1
|
Gospodaryov DV. Alternative NADH dehydrogenase: A complex I backup, a drug target, and a tool for mitochondrial gene therapy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1866:149529. [PMID: 39615731 DOI: 10.1016/j.bbabio.2024.149529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Alternative NADH dehydrogenase, also known as type II NADH dehydrogenase (NDH-2), catalyzes the same redox reaction as mitochondrial respiratory chain complex I. Specifically, it oxidizes reduced nicotinamide adenine dinucleotide (NADH) while simultaneously reducing ubiquinone to ubiquinol. However, unlike complex I, this enzyme is non-proton pumping, comprises of a single subunit, and is resistant to rotenone. Initially identified in bacteria, fungi and plants, NDH-2 was subsequently discovered in protists and certain animal taxa including sea squirts. The gene coding for NDH-2 is also present in the genomes of some annelids, tardigrades, and crustaceans. For over two decades, NDH-2 has been investigated as a potential substitute for defective complex I. In model organisms, NDH-2 has been shown to ameliorate a broad spectrum of conditions associated with complex I malfunction, including symptoms of Parkinson's disease. Recently, lifespan extension has been observed in animals expressing NDH-2 in a heterologous manner. A variety of mechanisms have been put forward by which NDH-2 may extend lifespan. Such mechanisms include the activation of pro-longevity pathways through modulation of the NAD+/NADH ratio, decreasing production of reactive oxygen species (ROS) in mitochondria, or then through moderate increases in ROS production followed by activation of defense pathways (mitohormesis). This review gives an overview of the latest research on NDH-2, including the structural peculiarities of NDH-2, its inhibitors, its role in the pathogenicity of mycobacteria and apicomplexan parasites, and its function in bacteria, fungi, and animals.
Collapse
Affiliation(s)
- Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka, 76018, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
2
|
Chen H, Lin Q, Li Z, Chu J, Dong H, Mei Q, Xuan Y. Calcineurin B-like interacting protein kinase 31 confers resistance to sheath blight via modulation of ROS homeostasis in rice. MOLECULAR PLANT PATHOLOGY 2023; 24:221-231. [PMID: 36633167 PMCID: PMC9923392 DOI: 10.1111/mpp.13291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Sheath blight (ShB) severely threatens rice cultivation and production; however, the molecular mechanism of rice defence against ShB remains unclear. Screening of transposon Ds insertion mutants identified that Calcineurin B-like protein-interacting protein kinase 31 (CIPK31) mutants were more susceptible to ShB, while CIPK31 overexpressors (OX) were less susceptible. Sequence analysis indicated two haplotypes of CIPK31: Hap_1, with significantly higher CIPK31 expression, was less sensitive to ShB than the Hap_2 lines. Further analyses showed that the NAF domain of CIPK31 interacted with the EF-hand motif of respiratory burst oxidase homologue (RBOHA) to inhibit RBOHA-induced H2 O2 production, and RBOHA RNAi plants were more susceptible to ShB. These data suggested that the CIPK31-mediated increase in resistance is not associated with RBOHA. Interestingly, the study also found that CIPK31 interacted with catalase C (CatC); cipk31 mutants accumulated less H2 O2 while CIPK31 OX accumulated more H2 O2 compared to the wild-type control. Further analysis showed the interaction of the catalase domain of CatC with the NAF domain of CIPK31 by which CIPK31 inhibits CatC activity to accumulate more H2 O2 .
