1
|
Nabi B, Kumawat M, Ahlawat N, Ahlawat S. Molecular, Structural, and Functional Diversity of Universal Stress Proteins (USPs) in Bacteria, Plants, and Their Biotechnological Applications. Protein J 2024; 43:437-446. [PMID: 38492187 DOI: 10.1007/s10930-024-10192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
Universal stress proteins (USPs) are widely distributed and play crucial roles in cellular responses to biotic and abiotic stresses. These roles include regulating cell growth and development, cell motility, hypoxia responses, and ion sequestration. With the increasing frequency and intensity of extreme weather events due to climate change, pathogens have developed different strategies to withstand environmental stresses, in which USPs play a significant role in their survival and virulence. In this study, we analyzed the importance of USPs in various organisms, such as archaea, plants, and fungi, as a parameter that influences their survival. We discussed the different types Of USPs and their role, aiming to carry out fundamental research in this field to identify significant constraints for better understanding of USP functions at molecular level. Additionally, we discussed concepts and research techniques that could help overcome these hurdles and facilitate new molecular approaches to better understand and target USPs as important stress adaptation and survival regulators. Although the precise characteristics of USPs are still unclear, numerous innovative uses have already been developed, tested, and implemented. Complementary approaches to basic research and applications, as well as new technology and analytical techniques, may offer insights into the cryptic but crucial activities of USPs in various living systems.
Collapse
Affiliation(s)
- Bilkees Nabi
- Department of Biochemistry & Biochemical Engineering, SHUATS, Allahabad, 211007, India
| | - Manoj Kumawat
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India.
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462066, Madhya Pradesh, India.
| | - Neeraj Ahlawat
- Department of Animal Husbandry and Dairying, SHUATS, Allahabad, 211007, India
| | - Sushma Ahlawat
- Department of Biochemistry & Biochemical Engineering, SHUATS, Allahabad, 211007, India.
| |
Collapse
|
2
|
Singh A, Singhal C, Sharma AK, Khurana P. An auxin regulated Universal stress protein (TaUSP_3B-1) interacts with TaGolS and provides tolerance under drought stress and ER stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14390. [PMID: 38899466 DOI: 10.1111/ppl.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
A previously identified wheat drought stress responsive Universal stress protein, TaUSP_3B-1 has been found to work in an auxin dependent manner in the plant root tissues in the differentiation zone. We also found a novel interacting partner, TaGolS, which physically interacts with TaUSP_3B-1 and colocalizes in the endoplasmic reticulum. TaGolS is a key enzyme in the RFO (Raffinose oligosaccharides) biosynthesis which is well reported to provide tolerance under water deficit conditions. TaUSP_3B-1 overexpression lines showed an early flowering phenotype under drought stress which might be attributed to the increased levels of AtTPPB and AtTPS transcripts under drought stress. Moreover, at the cellular levels ER stress induced TaUSP_3B-1 transcription and provides tolerance in both adaptive and acute ER stress via less ROS accumulation in the overexpression lines. TaUSP_3B-1 overexpression plants had increased silique numbers and a denser root architecture as compared to the WT plants under drought stress.
Collapse
Affiliation(s)
- Arunima Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Chanchal Singhal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
3
|
Li Y, Zheng A, Li Z, Wang H, Wang J, Dong Z, Yao L, Han X, Wei F. Characterization and gene expression analysis reveal universal stress proteins respond to abiotic stress in Gossypium hirsutum. BMC Genomics 2024; 25:98. [PMID: 38262967 PMCID: PMC10804864 DOI: 10.1186/s12864-023-09955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Universal stress proteins (USPs) are a class of stress-induced proteins that play a crucial role in biotic and abiotic stress responses. These proteins have previously been reported to participate directly in responses to various stress and protect plants against unfavorable environmental conditions. However, there is limited research on USPs in cotton, and systematic characterization of USPs in Gossypium species is lacking. RESULTS In the present study, the USP genes in Gossypium hirsutum were systematically identified and classified into six distinct subfamilies. The expansion of USPs in Gossypium species is mainly caused by dispersed duplication and whole genome duplication. Notably, the USPs that have expanded through allotetraploidization events are highly conserved in the allotetraploid species. The promoter regions of GhUSPs contain a diverse range of cis-acting elements associated with stress response. The RNA-Seq analysis and RT-qPCR assays revealed a significant induction of numerous GhUSPs expressions in response to various abiotic stresses. The co-expression network of GhUSPs revealed their involvement in stress response. CONCLUSIONS This study systematically analyzed the biological characteristics of GhUSPs and their response to abiotic stress. These findings serve as a theoretical basis for facilitating the breeding of cotton varieties in future research.
