1
|
Duan W, Wang S, Zhang H, Xie B, Zhang L. Plant growth and nitrate absorption and assimilation of two sweet potato cultivars with different N tolerances in response to nitrate supply. Sci Rep 2024; 14:21286. [PMID: 39266741 PMCID: PMC11393465 DOI: 10.1038/s41598-024-72422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
In sweet potato, rational nitrogen (N) assimilation and distribution are conducive to inhibiting vine overgrowth. Nitrate (NO3-) is the main N form absorbed by roots, and cultivar is an important factor affecting N utilization. Herein, a hydroponic experiment was conducted that included four NO3- concentrations of 0 (N0), 4 (N1), 8 (N2) and 16 (N3) mmol L-1 with two cultivars of Jishu26 (J26, N-sensitive) and Xushu32 (X32, N-tolerant). For J26, with increasing NO3- concentrations, the root length and root surface area significantly decreased. However, no significant differences were observed in these parameters for X32. Higher NO3- concentrations upregulated the expression levels of the genes that encode nitrate reductase (NR2), nitrite reductase (NiR2) and nitrate transporter (NRT1.1) in roots for both cultivars. The trends in the activities of NR and NiR were subject to regulation of NR2 and NiR2 transcription, respectively. For both cultivars, N2 increased the N accumulated in leaves, growth points and roots. For J26, N3 further increased the N accumulation in these organs. Under higher NO3- nutrition, compared with X32, J26 exhibited higher expression levels of the NiR2, NR2 and NRT1.1 genes, a higher influx NO3- rate in roots, and higher activities of NR and NiR in leaves and roots. Conclusively, the regulated effects of NO3- supplies on root growth and NO3- utilization were more significant for J26. Under high NO3- conditions, J26 exhibited higher capacities of NO3- absorption and distributed more N in leaves and in growth points, which may contribute to higher growth potential in shoots and more easily cause vine overgrowth.
Collapse
Affiliation(s)
- Wenxue Duan
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No.23788 Gongyebei Road, Jinan, 250100, Shandong, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China
- State Key Laboratory of Nutrient Use and Management, Jinan, 250100, China
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China
| | - Shasha Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No.23788 Gongyebei Road, Jinan, 250100, Shandong, China
| | - Haiyan Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No.23788 Gongyebei Road, Jinan, 250100, Shandong, China.
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China.
- State Key Laboratory of Nutrient Use and Management, Jinan, 250100, China.
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China.
| | - Beitao Xie
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No.23788 Gongyebei Road, Jinan, 250100, Shandong, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China
| | - Liming Zhang
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China.
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China.
- Shandong Academy of Agricultural Sciences, No.202 Gongyebei Road, Jinan, 250100, Shandong, China.
| |
Collapse
|
2
|
Wang B, Zhu F, Zheng X, Yang L, Diao Y, Hu Z. Evaluation and validation of suitable reference genes for quantitative real-time PCR analysis in lotus (Nelumbo nucifera Gaertn.). Sci Rep 2024; 14:10857. [PMID: 38740848 DOI: 10.1038/s41598-024-61806-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
The qRT-PCR technique has been regarded as an important tool for assessing gene expression diversity. Selection of appropriate reference genes is essential for validating deviation and obtaining reliable and accurate results. Lotus (Nelumbo nucifera Gaertn) is a common aquatic plant with important aesthetic, commercial, and cultural values. Twelve candidate genes, which are typically used as reference genes for qRT-PCR in other plants, were selected for this study. These candidate reference genes were cloned with, specific primers designed based on published sequences. In particular, the expression level of each gene was examined in different tissues and growth stages of Lotus. Notably, the expression stability of these candidate genes was assessed using the software programs geNorm and NormFinder. As a result, the most efficient reference genes for rootstock expansion were TBP and UBQ. In addition, TBP and EF-1α were the most efficient reference genes in various floral tissues, while ACT and GAPDH were the most stable genes at all developmental stages of the seed. CYP and GAPDH were the best reference genes at different stages of leaf development, but TUA was the least stable. Meanwhile, the gene expression profile of NnEXPA was analyzed to confirm the validity of the findings. It was concluded that, TBP and GAPDH were identified as the best reference genes. The results of this study may help researchers to select appropriate reference genes and thus obtain credible results for further quantitative RT-qPCR gene expression analyses in Lotus.
Collapse
Affiliation(s)
- Bin Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Fenglin Zhu
- Anhui University of Science and Technology, Medical College, Huainan, 232001, People's Republic of China
| | - Xingwen Zheng
- Guangchang County White Lotus Industrial Development Center, Guangchang, 344900, P.R. China
| | - Liangbo Yang
- Guangchang County White Lotus Industrial Development Center, Guangchang, 344900, P.R. China
| | - Ying Diao
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.
