1
|
Mnafgui W, Jabri C, Jihnaoui N, Maiza N, Guerchi A, Zaidi N, Basson G, Keyster EM, Djébali N, Pecetti L, Hanana M, Annicchiarico P, Sakiroglu M, Ludidi N, Badri M. Discovering new genes for alfalfa ( Medicago sativa) growth and biomass resilience in combined salinity and Phoma medicaginis infection through GWAS. FRONTIERS IN PLANT SCIENCE 2024; 15:1348168. [PMID: 38756967 PMCID: PMC11096488 DOI: 10.3389/fpls.2024.1348168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
Salinity and Phoma medicaginis infection represent significant challenges for alfalfa cultivation in South Africa, Europe, Australia, and, particularly, Tunisia. These constraints have a severe impact on both yield and quality. The primary aim of this study was to establish the genetic basis of traits associated with biomass and growth of 129 Medicago sativa genotypes through genome-wide association studies (GWAS) under combined salt and P. medicaginis infection stresses. The results of the analysis of variance (ANOVA) indicated that the variation in these traits could be primarily attributed to genotype effects. Among the test genotypes, the length of the main stem, the number of ramifications, the number of chlorotic leaves, and the aerial fresh weight exhibited the most significant variation. The broad-sense heritability (H²) was relatively high for most of the assessed traits, primarily due to genetic factors. Cluster analysis, applied to morpho-physiological traits under the combined stresses, revealed three major groups of accessions. Subsequently, a GWAS analysis was conducted to validate significant associations between 54,866 SNP-filtered single-nucleotide polymorphisms (SNPs) and seven traits. The study identified 27 SNPs that were significantly associated with the following traits: number of healthy leaves (two SNPs), number of chlorotic leaves (five SNPs), number of infected necrotic leaves (three SNPs), aerial fresh weight (six SNPs), aerial dry weight (nine SNPs), number of ramifications (one SNP), and length of the main stem (one SNP). Some of these markers are related to the ionic transporters, cell membrane rigidity (related to salinity tolerance), and the NBS_LRR gene family (associated with disease resistance). These findings underscore the potential for selecting alfalfa genotypes with tolerance to the combined constraints of salinity and P. medicaginis infection.
Collapse
Affiliation(s)
- Wiem Mnafgui
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Cheima Jabri
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Nada Jihnaoui
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar Tunis, Tunisia
| | - Nourhene Maiza
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar Tunis, Tunisia
| | - Amal Guerchi
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar Tunis, Tunisia
| | - Nawres Zaidi
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar Tunis, Tunisia
| | - Gerhard Basson
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Eden Maré Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
- Plant Stress Tolerance Laboratory, University of Mpumalanga, Mbombela, South Africa
| | - Naceur Djébali
- Laboratory of Bioactive Substances, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Luciano Pecetti
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture, Lodi, Italy
| | - Mohsen Hanana
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Paolo Annicchiarico
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture, Lodi, Italy
| | - Muhammet Sakiroglu
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye
| | - Ndiko Ludidi
- Plant Stress Tolerance Laboratory, University of Mpumalanga, Mbombela, South Africa
- DSI-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville, South Africa
| | - Mounawer Badri
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| |
Collapse
|
2
|
Chen Z, Guo Z, Xu N, Cao X, Niu J. Graphene nanoparticles improve alfalfa (Medicago sativa L.) growth through multiple metabolic pathways under salinity-stressed environment. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154092. [PMID: 37716315 DOI: 10.1016/j.jplph.2023.154092] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Graphene, one of the emerging carbon nanomaterials, has many advantages and applications. Salinity stress seriously affects ecology and agroforestry worldwide. The effects of graphene on alfalfa under salinity stress were investigated. The results indicated that graphene promoted alfalfa growth under non-salinity stress but caused some degree of damage to root cells and leaf parameters. Graphene used in salinity stress had a positive effect on growth parameters, chlorophyll, photosynthetic gas parameters, stomatal opening, ion balance, osmotic homeostasis, cell membrane integrity and antioxidant system, while it decreased Na+, lipid peroxidation and reactive oxygen species levels. Correlation analysis revealed that most of the parameters were significantly correlated; and principal component analysis indicated that the first two dimensions (78.1% and 4.1%) explained 82.2% of the total variability, and the majority of them exceeded the average contribution. Additionally, Gene Ontology functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment analysis showed that there were numerous differentially expressed genes and pathways to regulate alfalfa responding to salinity stress. Taken together, the findings reveal that graphene does not enter the plant, but improves the properties and adsorption of soil to enhance salt tolerance and seedling growth of alfalfa through morphological, physiological, biochemical, and transcriptomic aspects. Furthermore, this study provides a reference for the application of graphene to improve soil environment and agricultural production.
