1
|
Long-Term Waterlogging as Factor Contributing to Hypoxia Stress Tolerance Enhancement in Cucumber: Comparative Transcriptome Analysis of Waterlogging Sensitive and Tolerant Accessions. Genes (Basel) 2021; 12:genes12020189. [PMID: 33525400 PMCID: PMC7912563 DOI: 10.3390/genes12020189] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
Waterlogging (WL), excess water in the soil, is a phenomenon often occurring during plant cultivation causing low oxygen levels (hypoxia) in the soil. The aim of this study was to identify candidate genes involved in long-term waterlogging tolerance in cucumber using RNA sequencing. Here, we also determined how waterlogging pre-treatment (priming) influenced long-term memory in WL tolerant (WL-T) and WL sensitive (WL-S) i.e., DH2 and DH4 accessions, respectively. This work uncovered various differentially expressed genes (DEGs) activated in the long-term recovery in both accessions. De novo assembly generated 36,712 transcripts with an average length of 2236 bp. The results revealed that long-term waterlogging had divergent impacts on gene expression in WL-T DH2 and WL-S DH4 cucumber accessions: after 7 days of waterlogging, more DEGs in comparison to control conditions were identified in WL-S DH4 (8927) than in WL-T DH2 (5957). Additionally, 11,619 and 5007 DEGs were identified after a second waterlogging treatment in the WL-S and WL-T accessions, respectively. We identified genes associated with WL in cucumber that were especially related to enhanced glycolysis, adventitious roots development, and amino acid metabolism. qRT-PCR assay for hypoxia marker genes i.e., alcohol dehydrogenase (adh), 1-aminocyclopropane-1-carboxylate oxidase (aco) and long chain acyl-CoA synthetase 6 (lacs6) confirmed differences in response to waterlogging stress between sensitive and tolerant cucumbers and effectiveness of priming to enhance stress tolerance.
Collapse
|
2
|
García MJ, Angulo M, García C, Lucena C, Alcántara E, Pérez-Vicente R, Romera FJ. Influence of Ethylene Signaling in the Crosstalk Between Fe, S, and P Deficiency Responses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:643585. [PMID: 33859661 PMCID: PMC8042388 DOI: 10.3389/fpls.2021.643585] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/22/2021] [Indexed: 05/09/2023]
Abstract
To cope with P, S, or Fe deficiency, dicot plants, like Arabidopsis, develop several responses (mainly in their roots) aimed to facilitate the mobilization and uptake of the deficient nutrient. Within these responses are the modification of root morphology, an increased number of transporters, augmented synthesis-release of nutrient solubilizing compounds and the enhancement of some enzymatic activities, like ferric reductase activity (FRA) or phosphatase activity (PA). Once a nutrient has been acquired in enough quantity, these responses should be switched off to minimize energy costs and toxicity. This implies that they are tightly regulated. Although the responses to each deficiency are induced in a rather specific manner, crosstalk between them is frequent and in such a way that P, S, or Fe deficiency can induce responses related to the other two nutrients. The regulation of the responses is not totally known but some hormones and signaling substances have been involved, either as activators [ethylene (ET), auxin, nitric oxide (NO)], or repressors [cytokinins (CKs)]. The plant hormone ET is involved in the regulation of responses to P, S, or Fe deficiency, and this could partly explain the crosstalk between them. In spite of these crosslinks, it can be hypothesized that, to confer the maximum specificity to the responses of each deficiency, ET should act in conjunction with other signals and/or through different transduction pathways. To study this latter possibility, several responses to P, S, or Fe deficiency have been studied in the Arabidopis wild-type cultivar (WT) Columbia and in some of its ethylene signaling mutants (ctr1, ein2-1, ein3eil1) subjected to the three deficiencies. Results show that key elements of the ET transduction pathway, like CTR1, EIN2, and EIN3/EIL1, can play a role in the crosstalk among nutrient deficiency responses.
