1
|
Yuan X, Li J, Zhang X, Ai X, Bi H. Auxin as a downstream signal positively participates in melatonin-mediated chilling tolerance of cucumber. PHYSIOLOGIA PLANTARUM 2024; 176:e14526. [PMID: 39318034 DOI: 10.1111/ppl.14526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024]
Abstract
Here, we elucidate the interaction between IAA and melatonin (MT) in response to chilling in cucumber. The results showed that chilling stress induced the increase of endogenous MT and IAA, and the application of MT promoted the synthesis of IAA, while IAA could not affect endogenous MT content under chilling stress. Moreover, MT and IAA application both remarkably increased the chilling tolerance of cucumber seedlings in terms of lower contents of MDA and ROS, higher mRNA abundance of cold response genes, net photosynthetic rate (Pn), maximum regeneration rate of ribulose-1,5-diphosphate (Jmax), Rubisco maximum carboxylation efficiency (Vcmax), the activities and gene expression of RCA and Rubisco, as well as the content of active P700 (I/I0) and photosynthetic electron transport, compared with the plants in H2O treatment. Further analysis revealed that the inhibition of IAA transportation significantly reduced the chilling tolerance induced by MT, whereas the inhibition of endogenous MT did not affect the chilling tolerance induced by IAA. Meanwhile, we found that overexpression of the MT biosynthesis gene CsASMT increased the chilling tolerance, which was blocked by inhibition of endogenous IAA, and the silence of IAA biosynthesis gene CsYUCCA10 decreased the chilling tolerance of cucumber, which could not be alleviated by MT. These data implied IAA acted as a downstream signal to participate in the MT-induced chilling tolerance of cucumber seedlings. The study has implications for the production of greenhouse cucumber in winter seasons.
Collapse
Affiliation(s)
- Xinru Yuan
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Junqi Li
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Xiaowei Zhang
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Xizhen Ai
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Huangai Bi
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| |
Collapse
|
2
|
Nazari M, Kordrostami M, Ghasemi-Soloklui AA, Eaton-Rye JJ, Pashkovskiy P, Kuznetsov V, Allakhverdiev SI. Enhancing Photosynthesis and Plant Productivity through Genetic Modification. Cells 2024; 13:1319. [PMID: 39195209 PMCID: PMC11352682 DOI: 10.3390/cells13161319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Enhancing crop photosynthesis through genetic engineering technologies offers numerous opportunities to increase plant productivity. Key approaches include optimizing light utilization, increasing cytochrome b6f complex levels, and improving carbon fixation. Modifications to Rubisco and the photosynthetic electron transport chain are central to these strategies. Introducing alternative photorespiratory pathways and enhancing carbonic anhydrase activity can further increase the internal CO2 concentration, thereby improving photosynthetic efficiency. The efficient translocation of photosynthetically produced sugars, which are managed by sucrose transporters, is also critical for plant growth. Additionally, incorporating genes from C4 plants, such as phosphoenolpyruvate carboxylase and NADP-malic enzymes, enhances the CO2 concentration around Rubisco, reducing photorespiration. Targeting microRNAs and transcription factors is vital for increasing photosynthesis and plant productivity, especially under stress conditions. This review highlights potential biological targets, the genetic modifications of which are aimed at improving photosynthesis and increasing plant productivity, thereby determining key areas for future research and development.
Collapse
Affiliation(s)
- Mansoureh Nazari
- Department of Horticultural Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Mojtaba Kordrostami
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj 31485-498, Iran;
| | - Ali Akbar Ghasemi-Soloklui
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj 31485-498, Iran;
| | - Julian J. Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| | - Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya St. 35, Moscow 127276, Russia; (P.P.); (V.K.)
| | - Vladimir Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya St. 35, Moscow 127276, Russia; (P.P.); (V.K.)
| | - Suleyman I. Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya St. 35, Moscow 127276, Russia; (P.P.); (V.K.)