Collapse
Affiliation(s)
- Huan Chen
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Qiujun Lin
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
- Institute of Agricultural Quality Standards and Testing TechnologyLiaoning Academy of Agricultural SciencesShenyangChina
| | - Zhuo Li
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Jin Chu
- Institution of Plant ProtectionLiaoning Academy of Agricultural SciencesShenyangChina
| | - Hai Dong
- Institution of Plant ProtectionLiaoning Academy of Agricultural SciencesShenyangChina
| | - Qiong Mei
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Yuanhu Xuan
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
3
|
Møller IM, Rasmusson AG, Van Aken O. Plant mitochondria - past, present and future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:912-959. [PMID: 34528296 DOI: 10.1111/tpj.15495] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The study of plant mitochondria started in earnest around 1950 with the first isolations of mitochondria from animal and plant tissues. The first 35 years were spent establishing the basic properties of plant mitochondria and plant respiration using biochemical and physiological approaches. A number of unique properties (compared to mammalian mitochondria) were observed: (i) the ability to oxidize malate, glycine and cytosolic NAD(P)H at high rates; (ii) the partial insensitivity to rotenone, which turned out to be due to the presence of a second NADH dehydrogenase on the inner surface of the inner mitochondrial membrane in addition to the classical Complex I NADH dehydrogenase; and (iii) the partial insensitivity to cyanide, which turned out to be due to an alternative oxidase, which is also located on the inner surface of the inner mitochondrial membrane, in addition to the classical Complex IV, cytochrome oxidase. With the appearance of molecular biology methods around 1985, followed by genomics, further unique properties were discovered: (iv) plant mitochondrial DNA (mtDNA) is 10-600 times larger than the mammalian mtDNA, yet it only contains approximately 50% more genes; (v) plant mtDNA has kept the standard genetic code, and it has a low divergence rate with respect to point mutations, but a high recombinatorial activity; (vi) mitochondrial mRNA maturation includes a uniquely complex set of activities for processing, splicing and editing (at hundreds of sites); (vii) recombination in mtDNA creates novel reading frames that can produce male sterility; and (viii) plant mitochondria have a large proteome with 2000-3000 different proteins containing many unique proteins such as 200-300 pentatricopeptide repeat proteins. We describe the present and fairly detailed picture of the structure and function of plant mitochondria and how the unique properties make their metabolism more flexible allowing them to be involved in many diverse processes in the plant cell, such as photosynthesis, photorespiration, CAM and C4 metabolism, heat production, temperature control, stress resistance mechanisms, programmed cell death and genomic evolution. However, it is still a challenge to understand how the regulation of metabolism and mtDNA expression works at the cellular level and how retrograde signaling from the mitochondria coordinates all those processes.
Collapse
Affiliation(s)
- Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | | | | |
Collapse
|
4
|
Rasmusson AG, Escobar MA, Hao M, Podgórska A, Szal B. Mitochondrial NAD(P)H oxidation pathways and nitrate/ammonium redox balancing in plants. Mitochondrion 2020; 53:158-165. [PMID: 32485334 DOI: 10.1016/j.mito.2020.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/05/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
Abstract
Plant mitochondrial oxidative phosphorylation is characterised by alternative electron transport pathways with different energetic efficiencies, allowing turnover of cellular redox compounds like NAD(P)H. These electron transport chain pathways are profoundly affected by soil nitrogen availability, most commonly as oxidized nitrate (NO3-) and/or reduced ammonium (NH4+). The bioenergetic strategies involved in assimilating different N sources can alter redox homeostasis and antioxidant systems in different cellular compartments, including the mitochondria and the cell wall. Conversely, changes in mitochondrial redox systems can affect plant responses to N. This review explores the integration between N assimilation, mitochondrial redox metabolism, and apoplast metabolism.
Collapse
Affiliation(s)
- Allan G Rasmusson
- Lund University, Department of Biology, Sölvegatan 35B, 22362 Lund, Sweden.