| | - Zhongli Hu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Science, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
3
|
Duan W, Zhang H, Wang Q, Xie B, Zhang L. Regulation of root development in nitrogen-susceptible and nitrogen-tolerant sweet potato cultivars under different nitrogen and soil moisture conditions. BMC PLANT BIOLOGY 2023; 23:454. [PMID: 37759166 PMCID: PMC10537907 DOI: 10.1186/s12870-023-04461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Due to unreasonable nitrogen (N) application and water supply, sweet potato vines tend to grow excessively. Early development of storage roots is conducive to inhibiting vine overgrowth. Hence, we investigated how N and soil moisture affect early root growth and development. RESULTS A pot experiment was conducted using the sweet potato cultivars Jishu26 (J26, N-susceptible) and Xushu32 (X32, N-tolerant). Two N application rates of 50 (N1) and 150 mg kg- 1 (N2) and two water regimes, drought stress (DS) (W1) and normal moisture (W2), were applied to each cultivar. For J26, the lowest expansion root weight was observed in the N2W2 treatment, while for X32, the N1W2 and N2W2 treatments resulted in higher root weights compared to other treatments. The interaction between N rates and water regimes significantly affected root surface area and volume in J26. Root cross-sections revealed that N2W2 increased the percentage of root area covered by xylem vessels and decreased the amount of secondary xylem vessels (SXV) in J26. However, in X32, it increased the number of SXV. A high N rate reduced the 13 C distribution ratio in J26 expansion roots, but had no significant effect on X32. In J26, N2W2 inhibited starch synthesis in roots by downregulating the expression of AGPa, AGPb, GBSS I, and SBE I. CONCLUSION The observed effects were more pronounced in J26. For X32, relatively high N and moisture levels did not significantly impact storage root development. Therefore, special attention should be paid to N supply and soil moisture for N-susceptible cultivars during the early growth stage.
Collapse
Affiliation(s)
- Wenxue Duan
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No.202 Gongyebei Road, Jinan, 250100, Shandong, P. R. China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China
| | - Haiyan Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No.202 Gongyebei Road, Jinan, 250100, Shandong, P. R. China.
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China.
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China.
| | - Qingmei Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No.202 Gongyebei Road, Jinan, 250100, Shandong, P. R. China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China
| | - Beitao Xie
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No.202 Gongyebei Road, Jinan, 250100, Shandong, P. R. China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China
| | - Liming Zhang
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China.
- Shandong Academy of Agricultural Sciences, No.202 Gongyebei Road, Jinan, 250100, Shandong, P. R. China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
4
|
Sajid Ansari M, Ahmad G, Khan AA, Mohamed HI, Elhakem A. Coal fly ash and nitrogen application as eco-friendly approaches for modulating the growth, yield, and biochemical constituents of radish plants. Saudi J Biol Sci 2022; 29:103306. [PMID: 35602867 PMCID: PMC9118150 DOI: 10.1016/j.sjbs.2022.103306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/15/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022] Open
Abstract
Plants are confronting a variety of environmental hazards as a result of fast climate change, which has a detrimental influence on soil, plant growth, and nutrient status. As a result, the present study aims to evaluate the influence of various fly ash concentrations (5, 10, 15, 20, 25, 30, and 35% FA) mixed with the optimum concentrations of nitrogen in the form of urea (0.5 g pot−1) on the growth, productivity and biochemical constituents of radish plants. Energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM) were used to assess soil physical–chemical properties and FA nutrient status. Results suggested that FA added many essential plant nutrients to the growth substrate and improved some important soil characteristics such as pH, electric conductivity, porosity, and water holding capacity. Also, the results revealed that the low concentrations of FA up to 20% were found to boost radish growth, yield, chlorophyll, carotenoids, and mineral content. While the highest concentrations of FA (25–35%) decreased radish growth and yield, increased oxidative stress through increased lipid peroxidation (MDA) and caused a significant boost in ascorbic acid, proline, protein, and antioxidant enzyme activities. Furthermore, SEM of radish leaf revealed an enhancement in the stomatal pore of radish leaf under different levels of FA. In conclusion, combining 15% fly ash with 0.5 g nitrogen in the form of urea significantly enhanced radish yield by enhancing antioxidant activity such as catalase, peroxidase, ascorbate peroxidase, Guaiacol peroxidase, superoxide dismutase, nitrate reductase and reducing oxidative stress, potentially reducing fly ash accumulation and environmental pollution.
Collapse
|
5
|
Duan W, Zhang H, Xie B, Wang B, Hou F, Li A, Dong S, Qin Z, Wang Q, Zhang L. Nitrogen utilization characteristics and early storage root development in nitrogen-tolerant and nitrogen-susceptible sweet potato. PHYSIOLOGIA PLANTARUM 2021; 173:1090-1104. [PMID: 34287931 DOI: 10.1111/ppl.13504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/21/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
In recent years, sweet potato has been cultivated not only in marginal lands but also in fertile plains in northern China. The fertile nitrogen (N)-rich soil may inhibit storage root formation. Cultivars with different N tolerances and split application of reduced N rates should be considered. To investigate the effects of N on the N utilization, root differentiation, and storage root formation of cultivars with different N tolerances, the cultivars Jishu26 (J26) and Xushu32 (X32) were treated with three N levels supplied by urea: 0 (N0), 200 (N1) and 400 mg kg-1 (N2). With increasing N rates, "X32" absorbed less N in plants and distributed more N to developing storage roots than "J26." The storage root development of "J26" was sensitive to both N1 and N2, while that of "X32" was only sensitive to N2. High N nutrition upregulated the expression of certain genes during storage root formation, such as PAL, CHI, F3H, C4 H, 4CL, CAD, α-amylase, and β-amylase. Under N1 and N2, "X32" led to an increased sugar supply in sink organs and downregulated the expression of genes related to lignin and flavonoid synthesis, which promoted the C flux toward starch metabolism, thus reducing lignification and promoting starch accumulation during storage root formation. These results provide evidence for the effects of N on the C distribution in different metabolic pathways by regulating the expression of related key genes. N-tolerant cultivars are suitable in fertile plain areas because of the earlier formation of storage roots under high N conditions.
Collapse
Affiliation(s)
- Wenxue Duan
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Haiyan Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Beitao Xie
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Baoqing Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Fuyun Hou
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Aixian Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Shunxu Dong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Zhen Qin
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Qingmei Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Liming Zhang
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|