- Faculty of Engineering and Natural Sciences, Bahcesehir University, 34349 Istanbul, Turkey
| |
Collapse
|
3
|
Cong Y, Chen X, Xing J, Li X, Pang S, Liu H. Nitric oxide signal is required for glutathione-induced enhancement of photosynthesis in salt-stressed S olanum lycopersicum L. FRONTIERS IN PLANT SCIENCE 2024; 15:1413653. [PMID: 38952846 PMCID: PMC11215142 DOI: 10.3389/fpls.2024.1413653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
Reduced glutathione (γ-glutamyl-cysteinyl-glycine, GSH), the primary non-protein sulfhydryl group in organisms, plays a pivotal role in the plant salt stress response. This study aimed to explore the impact of GSH on the photosynthetic apparatus, and carbon assimilation in tomato plants under salt stress, and then investigate the role of nitric oxide (NO) in this process. The investigation involved foliar application of 5 mM GSH, 0.1% (w/v) hemoglobin (Hb, a nitric oxide scavenger), and GSH+Hb on the endogenous NO levels, rapid chlorophyll fluorescence, enzyme activities, and gene expression related to the Calvin cycle in tomato seedlings (Solanum lycopersicum L. cv. 'Zhongshu No. 4') subjected short-term salt stress (100 mM NaCl) for 24, 48 and 72 hours. GSH treatment notably boosted nitrate reductase (NR) and NO synthase (NOS) activities, elevating endogenous NO signaling in salt-stressed tomato seedling leaves. It also mitigated chlorophyll fluorescence (OJIP) curve distortion and damage to the oxygen-evolving complex (OEC) induced by salt stress. Furthermore, GSH improved photosystem II (PSII) electron transfer efficiency, reduced QA - accumulation, and countered salt stress effects on photosystem I (PSI) redox properties, enhancing the light energy absorption index (PIabs). Additionally, GSH enhanced key enzyme activities in the Calvin cycle and upregulated their genes. Exogenous GSH optimized PSII energy utilization via endogenous NO, safeguarded the photosynthetic reaction center, improved photochemical and energy efficiency, and boosted carbon assimilation, ultimately enhancing net photosynthetic efficiency (Pn) in salt-stressed tomato seedling leaves. Conversely, Hb hindered Pn reduction and NO signaling under salt stress and weakened the positive effects of GSH on NO levels, photosynthetic apparatus, and carbon assimilation in tomato plants. Thus, the positive regulation of photosynthesis in tomato seedlings under salt stress by GSH requires the involvement of NO.
Collapse
Affiliation(s)
- Yundan Cong
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi, Xinjiang, China
| | - Xianjun Chen
- School of Life and Health Science, Kaili University, Kaili, Guizhou, China
| | - Jiayi Xing
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi, Xinjiang, China
| | - Xuezhen Li
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi, Xinjiang, China
| | - Shengqun Pang
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi, Xinjiang, China
| | - Huiying Liu
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi, Xinjiang, China
| |
Collapse
|
4
|
Mohorović P, Geldhof B, Holsteens K, Rinia M, Daems S, Reijnders T, Ceusters J, Van den Ende W, Van de Poel B. Ethylene inhibits photosynthesis via temporally distinct responses in tomato plants. PLANT PHYSIOLOGY 2024; 195:762-784. [PMID: 38146839 DOI: 10.1093/plphys/kiad685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 12/27/2023]
Abstract
Ethylene is a volatile plant hormone that regulates many developmental processes and responses toward (a)biotic stress. Studies have shown that high levels of ethylene repress vegetative growth in many important crops, including tomato (Solanum lycopersicum), possibly by inhibiting photosynthesis. We investigated the temporal effects of ethylene on young tomato plants using an automated ethylene gassing system to monitor the physiological, biochemical, and molecular responses through time course RNA-seq of a photosynthetically active source leaf. We found that ethylene evokes a dose-dependent inhibition of photosynthesis, which can be characterized by 3 temporally distinct phases. The earliest ethylene responses that marked the first phase and occurred a few hours after the start of the treatment were leaf epinasty and a decline in stomatal conductance, which led to lower light perception and CO2 uptake, respectively, resulting in a rapid decline of soluble sugar levels (glucose, fructose). The second phase of the ethylene effect was marked by low carbohydrate availability, which modulated plant energy metabolism to adapt by using alternative substrates (lipids and proteins) to fuel the TCA cycle. Long-term continuous exposure to ethylene led to the third phase, characterized by starch and chlorophyll breakdown, which further inhibited photosynthesis, leading to premature leaf senescence. To reveal early (3 h) ethylene-dependent regulators of photosynthesis, we performed a ChIP-seq experiment using anti-ETHYLENE INSENSITIVE 3-like 1 (EIL1) antibodies and found several candidate transcriptional regulators. Collectively, our study revealed a temporal sequence of events that led to the inhibition of photosynthesis by ethylene and identified potential transcriptional regulators responsible for this regulation.