| | - Matthew A Escobar
- California State University San Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA 92096, USA
| | - Mengshu Hao
- Lund University, Department of Biology, Sölvegatan 35B, 22362 Lund, Sweden
| | - Anna Podgórska
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Ilii Miecznikowa 1, 02-096 Warsaw, Poland
| | - Bożena Szal
- University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Ilii Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
5
|
Sweetman C, Miller TK, Booth NJ, Shavrukov Y, Jenkins CL, Soole KL, Day DA. Identification of Alternative Mitochondrial Electron Transport Pathway Components in Chickpea Indicates a Differential Response to Salinity Stress between Cultivars. Int J Mol Sci 2020; 21:E3844. [PMID: 32481694 PMCID: PMC7312301 DOI: 10.3390/ijms21113844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 11/16/2022] Open
Abstract
All plants contain an alternative electron transport pathway (AP) in their mitochondria, consisting of the alternative oxidase (AOX) and type 2 NAD(P)H dehydrogenase (ND) families, that are thought to play a role in controlling oxidative stress responses at the cellular level. These alternative electron transport components have been extensively studied in plants like Arabidopsis and stress inducible isoforms identified, but we know very little about them in the important crop plant chickpea. Here we identify AP components in chickpea (Cicer arietinum) and explore their response to stress at the transcript level. Based on sequence similarity with the functionally characterized proteins of Arabidopsis thaliana, five putative internal (matrix)-facing NAD(P)H dehydrogenases (CaNDA1-4 and CaNDC1) and four putative external (inter-membrane space)-facing NAD(P)H dehydrogenases (CaNDB1-4) were identified in chickpea. The corresponding activities were demonstrated for the first time in purified mitochondria of chickpea leaves and roots. Oxidation of matrix NADH generated from malate or glycine in the presence of the Complex I inhibitor rotenone was high compared to other plant species, as was oxidation of exogenous NAD(P)H. In leaf mitochondria, external NADH oxidation was stimulated by exogenous calcium and external NADPH oxidation was essentially calcium dependent. However, in roots these activities were low and largely calcium independent. A salinity experiment with six chickpea cultivars was used to identify salt-responsive alternative oxidase and NAD(P)H dehydrogenase gene transcripts in leaves from a three-point time series. An analysis of the Na:K ratio and Na content separated these cultivars into high and low Na accumulators. In the high Na accumulators, there was a significant up-regulation of CaAOX1, CaNDB2, CaNDB4, CaNDA3 and CaNDC1 in leaf tissue under long term stress, suggesting the formation of a stress-modified form of the mitochondrial electron transport chain (mETC) in leaves of these cultivars. In particular, stress-induced expression of the CaNDB2 gene showed a striking positive correlation with that of CaAOX1 across all genotypes and time points. The coordinated salinity-induced up-regulation of CaAOX1 and CaNDB2 suggests that the mitochondrial alternative pathway of respiration is an important facet of the stress response in chickpea, in high Na accumulators in particular, despite high capacities for both of these activities in leaf mitochondria of non-stressed chickpeas.
Collapse
Affiliation(s)
- Crystal Sweetman
- College of Science & Engineering, Flinders University, GPO Box 5100, Adelaide SA 5001, Australia; (T.K.M.); (N.J.B.); (Y.S.); (C.L.D.J.); (K.L.S.); (D.A.D.)
| | | | | | | | | | | | | |
Collapse
|
6
|
Antos-Krzeminska N, Jarmuszkiewicz W. Alternative Type II NAD(P)H Dehydrogenases in the Mitochondria of Protists and Fungi. Protist 2018; 170:21-37. [PMID: 30553126 DOI: 10.1016/j.protis.2018.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/12/2018] [Accepted: 11/04/2018] [Indexed: 01/11/2023]
Abstract
Plants, fungi, and some protists possess a more branched electron transport chain in their mitochondria compared to canonical one. In these organisms, the electron transport chain contains several rotenone-insensitive NAD(P)H dehydrogenases. Some are located on the outer surface, and others are located on the inner surface of the inner mitochondrial membrane. The putative role of these enzymes still remains elusive, but they may prevent the overreduction of the electron transport chain components and decrease the production of reaction oxygen species as a consequence. The last two decades resulted in the discovery of alternative rotenone-insensitive NAD(P)H dehydrogenases present in representatives of fungi and protozoa. The aim of this review is to gather and focus on current information concerning molecular and functional properties, regulation, and the physiological role of fungal and protozoan alternative NAD(P)H dehydrogenases.
