole-genome doubling. However, an integrative approach that compares miRNA expression in polyploids is still lacking. Here, a re-analysis of already published RNAseq datasets was performed to identify microRNAs’ precursors (pre-miRNAs) in diploids (2x) and tetraploids (4x) of five species (Arabidopsis thaliana L., Morus alba L., Brassica rapa L., Isatis indigotica Fort., and Solanum commersonii Dun). We found 3568 pre-miRNAs, three of which (pre-miR414, pre-miR5538, and pre-miR5141) were abundant in all 2x, and were absent/low in their 4x counterparts. They are predicted to target more than one mRNA transcript, many belonging to transcription factors (TFs), DNA repair mechanisms, and related to stress. Sixteen pre-miRNAs were found in common in all 2x and 4x. Among them, pre-miRNA482, pre-miRNA2916, and pre-miRNA167 changed their expression after polyploidization, being induced or repressed in 4x plants. Based on our results, a common ploidy-dependent response was triggered in all species under investigation, which involves DNA repair, ATP-synthesis, terpenoid biosynthesis, and several stress-responsive transcripts. In addition, an ad hoc pre-miRNA expression analysis carried out solely on 2x vs. 4x samples of S. commersonii indicated that ploidy-dependent pre-miRNAs seem to actively regulate the nucleotide metabolism, probably to cope with the increased requirement for DNA building blocks caused by the augmented DNA content. Overall, the results outline the critical role of microRNA-mediated responses following autopolyploidization in plants.
Collapse
Affiliation(s)
- Salvatore Esposito
- CREA Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy;
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Pasquale Tripodi
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano, Italy;
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
- Correspondence: ; Tel.: +39-08-1252-9225
| |
Collapse
|
5
|
Huang X, Liang Y, Zhang B, Song X, Li Y, Qin Z, Li D, Chen R, Zhou Z, Deng Y, Wei J, Wu J. Integration of Transcriptional and Post-transcriptional Analysis Revealed the Early Response Mechanism of Sugarcane to Cold Stress. Front Genet 2021; 11:581993. [PMID: 33569078 PMCID: PMC7868625 DOI: 10.3389/fgene.2020.581993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022] Open
Abstract
Cold stress causes major losses to sugarcane production, yet the precise molecular mechanisms that cause losses due to cold stress are not well-understood. To survey miRNAs and genes involved in cold tolerance, RNA-seq, miRNA-seq, and integration analyses were performed on Saccharum spontaneum. Results showed that a total of 118,015 genes and 6,034 of these differentially expressed genes (DEGs) were screened. Protein–protein interaction (PPI) analyses revealed that ABA signaling via protein phosphatase 2Cs was the most important signal transduction pathway and late embryogenesis abundant protein was the hub protein associated with adaptation to cold stress. Furthermore, a total of 856 miRNAs were identified in this study and 109 of them were differentially expressed in sugarcane responding to cold stress. Most importantly, the miRNA–gene regulatory networks suggested the complex post-transcriptional regulation in sugarcane under cold stress, including 10 miRNAs−42 genes, 16 miRNAs−70 genes, and three miRNAs−18 genes in CT vs. LT0.5, CT vs. LT1, and CT0.5 vs. LT1, respectively. Specifically, key regulators from 16 genes encoding laccase were targeted by novel-Chr4C_47059 and Novel-Chr4A_40498, while five LRR-RLK genes were targeted by Novel-Chr6B_65233 and Novel-Chr5D_60023, 19 PPR repeat proteins by Novel-Chr5C_57213 and Novel-Chr5D_58065. Our findings suggested that these miRNAs and cell wall-related genes played vital regulatory roles in the responses of sugarcane to cold stress. Overall, the results of this study provide insights into the transcriptional and post-transcriptional regulatory network underlying the responses of sugarcane to cold stress.