Collapse
Affiliation(s)
- Petar Mohorović
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Batist Geldhof
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Kristof Holsteens
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Marilien Rinia
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Stijn Daems
- Research Group for Sustainable Plant Production and Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Campus Geel, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Timmy Reijnders
- Molecular Biotechnology of Plants and Microorganisms Lab, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Johan Ceusters
- Research Group for Sustainable Plant Production and Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Campus Geel, Kleinhoefstraat 4, 2440 Geel, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Wim Van den Ende
- Molecular Biotechnology of Plants and Microorganisms Lab, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| |
Collapse
|
5
|
Chao M, Huang L, Dong J, Chen Y, Hu G, Zhang Q, Zhang J, Wang Q. Molecular characterization and expression pattern of Rubisco activase gene GhRCAβ2 in upland cotton (Gossypium hirsutum L.). Genes Genomics 2024; 46:423-436. [PMID: 38324226 DOI: 10.1007/s13258-024-01494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Rubisco activase (RCA) is a pivotal enzyme that can catalyse the activation of Rubisco in carbon assimilation pathway. Many studies have shown that RCA may be a potential target for genetic manipulation aimed at enhancing photosynthetic efficiency and crop yield. OBJECTIVE To understand the biological function of the GhRCAβ2 gene in upland cotton, we cloned the coding sequence (CDS) of the GhRCAβ2 gene and investigated its sequence features, evolutionary relationship, subcellular localization, promoter sequence and expression pattern. METHODS The bioinformatics tools were used to analyze the sequence features of GhRCAβ2 protein. Transient transformation of Arabidopsis mesophyll protoplasts was performed to determine the subcellular localization of the GhRCAβ2 protein. The expression pattern of the GhRCAβ2 gene was examined by analyzing transcriptome data and using the quantitative real-time PCR (qRT-PCR). RESULTS The full-length CDS of GhRCAβ2 was 1317 bp, and it encoded a protein with a chloroplast transit peptide. The GhRCAβ2 had two conserved ATP-binding domains, and did not have the C-terminal extension (CTE) domain that was unique to the RCA α-isoform in plants. Evolutionarily, GhRCAβ2 was clustered in Group A, and had a close evolutionary relationship with the soybean RCA. Western blot analysis demonstrated that GhRCAβ2 was immunoreactive to the RCA antibody displaying a molecular weight similar to that of the RCA β-isoform. The GhRCAβ2 protein was found in chloroplast, aligning with its role as a vital enzyme in the process of photosynthesis. The GhRCAβ2 gene had a leaf tissue-specific expression pattern, and the yellow-green leaf mutant exhibited a decreased expression of GhRCAβ2 in comparison to the wild-type cotton plants. The GhRCAβ2 promoter contained several cis-acting elements that respond to light, phytohormones and stress, suggesting that the expression of GhRCAβ2 may be regulated by these factors. An additional examination of stress response indicated that GhRCAβ2 expression was influenced by cold, heat, salt, and drought stress. Notably, diverse expression pattern was observed across different stress conditions. Additionally, low phosphorus and low potassium stress may result in a notable reduction in the expression of GhRCAβ2 gene. CONCLUSION Our findings will establish a basis for further understanding the function of the GhRCAβ2 gene, as well as providing valuable genetic knowledge to improve cotton photosynthetic efficiency and yield under challenging environmental circumstances.
Collapse
Affiliation(s)
- Maoni Chao
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Ling Huang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jie Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Yu Chen
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Genhai Hu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Qiufang Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jinbao Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Qinglian Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
6
|
Zhu J, Dai W, Chen B, Cai G, Wu X, Yan G. Research Progress on the Effect of Nitrogen on Rapeseed between Seed Yield and Oil Content and Its Regulation Mechanism. Int J Mol Sci 2023; 24:14504. [PMID: 37833952 PMCID: PMC10572985 DOI: 10.3390/ijms241914504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Rapeseed (Brassica napus L.) is one of the most important oil crops in China. Improving the oil production of rapeseed is an important way to ensure the safety of edible oil in China. Oil production is an important index that reflects the quality of rapeseed and is determined by the oil content and yield. Applying nitrogen is an important way to ensure a strong and stable yield. However, the seed oil content has been shown to be reduced in most rapeseed varieties after nitrogen application. Thus, it is critical to screen elite germplasm resources with stable or improved oil content under high levels of nitrogen, and to investigate the molecular mechanisms of the regulation by nitrogen of oil accumulation. However, few studies on these aspects have been published. In this review, we analyze the effect of nitrogen on the growth and development of rapeseed, including photosynthetic assimilation, substance distribution, and the synthesis of lipids and proteins. In this process, the expression levels of genes related to nitrogen absorption, assimilation, and transport changed after nitrogen application, which enhanced the ability of carbon and nitrogen assimilation and increased biomass, thus leading to a higher yield. After a crop enters the reproductive growth phase, photosynthates in the body are transported to the developing seed for protein and lipid synthesis. However, protein synthesis precedes lipid synthesis, and a large number of photosynthates are consumed during protein synthesis, which weakens lipid synthesis. Moreover, we suggest several research directions, especially for exploring genes involved in lipid and protein accumulation under nitrogen regulation. In this study, we summarize the effects of nitrogen at both the physiological and molecular levels, aiming to reveal the mechanisms of nitrogen regulation in oil accumulation and, thereby, provide a theoretical basis for breeding varieties with a high oil content.