Collapse
Affiliation(s)
- Nina Antos-Krzeminska
- Department of Bioenergetics, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland.
| | - Wieslawa Jarmuszkiewicz
- Department of Bioenergetics, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| |
Collapse
|
7
|
Matuz-Mares D, Matus-Ortega G, Cárdenas-Monroy C, Romero-Aguilar L, Villalobos-Rocha JC, Vázquez-Meza H, Guerra-Sánchez G, Peña-Díaz A, Pardo JP. Expression of alternative NADH dehydrogenases (NDH-2) in the phytopathogenic fungus Ustilago maydis. FEBS Open Bio 2018; 8:1267-1279. [PMID: 30221129 PMCID: PMC6134880 DOI: 10.1002/2211-5463.12475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/27/2018] [Accepted: 06/11/2018] [Indexed: 11/17/2022] Open
Abstract
Type 2 alternative NADH dehydrogenases (NDH‐2) participate indirectly in the generation of the electrochemical proton gradient by transferring electrons from NADH and NADPH into the ubiquinone pool. Due to their structural simplicity, alternative NADH dehydrogenases have been proposed as useful tools for gene therapy of cells with defects in the respiratory complex I. In this work, we report the presence of three open reading frames, which correspond to NDH‐2 genes in the genome of Ustilago maydis. These three genes were constitutively transcribed in cells cultured in YPD and minimal medium with glucose, ethanol, or lactate as carbon sources. Proteomic analysis showed that only two of the three NDH‐2 were associated with isolated mitochondria in all culture media. Oxygen consumption by permeabilized cells using NADH or NADPH was different for each condition, opening the possibility of posttranslational regulation. We confirmed the presence of both external and internal NADH dehydrogenases, as well as an external NADPH dehydrogenase insensitive to calcium. Higher oxygen consumption rates were observed during the exponential growth phase, suggesting that the activity of NADH and NADPH dehydrogenases is coupled to the dynamics of cell growth.
Collapse
Affiliation(s)
- Deyamira Matuz-Mares
- Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México México
| | - Genaro Matus-Ortega
- Departamento de Genética Molecular Instituto de Fisiología Celular Universidad Nacional Autónoma de México Ciudad de México México
| | - Christian Cárdenas-Monroy
- Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México México
| | - Lucero Romero-Aguilar
- Bioquímica de hongos Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional Ciudad de México México
| | | | - Héctor Vázquez-Meza
- Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México México
| | - Guadalupe Guerra-Sánchez
- Bioquímica de hongos Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional Ciudad de México México
| | - Antonio Peña-Díaz
- Departamento de Genética Molecular Instituto de Fisiología Celular Universidad Nacional Autónoma de México Ciudad de México México
| | - Juan Pablo Pardo
- Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México México
| |
Collapse
|
8
|
Elevation of cytosolic Ca2+ in response to energy deficiency in plants: the general mechanism of adaptation to low oxygen stress. Biochem J 2018; 475:1411-1425. [DOI: 10.1042/bcj20180169] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 02/06/2023]
Abstract
Ca2+ can be released from cell compartments to the cytosol during stress conditions. We discuss here the causes of Ca2+ release under conditions of ATP concentration decline that result in the suppression of ATPases and activation of calcium ion channels. The main signaling and metabolic consequences of Ca2+ release are considered for stressed plant cells. The signaling function includes generation and spreading of calcium waves, while the metabolic function results in the activation of particular enzymes and genes. Ca2+ is involved in the activation of glutamate decarboxylase, initiating the γ-aminobutyric acid shunt and triggering the formation of alanine, processes which play a role, in particular, in pH regulation. Ca2+ activates the transcription of several genes, e.g. of plant hemoglobin (phytoglobin, Pgb) which scavenges nitric oxide and regulates redox and energy balance through the Pgb–nitric oxide cycle. This cycle involves NADH and NADPH oxidation from the cytosolic side of mitochondria, in which Ca2+- and low pH-activated external NADH and NADPH dehydrogenases participate. Ca2+ can also activate the genes of alcohol dehydrogenase and pyruvate decarboxylase stimulating hypoxic fermentation. It is concluded that calcium is a primary factor that causes the metabolic shift under conditions of oxygen deficiency.
Collapse
|