Collapse
Affiliation(s)
- Zhao Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Zhipeng Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Nan Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Xinlong Cao
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Junpeng Niu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
3
|
Goyal RK, Habtewold JZ. Evaluation of Legume-Rhizobial Symbiotic Interactions Beyond Nitrogen Fixation That Help the Host Survival and Diversification in Hostile Environments. Microorganisms 2023; 11:1454. [PMID: 37374957 PMCID: PMC10302611 DOI: 10.3390/microorganisms11061454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Plants often experience unfavorable conditions during their life cycle that impact their growth and sometimes their survival. A temporary phase of such stress, which can result from heavy metals, drought, salinity, or extremes of temperature or pH, can cause mild to enormous damage to the plant depending on its duration and intensity. Besides environmental stress, plants are the target of many microbial pathogens, causing diseases of varying severity. In plants that harbor mutualistic bacteria, stress can affect the symbiotic interaction and its outcome. To achieve the full potential of a symbiotic relationship between the host and rhizobia, it is important that the host plant maintains good growth characteristics and stay healthy under challenging environmental conditions. The host plant cannot provide good accommodation for the symbiont if it is infested with diseases and prone to other predators. Because the bacterium relies on metabolites for survival and multiplication, it is in its best interests to keep the host plant as stress-free as possible and to keep the supply stable. Although plants have developed many mitigation strategies to cope with stress, the symbiotic bacterium has developed the capability to augment the plant's defense mechanisms against environmental stress. They also provide the host with protection against certain diseases. The protective features of rhizobial-host interaction along with nitrogen fixation appear to have played a significant role in legume diversification. When considering a legume-rhizobial symbiosis, extra benefits to the host are sometimes overlooked in favor of the symbionts' nitrogen fixation efficiency. This review examines all of those additional considerations of a symbiotic interaction that enable the host to withstand a wide range of stresses, enabling plant survival under hostile regimes. In addition, the review focuses on the rhizosphere microbiome, which has emerged as a strong pillar of evolutionary reserve to equip the symbiotic interaction in the interests of both the rhizobia and host. The evaluation would draw the researchers' attention to the symbiotic relationship as being advantageous to the host plant as a whole and the role it plays in the plant's adaptation to unfavorable environmental conditions.