Collapse
Affiliation(s)
- Xing Huang
- College of Agriculture, Guangxi University, Nanning, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | | | - Baoqing Zhang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | - Xiupeng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | - Yangrui Li
- College of Agriculture, Guangxi University, Nanning, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | - Zhengqiang Qin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | - Dewei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | - Rongfa Chen
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | - Zhongfeng Zhou
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | - Yuchi Deng
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| | - Jiguang Wei
- College of Agriculture, Guangxi University, Nanning, China
| | - Jianming Wu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Ministry of Agriculture, Nanning, China
| |
Collapse
|
6
|
Boulc'h PN, Caullireau E, Faucher E, Gouerou M, Guérin A, Miray R, Couée I. Abiotic stress signalling in extremophile land plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5771-5785. [PMID: 32687568 DOI: 10.1093/jxb/eraa336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Plant life relies on complex arrays of environmental stress sensing and signalling mechanisms. Extremophile plants develop and grow in harsh environments with extremes of cold, heat, drought, desiccation, or salinity, which have resulted in original adaptations. In accordance with their polyphyletic origins, extremophile plants likely possess core mechanisms of plant abiotic stress signalling. However, novel properties or regulations may have emerged in the context of extremophile adaptations. Comparative omics of extremophile genetic models, such as Arabidopsis lyrata, Craterostigma plantagineum, Eutrema salsugineum, and Physcomitrella patens, reveal diverse strategies of sensing and signalling that lead to a general improvement in abiotic stress responses. Current research points to putative differences of sensing and emphasizes significant modifications of regulatory mechanisms, at the level of secondary messengers (Ca2+, phospholipids, reactive oxygen species), signal transduction (intracellular sensors, protein kinases, transcription factors, ubiquitin-mediated proteolysis) or signalling crosstalk. Involvement of hormone signalling, especially ABA signalling, cell homeostasis surveillance, and epigenetic mechanisms, also shows that large-scale gene regulation, whole-plant integration, and probably stress memory are important features of adaptation to extreme conditions. This evolutionary and functional plasticity of signalling systems in extremophile plants may have important implications for plant biotechnology, crop improvement, and ecological risk assessment under conditions of climate change.
Collapse
Affiliation(s)
- Pierre-Nicolas Boulc'h
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| | - Emma Caullireau
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| | - Elvina Faucher
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| | - Maverick Gouerou
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
- University of Rennes 1, CNRS, ECOBIO (Ecosystems-Biodiversity-Evolution) - UMR, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| | - Amandine Guérin
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| | - Romane Miray
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| | - Ivan Couée
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
- University of Rennes 1, CNRS, ECOBIO (Ecosystems-Biodiversity-Evolution) - UMR, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| |
Collapse
|
7
|
Villano C, D’Amelia V, Esposito S, Adelfi MG, Contaldi F, Ferracane R, Vitaglione P, Aversano R, Carputo D. Genome-Wide HMG Family Investigation and Its Role in Glycoalkaloid Accumulation in Wild Tuber-Bearing Solanum commersonii. Life (Basel) 2020; 10:life10040037. [PMID: 32290207 PMCID: PMC7235733 DOI: 10.3390/life10040037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 11/16/2022] Open
Abstract
Steroidal glycoalkaloids (SGAs) are a class of nitrogen-containing glycosides occurring in several plant families and biosynthesized through a specific pathway. HMG-CoA reductase is the first enzyme of this pathway, and its transcription can be regulated by biotic and abiotic stressors and even in a tissue-specific manner. This study aimed to characterize the HMG genes family in a tuber-bearing potato species, Solanum commersonii, using transcriptional and functional approaches. Our results provided evidence that four ScHMGs with different tissue-specificities represent the HMG gene family in S. commersonii and that they originated from ScHMG1 through segmental duplications. Phylogenetic analysis suggests that ScHMG1 is the direct ortholog of AtHMG1, which is associated with SGAs accumulation in plants. Its overexpression in S. commersonii revealed that this gene plays a key role in the accumulation of glycoalkaloids regulating the production of dehydrocommersonine.
Collapse
Affiliation(s)
- Clizia Villano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, NA, Italy; (C.V.); (M.G.A.); (R.F.); (P.V.); (D.C.)
| | - Vincenzo D’Amelia
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, NA, Italy;
| | - Salvatore Esposito
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, SA, Italy; (S.E.); (F.C.)
| | - Maria Grazia Adelfi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, NA, Italy; (C.V.); (M.G.A.); (R.F.); (P.V.); (D.C.)
| | - Felice Contaldi
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, SA, Italy; (S.E.); (F.C.)
| | - Rosalia Ferracane
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, NA, Italy; (C.V.); (M.G.A.); (R.F.); (P.V.); (D.C.)
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, NA, Italy; (C.V.); (M.G.A.); (R.F.); (P.V.); (D.C.)