Collapse
Affiliation(s)
- Yunqing Li
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Ao Zheng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuang Li
- College of Mathematics and Physics, Henan University of Urban Construction, Pingdingshan, 467000, China
| | - Hu Wang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050041, China
| | - Jing Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhanghui Dong
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050041, China
| | - Lina Yao
- College of Ecology, Lishui University, Lishui, 323000, China.
| | - Xiao Han
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050041, China.
| | - Fei Wei
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Qi T, He F, Zhang X, Wang J, Zhang Z, Jiang H, Zhao B, Du C, Che Y, Feng X, Wang Y, Li F. Genome-Wide Identification and Expression Profiling of Potato ( Solanum tuberosum L.) Universal Stress Proteins Reveal Essential Roles in Mechanical Damage and Deoxynivalenol Stress. Int J Mol Sci 2024; 25:1341. [PMID: 38279341 PMCID: PMC10816615 DOI: 10.3390/ijms25021341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Universal stress proteins (USPs) play an important regulatory role in responses to abiotic stress. Most of the research related to USPs so far has been conducted on plant models such as Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa L.), and cotton (Gossypium hirsutum L.). The potato (Solanum tuberosum L.) is one of the four major food crops in the world. The potato is susceptible to mechanical damage and infection by pathogenic fungi during transport and storage. Deoxynivalenol (DON) released by Fusarium can seriously degrade the quality of potatoes. As a result, it is of great significance to study the expression pattern of the potato StUSP gene family under abiotic stress conditions. In this study, a total of 108 USP genes were identified from the genome of the Atlantic potato, divided into four subgroups. Based on their genetic structure, the physical and chemical properties of their proteins and other aspects of their biological characteristics are comprehensively analyzed. Collinear analysis showed that the homologous genes of StUSPs and four other representative species (Solanum lycopersicum, Arabidopsis, Oryza sativa L., and Nicotiana attenuata) were highly conserved. The cis-regulatory elements of the StUSPs promoter are involved in plant hormones, environmental stress, mechanical damage, and light response. RNA-seq analysis showed that there are differences in the expression patterns of members of each subgroup under different abiotic stresses. A Weighted Gene Coexpression Network Analysis (WGCNA) of the central gene showed that the differential coexpression gene is mainly involved in the plant-pathogen response process, plant hormone signal transduction, and the biosynthesis process of secondary metabolites. Through qRT-PCR analysis, it was confirmed that StUSP13, StUSP14, StUSP15, and StUSP41 may be important candidate genes involved in the response to adversity stress in potatoes. The results of this study provide a basis for further research on the functional analysis of StUSPs in the response of potatoes to adversity stress.
Collapse
Affiliation(s)
- Tianshuai Qi
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Fumeng He
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Xinqi Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Jiaqi Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Zengli Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Heran Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China;
| | - Biao Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Chong Du
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Yunzhu Che
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Xu Feng
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Yingnan Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Fenglan Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| |
Collapse
|
5
|
Luo D, Wu Z, Bai Q, Zhang Y, Huang M, Huang Y, Li X. Universal Stress Proteins: From Gene to Function. Int J Mol Sci 2023; 24:ijms24054725. [PMID: 36902153 PMCID: PMC10003552 DOI: 10.3390/ijms24054725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Universal stress proteins (USPs) exist across a wide range of species and are vital for survival under stressful conditions. Due to the increasingly harsh global environmental conditions, it is increasingly important to study the role of USPs in achieving stress tolerance. This review discusses the role of USPs in organisms from three aspects: (1) organisms generally have multiple USP genes that play specific roles at different developmental periods of the organism, and, due to their ubiquity, USPs can be used as an important indicator to study species evolution; (2) a comparison of the structures of USPs reveals that they generally bind ATP or its analogs at similar sequence positions, which may underlie the regulatory role of USPs; and (3) the functions of USPs in species are diverse, and are generally directly related to the stress tolerance. In microorganisms, USPs are associated with cell membrane formation, whereas in plants they may act as protein chaperones or RNA chaperones to help plants withstand stress at the molecular level and may also interact with other proteins to regulate normal plant activities. This review will provide directions for future research, focusing on USPs to provide clues for the development of stress-tolerant crop varieties and for the generation of novel green pesticide formulations in agriculture, and to better understand the evolution of drug resistance in pathogenic microorganisms in medicine.