Collapse
Affiliation(s)
| | | | | | | | | | - Guixin Yan
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (J.Z.)
| |
Collapse
|
7
|
Feng Y, Wu H, Liu H, He Y, Yin Z. Effects of OsRCA Overexpression on Rubisco Activation State and Photosynthesis in Maize. PLANTS (BASEL, SWITZERLAND) 2023; 12:1614. [PMID: 37111838 PMCID: PMC10142437 DOI: 10.3390/plants12081614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/08/2023] [Indexed: 06/19/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the rate-limiting enzyme for photosynthesis. Rubisco activase (RCA) can regulate the Rubisco activation state, influencing Rubisco activity and photosynthetic rate. We obtained transgenic maize plants that overproduced rice RCA (OsRCAOE) and evaluated photosynthesis in these plants by measuring gas exchange, energy conversion efficiencies in photosystem (PS) I and PSII, and Rubisco activity and activation state. The OsRCAOE lines showed significantly higher initial Rubisco activity and activation state, net photosynthetic rate, and PSII photochemical quantum yield than wild-type plants. These results suggest that OsRCA overexpression can promote maize photosynthesis by increasing the Rubisco activation state.
Collapse
Affiliation(s)
- Yujiao Feng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri–Product Safety of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Hao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri–Product Safety of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Huanhuan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri–Product Safety of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co–Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yonghui He
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri–Product Safety of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co–Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhitong Yin
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri–Product Safety of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co–Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Xu H, Chu X, Gou K, Jiang D, Li Q, Lv C, Gao Z, Chen G. The photosynthetic function analysis for leaf photooxidation in rice. PHOTOSYNTHETICA 2023; 61:48-57. [PMID: 39650125 PMCID: PMC11515825 DOI: 10.32615/ps.2023.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/20/2023] [Indexed: 12/11/2024]
Abstract
Photooxidative damage causes early leaf senescence and plant cell death. In this study, a light-sensitive rice cultivar, 812HS, and a non-light-sensitive cultivar, 812S, were used to investigate early leaf photooxidation. Leaf tips of 812HS exhibited yellowing under a light intensity of 720 μmol(photon) m-2 s-1, accompanied by a decrease in chlorophyll and carotenoids, but 812S was unaffected. The photosynthetic performance of 812HS was also poorer than that of 812S. The H2O2, O2 ·-, and malondialdehyde content increased sharply in 812HS, and associated antioxidant enzymes were inhibited. The degradation of core proteins in both PSI and PSII, as well as other photosynthesis-related proteins, was accelerated in 812HS. When shaded [180 μmol(photon) m-2 s-1], 812HS recovered to normal. Therefore, our findings suggested excess light disturbed the balance of ROS metabolism, leading to the destruction of the antioxidant system and photosynthetic organs, and thus triggering the senescence of rice leaves.
