1
|
Xia H, Yang C, Liang Y, He Z, Guo Y, Lang Y, Wei J, Tian X, Lin L, Deng H, Wang J, Lv X, Liang D. Melatonin and arbuscular mycorrhizal fungi synergistically improve drought toleration in kiwifruit seedlings by increasing mycorrhizal colonization and nutrient uptake. FRONTIERS IN PLANT SCIENCE 2022; 13:1073917. [PMID: 36531404 PMCID: PMC9752077 DOI: 10.3389/fpls.2022.1073917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Kiwifruit is a vine fruit tree that is vulnerable to water deficiency due to its shallow root system and large leaves. Although mycorrhizal inoculation and melatonin application has been proved to improve plants drought tolerance, their interaction effects are still unclear. In this study, arbuscular mycorrhizal (AM) fungi incubation and melatonin (MT) irrigation were applied to kiwifruit seedlings alone or in combination to investigate their effect on drought tolerance. The results revealed that AM had more effect on promoting root biomass, water use efficiency, and uptake of nitrogen, phosphorus and iron. While MT was more effective in promoting shoot biomass and antioxidant enzyme activities to remove reactive oxygen species accumulation. Moreover, MT supplementary significantly increased the AM colonization, spore density and hyphal length density in roots. Therefore, combined application of AM fungi and MT had additive effects on improvement biomass accumulation, increasing chlorophyll content, photosynthetic efficiency, catalase activity, and decreasing malondialdehyde accumulation under drought stress, thus promoting plant growth and alleviating the drought damage to plant. These results provide guidance for AM and MT combined application to improve abiotic resistance in plants.
Collapse
Affiliation(s)
- Hui Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Chunguo Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Zunzhen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuqi Guo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuxuan Lang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jie Wei
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xinbo Tian
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Honghong Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Nozue H, Shigarami T, Fukuda S, Chino T, Saruta R, Shirai K, Nozue M, Kumazaki S. Growth-phase dependent morphological alteration in higher plant thylakoid is accompanied by changes in both photodamage and repair rates. PHYSIOLOGIA PLANTARUM 2021; 172:1983-1996. [PMID: 33786842 DOI: 10.1111/ppl.13408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/18/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Thylakoid membranes of young leaves consist of grana and stroma lamellae (stroma-grana [SG] structure). The SG thylakoid is gradually converted into isolated grana (IG), almost lacking the stroma lamellae during growth. This morphological alteration was found to cause a reduction in maximum photosynthetic rate and an enhancement of photoinhibition in photosystem II (PSII). In situ microspectrometric measurements of chlorophyll fluorescence in individual chloroplasts suggested an increase of the PSII/PSI ratio in IG thylakoids of mature leaves. Western blot analysis of isolated IG thylakoids showed relative increases in some PSII components, including the core protein (D1) and light-harvesting components CP24 and Lhcb2. Notably, a nonphotochemical quenching-related factor in the PSII supercomplex, PsbS, decreased by 40%. Changes in the high light response of PSII were detected through parameters of pulse-amplitude modulation fluorometry. Chlorophyll fluorescence lifetime indicated an increase of fluorescence quantum yield in IG. A minimal photodamage-repair rate analysis on a lincomycin treatment of the leaves indicated that repair rate constant of IG is slower than that of SG, while photodamage rate of IG is higher than that of SG. These results suggest that IG thylakoids are relatively sensitive to high light, which is not only due to a higher photodamage rate caused by some rearrangements of PS complexes, but also to the retarded PSII repair that may result from the lack of stroma lamellae. The IG thylakoids found among many plant species thus seem to be an adaptive form to low light environments, although their physiological roles still remain unclear.
Collapse
Affiliation(s)
- Hatsumi Nozue
- Research Center for Advanced Plant Factory (SU-PLAF), Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Takashi Shigarami
- Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Shinji Fukuda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takayuki Chino
- Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Ryouta Saruta
- Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Kana Shirai
- Research Center for Advanced Plant Factory (SU-PLAF), Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Masayuki Nozue
- Research Center for Advanced Plant Factory (SU-PLAF), Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
- Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Shigeichi Kumazaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Sanjaya A, Kazama Y, Ishii K, Muramatsu R, Kanamaru K, Ohbu S, Abe T, Fujiwara MT. An Argon-Ion-Induced Pale Green Mutant of Arabidopsis Exhibiting Rapid Disassembly of Mesophyll Chloroplast Grana. PLANTS (BASEL, SWITZERLAND) 2021; 10:848. [PMID: 33922223 PMCID: PMC8145761 DOI: 10.3390/plants10050848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 01/13/2023]
Abstract
Argon-ion beam is an effective mutagen capable of inducing a variety of mutation types. In this study, an argon ion-induced pale green mutant of Arabidopsis thaliana was isolated and characterized. The mutant, designated Ar50-33-pg1, exhibited moderate defects of growth and greening and exhibited rapid chlorosis in photosynthetic tissues. Fluorescence microscopy confirmed that mesophyll chloroplasts underwent substantial shrinkage during the chlorotic process. Genetic and whole-genome resequencing analyses revealed that Ar50-33-pg1 contained a large 940 kb deletion in chromosome V that encompassed more than 100 annotated genes, including 41 protein-coding genes such as TYRAAt1/TyrA1, EGY1, and MBD12. One of the deleted genes, EGY1, for a thylakoid membrane-localized metalloprotease, was the major contributory gene responsible for the pale mutant phenotype. Both an egy1 mutant and F1 progeny of an Ar50-33-pg1 × egy1 cross-exhibited chlorotic phenotypes similar to those of Ar50-33-pg1. Furthermore, ultrastructural analysis of mesophyll cells revealed that Ar50-33-pg1 and egy1 initially developed wild type-like chloroplasts, but these were rapidly disassembled, resulting in thylakoid disorganization and fragmentation, as well as plastoglobule accumulation, as terminal phenotypes. Together, these data support the utility of heavy-ion mutagenesis for plant genetic analysis and highlight the importance of EGY1 in the structural maintenance of grana in mesophyll chloroplasts.