Collapse
|
6
|
Zhu M, Liu Q, Liu F, Zheng L, Bing J, Zhou Y, Gao F. Gene Profiling of the Ascorbate Oxidase Family Genes under Osmotic and Cold Stress Reveals the Role of AnAO5 in Cold Adaptation in Ammopiptanthus nanus. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030677. [PMID: 36771760 PMCID: PMC9920380 DOI: 10.3390/plants12030677] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 06/01/2023]
Abstract
The uplift of the Qinghai Tibet Plateau has led to a drastic change in the climate in Central Asia, from warm and rainy, to dry and less rainfall. Ammopiptanthus nanus, a rare evergreen broad-leaved shrub distributed in the temperate desert region of Central Asia, has survived the drastic climate change in Central Asia caused by the uplift of the Qinghai-Tibet Plateau. Ascorbate oxidase (AO) regulates the redox status of the apoplast by catalyzing the oxidation of ascorbate acid to dehydroascorbic acid, and plays a key role in the adaptation of plants to environmental changes. Analyzing the evolution, environmental response, and biological functions of the AO family of A. nanus is helpful for understanding how plant genome evolution responds to climate change in Central Asia. A total of 16 AOs were identified in A. nanus, all of which contained the ascorbate oxidase domain, most of which contained transmembrane domain, and many were predicted to be localized in the apoplast. Segmental duplication and tandem duplication are the main factors driving the gene amplification of the AO gene family in A. nanus. Gene expression analysis based on transcriptome data and fluorescence quantitative PCR, as well as enzyme activity measurements, showed that the expression levels of AO genes and total enzyme activity decreased under short-term osmotic stress and low-temperature stress, but the expression of some AO genes (AnAO5, AnAO13, and AnAO16) and total enzyme activity increased under 7 days of cold stress. AnAO5 and AnAO11 are targeted by miR4415. Further functional studies on AnAO5 showed that AnAO5 protein was localized in the apoplast. The expression of AnAO5 in yeast cells and the transient expression in tobacco enhanced the tolerance of yeast and tobacco to low-temperature stress, and the overexpression of AnAO5 enhanced the tolerance of Arabidopsis seedlings to cold stress. Our research provides important data for understanding the role of AOs in plant adaptation to environmental change.
Collapse
Affiliation(s)
- Ming Zhu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qi Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Fuyu Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Lamei Zheng
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jie Bing
- College of Life Sciences, Beijing Normal University, Beijing 100080, China
| | - Yijun Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Fei Gao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
7
|
Liu Q, Sui X, Wang Y, Zhu M, Zhou Y, Gao F. Genome-Wide Analyses of Thaumatin-like Protein Family Genes Reveal the Involvement in the Response to Low-Temperature Stress in Ammopiptanthus nanus. Int J Mol Sci 2023; 24:ijms24032209. [PMID: 36768531 PMCID: PMC9917035 DOI: 10.3390/ijms24032209] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
Thaumatin-like proteins (TLPs), a family of proteins with high sequence similarity to thaumatin, are shown to be involved in plant defense, and are thus classified into the pathogenesis related protein family 5. Ammopiptanthus nanus is a rare evergreen broad-leaved shrub distributed in the temperate zone of Central Asia, which has a high tolerance to low-temperature stress. To characterize A. nanus TLPs and understand their roles in low-temperature response in A. nanus, a comprehensive analysis of the structure, evolution, and expression of TLP family proteins was performed. A total of 31 TLP genes were detected in the A. nanus genome, and they were divided into four groups based on their phylogenetic positions. The majority of the AnTLPs contained the conserved cysteine residues and were predicted to have the typical three-dimensional structure of plant TLPs. The primary modes of gene duplication of the AnTLP family genes were segmental duplication. The promoter regions of most AnTLP genes contain multiple cis-acting elements related to environmental stress response. Gene expression analysis based on transcriptome data and fluorescence quantitative PCR analysis revealed that several AnTLP genes were involved in cold-stress response. We further showed that a cold-induced AnTLP gene, AnTLP13, was localized in apoplast, and heterologous expression of the AnTLP13 in Escherichia coli and yeast cells and tobacco leaves enhanced low-temperature stress tolerance when compared with the control cells or seedlings. Our study provided important data for understanding the roles of TLPs in plant response to abiotic stress.