Collapse
Affiliation(s)
- Ravinder K. Goyal
- Agriculture and Agri-Food Canada, Lacombe Research and Development Center, Lacombe, AB T4L 1W1, Canada
| | | |
Collapse
|
4
|
Wang Y, Zhang P, Li L, Li D, Liang Z, Cao Y, Hu T, Yang P. Proteomic Analysis of Alfalfa (Medicago sativa L.) Roots in Response to Rhizobium Nodulation and Salt Stress. Genes (Basel) 2022; 13:genes13112004. [PMID: 36360241 PMCID: PMC9690670 DOI: 10.3390/genes13112004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
(1) Background: Alfalfa is an important legume forage throughout the world. Although alfalfa is considered moderately tolerant to salinity, its production and nitrogen-fixing activity are greatly limited by salt stress. (2) Methods: We examined the physiological changes and proteomic profiles of alfalfa with active nodules (NA) and without nodules (NN) under NaCl treatment. (3) Results: Our data suggested that NA roots showed upregulation of the pathways of abiotic and biotic stress responses (e.g., heat shock proteins and pathogenesis-related proteins), antioxidant enzyme synthesis, protein synthesis and degradation, cell wall degradation and modification, acid phosphatases, and porin transport when compared with NN plants under salt stress conditions. NA roots also upregulated the processes or proteins of lipid metabolism, heat shock proteins, protein degradation and folding, and cell cytoskeleton, downregulated the DNA and protein synthesis process, and vacuolar H+-ATPase proteins under salt stress. Besides, NA roots displayed a net H+ influx and low level of K+ efflux under salt stress, which may enhance the salt tolerance of NA plants. (4) Conclusions: The rhizobium symbiosis conferred the host plant salt tolerance by regulating a series of physiological processes to enhance stress response, improve antioxidant ability and energy use efficiency, and maintain ion homeostasis.
Collapse
Affiliation(s)
- Yafang Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Pan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Le Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Danning Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zheng Liang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yuman Cao
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence:
| |
Collapse
|
5
|
Zhang D, Zhang Z, Li C, Xing Y, Luo Y, Wang X, Li D, Ma Z, Cai H. Overexpression of MsRCI2D and MsRCI2E Enhances Salt Tolerance in Alfalfa ( Medicago sativa L.) by Stabilizing Antioxidant Activity and Regulating Ion Homeostasis. Int J Mol Sci 2022; 23:9810. [PMID: 36077224 PMCID: PMC9456006 DOI: 10.3390/ijms23179810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Rare cold-inducible 2 (RCI2) genes from alfalfa (Medicago sativa L.) are part of a multigene family whose members respond to a variety of abiotic stresses by regulating ion homeostasis and stabilizing membranes. In this study, salt, alkali, and ABA treatments were used to induce MsRCI2D and MsRCI2E expression in alfalfa, but the response time and the expression intensity of the MsRCI2D,-E genes were different under specific treatments. The expression intensity of the MsRCI2D gene was the highest in salt- and alkali-stressed leaves, while the MsRCI2E gene more rapidly responded to salt and ABA treatment. In addition to differences in gene expression, MsRCI2D and MsRCI2E differ in their subcellular localization. Akin to MtRCI2D from Medicago truncatula, MsRCI2D is also localized in the cell membrane, while MsRCI2E is different from MtRCI2E, localized in the cell membrane and the inner membrane. This difference might be related to an extra 20 amino acids in the C-terminal tail of MsRCI2E. We investigated the function of MsRCI2D and MsRCI2E proteins in alfalfa by generating transgenic alfalfa chimeras. Compared with the MsRCI2E-overexpressing chimera, under high-salinity stress (200 mmol·L-1 NaCl), the MsRCI2D-overexpressing chimera exhibited a better phenotype, manifested as a higher chlorophyll content and a lower MDA content. After salt treatment, the enzyme activities of SOD, POD, CAT, and GR in MsRCI2D- and -E-overexpressing roots were significantly higher than those in the control. In addition, after salt stress, the Na+ content in MsRCI2D- and -E-transformed roots was lower than that in the control; K+ was higher than that in the control; and the Na+/K+ ratio was lower than that in the control. Correspondingly, H+-ATPase, SOS1, and NHX1 genes were significantly up-regulated, and the HKT gene was significantly down-regulated after 6 h of salt treatment. MsRCI2D was also found to regulate the expression of the MsRCI2B and MsRCI2E genes, and the MsRCI2E gene could alter the expression of the MsRCI2A, MsRCI2B, and MsRCI2D genes. MsRCI2D- and -E-overexpressing alfalfa was found to have higher salt tolerance, manifested as improved activity of antioxidant enzymes, reduced content of reactive oxygen species, and sustained Na+ and K+ ion balance by regulating the expression of the H+-ATPase, SOS1, NHX1, HKT, and MsRCI2 genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hua Cai
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|