Collapse
Affiliation(s)
- H. Xu
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China
| | - X. Chu
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China
| | - K.J. Gou
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China
| | - D.X. Jiang
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, 210013 Nanjing, China
| | - Q.Q. Li
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China
| | - C.G. Lv
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, 210013 Nanjing, China
| | - Z.P. Gao
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China
| | - G.X. Chen
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China
| |
Collapse
|
9
|
Rosado-Souza L, Yokoyama R, Sonnewald U, Fernie AR. Understanding source-sink interactions: Progress in model plants and translational research to crops. MOLECULAR PLANT 2023; 16:96-121. [PMID: 36447435 DOI: 10.1016/j.molp.2022.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/25/2022] [Indexed: 06/16/2023]
Abstract
Agriculture is facing a massive increase in demand per hectare as a result of an ever-expanding population and environmental deterioration. While we have learned much about how environmental conditions and diseases impact crop yield, until recently considerably less was known concerning endogenous factors, including within-plant nutrient allocation. In this review, we discuss studies of source-sink interactions covering both fundamental research in model systems under controlled growth conditions and how the findings are being translated to crop plants in the field. In this respect we detail efforts aimed at improving and/or combining C3, C4, and CAM modes of photosynthesis, altering the chloroplastic electron transport chain, modulating photorespiration, adopting bacterial/algal carbon-concentrating mechanisms, and enhancing nitrogen- and water-use efficiencies. Moreover, we discuss how modulating TCA cycle activities and primary metabolism can result in increased rates of photosynthesis and outline the opportunities that evaluating natural variation in photosynthesis may afford. Although source, transport, and sink functions are all covered in this review, we focus on discussing source functions because the majority of research has been conducted in this field. Nevertheless, considerable recent evidence, alongside the evidence from classical studies, demonstrates that both transport and sink functions are also incredibly important determinants of yield. We thus describe recent evidence supporting this notion and suggest that future strategies for yield improvement should focus on combining improvements in each of these steps to approach yield optimization.
Collapse
Affiliation(s)
- Laise Rosado-Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Ryo Yokoyama
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Uwe Sonnewald
- Department of Biochemistry, University of Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
10
|
Zhang Y, Fu X, Feng Y, Zhang X, Bi H, Ai X. Abscisic Acid Mediates Salicylic Acid Induced Chilling Tolerance of Grafted Cucumber by Activating H 2O 2 Biosynthesis and Accumulation. Int J Mol Sci 2022; 23:ijms232416057. [PMID: 36555697 PMCID: PMC9783703 DOI: 10.3390/ijms232416057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Grafting is widely applied to enhance the tolerance of some vegetables to biotic and abiotic stress. Salicylic acid (SA) is known to be involved in grafting-induced chilling tolerance in cucumber. Here, we revealed that grafting with pumpkin (Cucurbita moschata, Cm) as a rootstock improved chilling tolerance and increased the accumulation of SA, abscisic acid (ABA) and hydrogen peroxide (H2O2) in grafted cucumber (Cucumis sativus/Cucurbita moschata, Cs/Cm) leaves. Exogenous SA improved the chilling tolerance and increased the accumulation of ABA and H2O2 and the mRNA abundances of CBF1, COR47, NCED, and RBOH1. However, 2-aminoindan-2-phosphonic acid (AIP) and L-a-aminooxy-b-phenylpropionic acid (AOPP) (biosynthesis inhibitors of SA) reduced grafting-induced chilling tolerance, as well as the synthesis of ABA and H2O2, in cucumber leaves. ABA significantly increased endogenous H2O2 production and the resistance to chilling stress, as proven by the lower electrolyte leakage (EL) and chilling injury index (CI). However, application of the ABA biosynthesis inhibitors sodium tungstate (Na2WO4) and fluridone (Flu) abolished grafting or SA-induced H2O2 accumulation and chilling tolerance. SA-induced plant response to chilling stress was also eliminated by N,N'-dimethylthiourea (DMTU, an H2O2 scavenger). In addition, ABA-induced chilling tolerance was attenuated by DMTU and diphenyleneiodonium (DPI, an H2O2 inhibitor) chloride, but AIP and AOPP had little effect on the ABA-induced mitigation of chilling stress. Na2WO4 and Flu diminished grafting- or SA-induced H2O2 biosynthesis, but DMTU and DPI did not affect ABA production induced by SA under chilling stress. These results suggest that SA participated in grafting-induced chilling tolerance by stimulating the biosynthesis of ABA and H2O2. H2O2, as a downstream signaler of ABA, mediates SA-induced chilling tolerance in grafted cucumber plants.