Collapse
Affiliation(s)
- Qi Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiangyu Sui
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ying Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ming Zhu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yijun Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Correspondence: (Y.Z.); (F.G.); Tel.: +86-68932633 (Y.Z. & F.G.)
| | - Fei Gao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Correspondence: (Y.Z.); (F.G.); Tel.: +86-68932633 (Y.Z. & F.G.)
| |
Collapse
|
8
|
Liu J, Wei Y, Yin Y, Zhu K, Liu Y, Ding H, Lei J, Zhu W, Zhou Y. Effects of Mixed Decomposition of Pinus sylvestris var. mongolica and Morus alba Litter on Microbial Diversity. Microorganisms 2022; 10:1117. [PMID: 35744635 PMCID: PMC9229243 DOI: 10.3390/microorganisms10061117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
Pinus sylvestris var. mongolica is widely planted in China as a windbreak and sand fixation tree. To improve the current situation of large-scale declines of forested areas planted as P. sylvestris var. mongolica monocultures, we investigated the biological and microbial effects of stand establishment using mixed tree species. The interactions during the mixed decomposition of the litter and leaves of different tree species are an important indicator in determining the relationships among species. In this experiment, a method of simulating the mixed decomposition of P. sylvestris var. mongolica and Morus alba litter under P. sylvestris var. mongolica forest was used to determine the total C, total N, and total P contents in the leaf litter, and the microbial structures were determined by using Illumina MiSeq high-throughput sequencing. It was found that with samples with different proportions of P. sylvestris var. mongolica and M. alba litters, the decomposition rate of P. sylvestris var. mongolica × M. alba litter was significantly higher than that of the pure P. sylvestris var. mongolica forest, and the microbial community and composition diversity of litter in a pure P. sylvestris var. mongolica forest could be significantly improved. The possibility of using M. alba as a mixed tree species to address the declines of pure P. sylvestris var. mongolica forest was verified to provide guidance for pure P. sylvestris var. mongolica forests by introducing tree species with coordinated interspecific relationships and creating a mixed forest.
Collapse
Affiliation(s)
- Jiaying Liu
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (Y.W.); (Y.Y.); (K.Z.); (Y.L.); (H.D.); (J.L.)
- Institute of Modern Agricultural Research, Dalian University, Dalian 116622, China
| | - Yawei Wei
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (Y.W.); (Y.Y.); (K.Z.); (Y.L.); (H.D.); (J.L.)
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Tieling 112000, China
| | - You Yin
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (Y.W.); (Y.Y.); (K.Z.); (Y.L.); (H.D.); (J.L.)
| | - Keye Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (Y.W.); (Y.Y.); (K.Z.); (Y.L.); (H.D.); (J.L.)
| | - Yuting Liu
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (Y.W.); (Y.Y.); (K.Z.); (Y.L.); (H.D.); (J.L.)
| | - Hui Ding
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (Y.W.); (Y.Y.); (K.Z.); (Y.L.); (H.D.); (J.L.)
| | - Jiawei Lei
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (Y.W.); (Y.Y.); (K.Z.); (Y.L.); (H.D.); (J.L.)
| | - Wenxu Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (Y.W.); (Y.Y.); (K.Z.); (Y.L.); (H.D.); (J.L.)
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Tieling 112000, China
| | - Yongbin Zhou
- Institute of Modern Agricultural Research, Dalian University, Dalian 116622, China
- Life Science and Technology College, Dalian University, Dalian 116622, China
| |
Collapse
|
9
|
Yan R, Zhou H, Zheng X, Zhang X. RNA-seq analysis of green tea polyphenols modulation of differently expressed genes in Enterococcus faecalis under low pH. Lett Appl Microbiol 2022; 74:970-980. [PMID: 35247280 DOI: 10.1111/lam.13686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022]
Abstract
Enterococcus faecalis (E. faecalis) is a resident bacterium in the host. The increase of internal stress like low pH may affect the biological effects of E. faecalis. The prebiotic-like function of tea polyphenols can enhance the beneficial effects of its tolerance to environmental stress. In this study, RNA-sequence analysis was used to explore the protective effect of green tea polyphenols (GTP) on E. faecalis under low pH stress. A total of 28 genes were found to be responsive to GTP under low pH stress, including 16 up-regulated and 12 down-regulated. GTP intervention can partly relieve some undesired negative influences, such as the down-regulation of the base excision repair gene and amino acid transport and metabolism gene. The significantly changes were associated with selenocompound metabolism and aminoacyl-tRNA biosynthesis after the intervention of GTP. The present study provided new insights into the growth and continuous adaptation of E. faecalis under stress.
Collapse
Affiliation(s)
- Ruonan Yan
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, P.R. China
| | - Huan Zhou
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China
| | - Xiaojie Zheng
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, P.R. China
| |
Collapse
|