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, NA, Italy; (C.V.); (M.G.A.); (R.F.); (P.V.); (D.C.)
- Correspondence:
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, NA, Italy; (C.V.); (M.G.A.); (R.F.); (P.V.); (D.C.)
| |
Collapse
|
8
|
Genome-Wide Identification, Expression Profile and Evolution Analysis of Karyopherin β Gene Family in Solanum tuberosum Group Phureja DM1-3 Reveals Its Roles in Abiotic Stresses. Int J Mol Sci 2020; 21:ijms21030931. [PMID: 32023817 PMCID: PMC7037939 DOI: 10.3390/ijms21030931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/19/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022] Open
Abstract
In eukaryotic cells, nucleocytoplasmic trafficking of macromolecules is largely mediated by Karyopherin β/Importin (KPNβ or Impβ) nuclear transport factors, and they import and export cargo proteins or RNAs via the nuclear pores across the nuclear envelope, consequently effecting the cellular signal cascades in response to pathogen attack and environmental cues. Although achievements on understanding the roles of several KPNβs have been obtained from model plant Arabidopsis thaliana, comprehensive analysis of potato KPNβ gene family is yet to be elucidated. In our genome-wide identifications, a total of 13 StKPNβ (Solanum tuberosum KPNβ) genes were found in the genome of the doubled monoploid S. tuberosum Group Phureja DM1-3. Sequence alignment and conserved domain analysis suggested the presence of importin-β N-terminal domain (IBN_N, PF08310) or Exporin1-like domain (XpoI, PF08389) at N-terminus and HEAT motif at the C-terminal portion in most StKPNβs. Phylogenetic analysis indicated that members of StKPNβ could be classified into 16 subgroups in accordance with their homology to human KPNβs, which was also supported by exon-intron structure, consensus motifs, and domain compositions. RNA-Seq analysis and quantitative real-time PCR experiments revealed that, except StKPNβ3d and StKPNβ4, almost all StKPNβs were ubiquitously expressed in all tissues analyzed, whereas transcriptional levels of several StKPNβs were increased upon biotic/abiotic stress or phytohormone treatments, reflecting their potential roles in plant growth, development or stress responses. Furthermore, we demonstrated that silencing of StKPNβ3a, a SA- and H2O2-inducible KPNβ genes led to increased susceptibility to environmental challenges, implying its crucial roles in plant adaption to abiotic stresses. Overall, our results provide molecular insights into StKPNβ gene family, which will serve as a strong foundation for further functional characterization and will facilitate potato breeding programs.
Collapse
|
9
|
Tausz-Posch S, De Kok LJ. Plant functioning in a changing global atmosphere. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22 Suppl 1:3-4. [PMID: 31808222 DOI: 10.1111/plb.13051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- S Tausz-Posch
- Department of Agriculture, Science and the Environment, CQ University Australia, Kawana, QLD, Australia
| | - L J De Kok
- Laboratory of Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
10
|
Applications and Trends of Machine Learning in Genomics and Phenomics for Next-Generation Breeding. PLANTS 2019; 9:plants9010034. [PMID: 31881663 PMCID: PMC7020215 DOI: 10.3390/plants9010034] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/27/2022]
Abstract
Crops are the major source of food supply and raw materials for the processing industry. A balance between crop production and food consumption is continually threatened by plant diseases and adverse environmental conditions. This leads to serious losses every year and results in food shortages, particularly in developing countries. Presently, cutting-edge technologies for genome sequencing and phenotyping of crops combined with progress in computational sciences are leading a revolution in plant breeding, boosting the identification of the genetic basis of traits at a precision never reached before. In this frame, machine learning (ML) plays a pivotal role in data-mining and analysis, providing relevant information for decision-making towards achieving breeding targets. To this end, we summarize the recent progress in next-generation sequencing and the role of phenotyping technologies in genomics-assisted breeding toward the exploitation of the natural variation and the identification of target genes. We also explore the application of ML in managing big data and predictive models, reporting a case study using microRNAs (miRNAs) to identify genes related to stress conditions.