Collapse
Affiliation(s)
- María José García
- Department of Botany, Ecology and Plant Physiology, Edificio Celestino Mutis, Campus de Rabanales CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Macarena Angulo
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Edificio Celestino Mutis, Campus de Rabanales CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Carlos García
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Edificio Celestino Mutis, Campus de Rabanales CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Carlos Lucena
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Edificio Celestino Mutis, Campus de Rabanales CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Esteban Alcántara
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Edificio Celestino Mutis, Campus de Rabanales CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Edificio Celestino Mutis, Campus de Rabanales CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Francisco Javier Romera
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Edificio Celestino Mutis, Campus de Rabanales CeiA3, Universidad de Córdoba, Córdoba, Spain
- *Correspondence: Francisco Javier Romera
| |
Collapse
|
3
|
Lucena C, Porras R, García MJ, Alcántara E, Pérez-Vicente R, Zamarreño ÁM, Bacaicoa E, García-Mina JM, Smith AP, Romera FJ. Ethylene and Phloem Signals Are Involved in the Regulation of Responses to Fe and P Deficiencies in Roots of Strategy I Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1237. [PMID: 31649701 PMCID: PMC6795750 DOI: 10.3389/fpls.2019.01237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 09/05/2019] [Indexed: 05/03/2023]
Abstract
Iron (Fe) and phosphorus (P) are two essential mineral nutrients whose acquisition by plants presents important environmental and economic implications. Both elements are abundant in most soils but scarcely available to plants. To prevent Fe or P deficiency dicot plants initiate morphological and physiological responses in their roots aimed to specifically acquire these elements. The existence of common signals in Fe and P deficiency pathways suggests the signaling factors must act in conjunction with distinct nutrient-specific signals in order to confer tolerance to each deficiency. Previous works have shown the existence of cross talk between responses to Fe and P deficiency, but details of the associated signaling pathways remain unclear. Herein, the impact of foliar application of either P or Fe on P and Fe responses was studied in P- or Fe-deficient plants of Arabidopsis thaliana, including mutants exhibiting altered Fe or P homeostasis. Ferric reductase and acid phosphatase activities in roots were determined as well as the expression of genes related to P and Fe acquisition. The results obtained showed that Fe deficiency induces the expression of P acquisition genes and phosphatase activity, whereas P deficiency induces the expression of Fe acquisition genes and ferric reductase activity, although only transitorily. Importantly, these responses were reversed upon foliar application of either Fe or P on nutrient-starved plants. Taken together, the results reveal interactions between P- and Fe-related phloem signals originating in the shoots that likely interact with hormones in the roots to initiate adaptive mechanisms to tolerate deficiency of each nutrient.
Collapse
Affiliation(s)
- Carlos Lucena
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | | | - María J. García
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Esteban Alcántara
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Ángel M. Zamarreño
- Department of Environmental Biology, Faculty of Sciences, Universidad de Navarra, Pamplona (Navarra), Spain
| | - Eva Bacaicoa
- Department of Environmental Biology, Faculty of Sciences, Universidad de Navarra, Pamplona (Navarra), Spain
| | - José M. García-Mina
- Department of Environmental Biology, Faculty of Sciences, Universidad de Navarra, Pamplona (Navarra), Spain
| | - Aaron P. Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Francisco J. Romera
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
4
|
An ethylene response factor (MxERF4) functions as a repressor of Fe acquisition in Malus xiaojinensis. Sci Rep 2018; 8:1068. [PMID: 29348657 PMCID: PMC5773544 DOI: 10.1038/s41598-018-19518-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/01/2017] [Indexed: 12/19/2022] Open
Abstract
Iron (Fe) is an essential element for plants; however, its availability is limited as it forms insoluble complexes in the soil. Consequently, plants have developed mechanisms to adapt to low Fe conditions. We demonstrate that ethylene is involved in Fe deficiency-induced physiological responses in Malus xiaojinensis, and describe the identification of MxERF4 as a protein-protein interaction partner with the MxFIT transcription factor, which is involved in the iron deficiency response. Furthermore, we demonstrate that MxERF4 acts as an MxFIT interaction partner to suppresses the expression of the Fe transporter MxIRT1, by binding directly to its promoter, requiring the EAR motif of the MxERF4 protein. Suppression of MxERF4 expression in M. xiaojinensis, using virus induced gene silencing resulted in an increase in MxIRT1 expression. Taken together, the results suggest a repression mechanism, where ethylene initiates the Fe deficiency response, and the response is then dampened, which may require a transient inhibition of Fe acquisition via the action of MxERF4.