Collapse
Affiliation(s)
- Alvin Sanjaya
- Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554, Japan; (A.S.); (R.M.)
| | - Yusuke Kazama
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Yoshida, Fukui 910-1195, Japan
| | - Kotaro Ishii
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
| | - Ryohsuke Muramatsu
- Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554, Japan; (A.S.); (R.M.)
| | - Kengo Kanamaru
- Faculty of Agriculture, Kobe University, Nada, Kobe, Hyogo 657-8501, Japan;
| | - Sumie Ohbu
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
| | - Tomoko Abe
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
| | - Makoto T. Fujiwara
- Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554, Japan; (A.S.); (R.M.)
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
| |
Collapse
|
4
|
Antonoglou O, Moustaka J, Adamakis IDS, Sperdouli I, Pantazaki AA, Moustakas M, Dendrinou-Samara C. Nanobrass CuZn Nanoparticles as Foliar Spray Nonphytotoxic Fungicides. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4450-4461. [PMID: 29314822 DOI: 10.1021/acsami.7b17017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Inorganic nanoparticles (NPs) have been proposed as alternative fertilizers to suppress plant disease and increase crop yield. However, phytotoxicity of NPs remains a key factor for their massive employment in agricultural applications. In order to investigate new effective, nonphytotoxic, and inexpensive fungicides, in the present study CuZn bimetallic nanoparticles (BNPs) have been synthesized as antifungals, while assessment of photosystem II (PSII) efficiency by chlorophyll fluorescence imaging analysis is utilized as an effective and noninvasive phytotoxicity evaluation method. Thus, biocompatible coated, nonoxide contaminated CuZn BNPs of 20 nm crystallite size and 250 nm hydrodynamic diameter have been prepared by a microwave-assisted synthesis. BNPs' antifungal activity against Saccharomyces cerevisiae was found to be enhanced compared to monometallic Cu NPs. Reactive oxygen species (ROS) formation and photosystem II (PSII) functionality at low light (LL) and high light (HL) intensity were determined on tomato plants sprayed with 15 and 30 mg L-1 of BNPs for the evaluation of their phytotoxicity. Tomato leaves sprayed with 15 mg L-1 of BNPs displayed no significant difference in PSII functionality at LL, while exposure to 30 mg L-1 of BNPs for up to 90 min resulted in a reduced plastoquinone (PQ) pool that gave rise to H2O2 accumulation, initiating signaling networks and regulating acclimation responses. After 3 h of exposure to 30 mg L-1 of BNPs, PSII functionality at LL was similar to control, indicating nonphytotoxic effects. Meanwhile, exposure of tomato leaves either enhanced (15 mg L-1) or did not have any significant effect (30 mg L-1) on PSII functionality at HL, attributed to the absence of semiconducting oxide phases and photochemical toxicity-reducing modifications. The use of chlorophyll fluorescence imaging analysis is recommended as a tool to monitor NPs behavior on plants.
Collapse
Affiliation(s)
- Orestis Antonoglou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki , 54124 Thessaloniki, Greece
| | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki , 54124 Thessaloniki, Greece
- Laboratory of Molecular Entomology, Department of Biology, University of Crete, Voutes University Campus , 70013 Heraklion, Crete Greece
| | | | - Ilektra Sperdouli
- Department of Botany, Aristotle University of Thessaloniki , 54124 Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki , 54124 Thessaloniki, Greece
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki , 54124 Thessaloniki, Greece
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University , 34134 Istanbul, Turkey
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki , 54124 Thessaloniki, Greece
| |
Collapse
|
5
|
Nozue H, Kametani K. Using Light and Electron Microscopy to Estimate Structural Variation in Thylakoid Membranes. Bio Protoc 2017; 7:e2639. [PMID: 34595306 DOI: 10.21769/bioprotoc.2639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/01/2017] [Accepted: 10/23/2017] [Indexed: 11/02/2022] Open
Abstract
The shapes of chloroplasts and the architectures of internal thylakoid membranes are altered by growth and environmental changes ( Lichtenthaler et al., 1981 ; Kutik, 1985; Terashima and Hikosaka, 1995). These morphological alterations proceed via transitional intermediates, during which dynamic and heterogeneous thylakoid membranes are observed in cells ( Nozue et al., 2017 ). Light microscopy is useful for the detection of morphological differences in chloroplasts. The thylakoid architecture of such morphologically variable chloroplasts is confirmed by transmission electron microscopy (TEM). The method of monitoring structural variation by light microscopy in combination with electron microscopy is described.
Collapse
Affiliation(s)
- Hatsumi Nozue
- Research Center for Advanced Plant Factory (SU-PLAF), Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Kiyokazu Kametani
- Division of Instrumental Research, Research Center for Supports to Advance Science Shinshu University, Matsumoto, Japan
| |
Collapse
|
6
|
Yang D, Zou H, Wu Y, Shi J, Zhang S, Wang X, Han P, Tong Z, Jiang Z. Constructing Quantum Dots@Flake Graphitic Carbon Nitride Isotype Heterojunctions for Enhanced Visible-Light-Driven NADH Regeneration and Enzymatic Hydrogenation. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00912] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | | | | | - Jiafu Shi
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 10090, China
| | | | - Xiaodong Wang
- School
of Engineering, University of Aberdeen, Aberdeen AB24 3UE, Scotland U.K
| | | | | | - Zhongyi Jiang
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 10090, China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|