Collapse
|
11
|
Andolfo G, Villano C, Errico A, Frusciante L, Carputo D, Aversano R, Ercolano MR. Inferring RPW8-NLRs's evolution patterns in seed plants: case study in Vitis vinifera. PLANTA 2019; 251:32. [PMID: 31823009 DOI: 10.1007/s00425-019-03324-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/03/2019] [Indexed: 05/20/2023]
Abstract
Genomic and transcriptomic studies in plants and, more in deep, in grapevine reveal that the disease-resistance RNL gene family is highly variable. RNLs (RPW8-NLRs) are a phylogenetically distinct class of nucleotide oligomerization domain (NOD)-like receptors (NLRs) identified in plants. Two RNLs, namely, the NRG1 (N Requirement Gene 1) and the ADR1 (Activated Disease Resistance 1), have been characterized; however, little is known about the RNL evolutionary history in higher plants. To trace the diversification of RNL gene subfamily, we scanned the NLR proteins of 73 plant genomes belonging to 29 taxa, revealing a noticeable diversification across species and within the same genus or botanic family together with a conspicuous expansion in important crop species. To explore the RNL variability in Vitis vinifera and gain information with respect to their structure, evolutionary diversification of five grape genomes ('Aglianico', 'Falanghina', 'Sultanina', 'Tannat', and 'Nebbiolo') has been compared to the reference genome ('Pinot Noir'). The number of RNLs ranged from 6 ('Sultanina') to 14 ('Nebbiolo'), in contrast to the 10 'Pinot Noir' RNLs. The phylogenetic study on grapevine RNLs revealed that all collapsed into NRG1-clade, rather than four. To investigate more in depth the means of intraspecific variability of grape RNL copies, a transcriptomic profiling in response to powdery mildew (PM) infection was carried out through qRT-PCRs and public databases interrogation. The RNL expression variability identified in transcriptome data sets supports the hypothesis of a functional expansion/contraction in grapevine varieties. Although no direct correlations between grapevine PM-resistance and RNL expression was identified, our work can provide good candidates for functional studies able to elucidate the putative "helper" role of RNLs in grape immune signalling.
Collapse
Affiliation(s)
- Giuseppe Andolfo
- Department of Agriculture Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy
| | - Clizia Villano
- Department of Agriculture Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy
| | - Angela Errico
- Department of Agriculture Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy
| | - Luigi Frusciante
- Department of Agriculture Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy
| | - Domenico Carputo
- Department of Agriculture Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy
| | - Riccardo Aversano
- Department of Agriculture Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy.
| | - Maria R Ercolano
- Department of Agriculture Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy.
| |
Collapse
|
12
|
Esposito S, Barteri F, Casacuberta J, Mirouze M, Carputo D, Aversano R. LTR-TEs abundance, timing and mobility in Solanum commersonii and S. tuberosum genomes following cold-stress conditions. PLANTA 2019; 250:1781-1787. [PMID: 31562541 DOI: 10.1007/s00425-019-03283-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/13/2019] [Indexed: 05/25/2023]
Abstract
Copia/Ale is the youngest lineage in both Solanum tuberosum and S. commersonii. Within it, we identified nightshade, a new LTR element active in the cultivated potato. From an evolutionary perspective, long-terminal repeat retrotransposons (LTR-RT) activity during stress may be viewed as a mean by which organisms can keep up rates of genetic adaptation to changing conditions. Potato is one of the most important crop consumed worldwide, but studies on LTR-RT characterization are still lacking. Here, we assessed the abundance, insertion time and activity of LTR-RTs in both cultivated Solanum tuberosum and its cold-tolerant wild relative S. commersonii genomes. Gypsy elements were more abundant than Copia ones, suggesting that the former was somehow more successful in colonizing potato genomes. However, Copia elements, and in particular, the Ale lineage, are younger than Gypsy ones, since their insertion time was in average ~ 2 Mya. Due to the ability of LTR-RTs to be circularized by the host DNA repair mechanisms, we identified via mobilome-seq a Copia/Ale element (called nightshade, informal name used for potato family) active in S. tuberosum genome. Our analyses represent a valuable resource for comparative genomics within the Solanaceae, transposon-tagging and for the design of cultivar-specific molecular markers in potato.
Collapse
Affiliation(s)
- Salvatore Esposito
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Fabio Barteri
- Center for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona, Universitat de Barcelona, Campus Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Josep Casacuberta
- Center for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona, Universitat de Barcelona, Campus Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Marie Mirouze
- Institut de Recherche pour le Développement, IRD DIADE, Université de Perpignan, Plant Genome and Development Laboratory, Perpignan, France
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
| |
Collapse
|