Collapse
|
5
|
Hsieh EJ, Waters BM. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5671-5685. [PMID: 27605716 PMCID: PMC5066488 DOI: 10.1093/jxb/erw328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Iron (Fe) is an essential mineral that has low solubility in alkaline soils, where its deficiency results in chlorosis. Whether low Fe supply and alkaline pH stress are equivalent is unclear, as they have not been treated as separate variables in molecular physiological studies. Additionally, molecular responses to these stresses have not been studied in leaf and root tissues simultaneously. We tested how plants with the Strategy I Fe uptake system respond to Fe deficiency at mildly acidic and alkaline pH by measuring root ferric chelate reductase (FCR) activity and expression of selected Fe uptake genes and riboflavin synthesis genes. Alkaline pH increased cucumber (Cucumis sativus L.) root FCR activity at full Fe supply, but alkaline stress abolished FCR response to low Fe supply. Alkaline pH or low Fe supply resulted in increased expression of Fe uptake genes, but riboflavin synthesis genes responded to Fe deficiency but not alkalinity. Iron deficiency increased expression of some common genes in roots and leaves, but alkaline stress blocked up-regulation of these genes in Fe-deficient leaves. In roots of the melon (Cucumis melo L.) fefe mutant, in which Fe uptake responses are blocked upstream of Fe uptake genes, alkaline stress or Fe deficiency up-regulation of certain Fe uptake and riboflavin synthesis genes was inhibited, indicating a central role for the FeFe protein. These results suggest a model implicating shoot-to-root signaling of Fe status to induce Fe uptake gene expression in roots.
Collapse
Affiliation(s)
- En-Jung Hsieh
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583-0915, USA
| | - Brian M Waters
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583-0915, USA
| |
Collapse
|
6
|
Lucena C, Romera FJ, García MJ, Alcántara E, Pérez-Vicente R. Ethylene Participates in the Regulation of Fe Deficiency Responses in Strategy I Plants and in Rice. FRONTIERS IN PLANT SCIENCE 2015; 6:1056. [PMID: 26640474 PMCID: PMC4661236 DOI: 10.3389/fpls.2015.01056] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/13/2015] [Indexed: 05/18/2023]
Abstract
Iron (Fe) is very abundant in most soils but its availability for plants is low, especially in calcareous soils. Plants have been divided into Strategy I and Strategy II species to acquire Fe from soils. Strategy I species apply a reduction-based uptake system which includes all higher plants except the Poaceae. Strategy II species apply a chelation-based uptake system which includes the Poaceae. To cope with Fe deficiency both type of species activate several Fe deficiency responses, mainly in their roots. These responses need to be tightly regulated to avoid Fe toxicity and to conserve energy. Their regulation is not totally understood but some hormones and signaling substances have been implicated. Several years ago it was suggested that ethylene could participate in the regulation of Fe deficiency responses in Strategy I species. In Strategy II species, the role of hormones and signaling substances has been less studied. However, in rice, traditionally considered a Strategy II species but that possesses some characteristics of Strategy I species, it has been recently shown that ethylene can also play a role in the regulation of some of its Fe deficiency responses. Here, we will review and discuss the data supporting a role for ethylene in the regulation of Fe deficiency responses in both Strategy I species and rice. In addition, we will review the data about ethylene and Fe responses related to Strategy II species. We will also discuss the results supporting the action of ethylene through different transduction pathways and its interaction with other signals, such as certain Fe-related repressive signals occurring in the phloem sap. Finally, the possible implication of ethylene in the interactions among Fe deficiency responses and the responses to other nutrient deficiencies in the plant will be addressed.
Collapse
Affiliation(s)
- Carlos Lucena
- Department of Agronomy, University of CórdobaCórdoba, Spain
| | | | - María J. García
- Department of Botany, Ecology and Plant Physiology, University of CórdobaCórdoba, Spain
| | | | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, University of CórdobaCórdoba, Spain
| |
Collapse
|
7
|
Tao JJ, Chen HW, Ma B, Zhang WK, Chen SY, Zhang JS. The Role of Ethylene in Plants Under Salinity Stress. FRONTIERS IN PLANT SCIENCE 2015; 6:1059. [PMID: 26640476 PMCID: PMC4661241 DOI: 10.3389/fpls.2015.01059] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 11/13/2015] [Indexed: 05/18/2023]
Abstract
Although the roles of ethylene in plant response to salinity and other stresses have been extensively studied, there are still some obscure points left to be clarified. Generally, in Arabidopsis and many other terrestrial plants, ethylene signaling is indispensable for plant rapid response and tolerance to salinity stress. However, a few studies showed that functional knock-out of some ACSs increased plant salinity-tolerance, while overexpression of them caused more sensitivity. This seems to be contradictory to the known opinion that ethylene plays positive roles in salinity response. Differently, ethylene in rice may play negative roles in regulating seedling tolerance to salinity. The main positive ethylene signaling components MHZ7/OsEIN2, MHZ6/OsEIL1, and OsEIL2 all negatively regulate the salinity-tolerance of rice seedlings. Recently, several different research groups all proposed a negative feedback mechanism of coordinating plant growth and ethylene response, in which several ethylene-inducible proteins (including NtTCTP, NEIP2 in tobacco, AtSAUR76/77/78, and AtARGOS) act as inhibitors of ethylene response but activators of plant growth. Therefore, in addition to a summary of the general roles of ethylene biosynthesis and signaling in salinity response, this review mainly focused on discussing (i) the discrepancies between ethylene biosynthesis and signaling in salinity response, (ii) the divergence between rice and Arabidopsis in regulation of salinity response by ethylene, and (iii) the possible negative feedback mechanism of coordinating plant growth and salinity response by ethylene.
Collapse
|
8
|
Tsai KJ, Chou SJ, Shih MC. Ethylene plays an essential role in the recovery of Arabidopsis during post-anaerobiosis reoxygenation. PLANT, CELL & ENVIRONMENT 2014; 37:2391-405. [PMID: 24506560 DOI: 10.1111/pce.12292] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/09/2014] [Accepted: 01/20/2014] [Indexed: 05/05/2023]
Abstract
Ethylene is known to play an essential role in mediating hypoxic responses in plants. Here, we show that in addition to regulating hypoxic responses, ethylene also regulates cellular responses in the reoxygenation stage after anoxic treatment in Arabidopsis. We found that expression of several ethylene biosynthetic genes and ethylene-responsive factors, including ERF1 and ERF2, was induced during reoxygenation. Compared with the wild type, two ethylene-insensitive mutants (ein2-5 and ein3eil1) were more sensitive to reoxygenation and displayed damaged phenotypes during reoxygenation. To characterize the role of ethylene, we applied microarray analysis to Col-0, ein2-5 and ein3eil1 under reoxygenation conditions. Our results showed that gene transcripts involved in reactive oxygen species (ROS) detoxification, dehydration response and metabolic processes were regulated during reoxygenation. Moreover, ethylene signalling may participate in regulating these responses and maintaining the homeostasis of different phytohormones. Our work presents evidence that ethylene has distinct functions in recovery after anoxia and provides insight into the reoxygenation signalling network.
Collapse
Affiliation(s)
- Kuen-Jin Tsai
- Institute of Plant Biology, National Taiwan University, Taipei, 115, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | | | | |
Collapse
|