Collapse
Affiliation(s)
- Yanyan Zhang
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- Tai’an Academy of Agricultural Sciences, Tai’an 271000, China
| | - Xin Fu
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Yiqing Feng
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Xiaowei Zhang
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Huangai Bi
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: author: (H.B.); (X.A.)
| | - Xizhen Ai
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: author: (H.B.); (X.A.)
| |
Collapse
|
11
|
Soliman S, Wang Y, Han Z, Pervaiz T, El-kereamy A. Strigolactones in Plants and Their Interaction with the Ecological Microbiome in Response to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:3499. [PMID: 36559612 PMCID: PMC9781102 DOI: 10.3390/plants11243499] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Phytohormones play an essential role in enhancing plant tolerance by responding to abiotic stresses, such as nutrient deficiency, drought, high temperature, and light stress. Strigolactones (SLs) are carotenoid derivatives that occur naturally in plants and are defined as novel phytohormones that regulate plant metabolism, growth, and development. Strigolactone assists plants in the acquisition of defensive characteristics against drought stress by initiating physiological responses and mediating the interaction with soil microorganisms. Nutrient deficiency is an important abiotic stress factor, hence, plants perform many strategies to survive against nutrient deficiency, such as enhancing the efficiency of nutrient uptake and forming beneficial relationships with microorganisms. Strigolactone attracts various microorganisms and provides the roots with essential elements, including nitrogen and phosphorus. Among these advantageous microorganisms are arbuscular mycorrhiza fungi (AMF), which regulate plant metabolic activities through phosphorus providing in roots. Bacterial nodulations are also nitrogen-fixing microorganisms found in plant roots. This symbiotic relationship is maintained as the plant provides organic molecules, produced in the leaves, that the bacteria could otherwise not independently generate. Related stresses, such as light stress and high-temperature stress, could be affected directly or indirectly by strigolactone. However, the messengers of these processes are unknown. The most prominent connector messengers have been identified upon the discovery of SLs and the understanding of their hormonal effect. In addition to attracting microorganisms, these groups of phytohormones affect photosynthesis, bridge other phytohormones, induce metabolic compounds. In this article, we highlighted the brief information available on SLs as a phytohormone group regarding their common related effects. In addition, we reviewed the status and described the application of SLs and plant response to abiotic stresses. This allowed us to comprehend plants' communication with the ecological microbiome as well as the strategies plants use to survive under various stresses. Furthermore, we identify and classify the SLs that play a role in stress resistance since many ecological microbiomes are unexplained.
Collapse
Affiliation(s)
- Sabry Soliman
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
- Department of Fruit Science, College of Horticulture, China Agriculture University, Beijing 100083, China
| | - Yi Wang
- Department of Fruit Science, College of Horticulture, China Agriculture University, Beijing 100083, China
| | - Zhenhai Han
- Department of Fruit Science, College of Horticulture, China Agriculture University, Beijing 100083, China
| | - Tariq Pervaiz
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Ashraf El-kereamy
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
12
|
Chen ZF, Wang TH, Feng CY, Guo HF, Guan XX, Zhang TL, Li WZ, Xing GM, Sun S, Tan GF. Multigene manipulation of photosynthetic carbon metabolism enhances the photosynthetic capacity and biomass yield of cucumber under low-CO 2 environment. FRONTIERS IN PLANT SCIENCE 2022; 13:1005261. [PMID: 36330244 PMCID: PMC9623318 DOI: 10.3389/fpls.2022.1005261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Solar greenhouses are important in the vegetable production and widely used for the counter-season production in the world. However, the CO2 consumed by crops for photosynthesis after sunrise is not supplemented and becomes chronically deficient due to the airtight structure of solar greenhouses. Vegetable crops cannot effectively utilize light resources under low-CO2 environment, and this incapability results in reduced photosynthetic efficiency and crop yield. We used cucumber as a model plant and generated several sets of transgenic cucumber plants overexpressing individual genes, including β-carbonic anhydrase 1 (CsβCA1), β-carbonic anhydrase 4 (CsβCA4), and sedoheptulose-1,7-bisphosphatase (CsSBP); fructose-1,6-bisphosphate aldolase (CsFBA), and CsβCA1 co-expressing plants; CsβCA4, CsSBP, and CsFBA co-expressing plants (14SF). The results showed that the overexpression of CsβCA1, CsβCA4, and 14SF exhibited higher photosynthetic and biomass yield in transgenic cucumber plants under low-CO2 environment. Further enhancements in photosynthesis and biomass yield were observed in 14SF transgenic plants under low-CO2 environment. The net photosynthesis biomass yield and photosynthetic rate increased by 49% and 79% compared with those of the WT. However, the transgenic cucumbers of overexpressing CsFBA and CsSBP showed insignificant differences in photosynthesis and biomass yield compared with the WT under low-CO2.environment. Photosynthesis, fluorescence parameters, and enzymatic measurements indicated that CsβCA1, CsβCA4, CsSBP, and CsFBA had cumulative effects in photosynthetic carbon assimilation under low-CO2 environment. Co-expression of this four genes (CsβCA1, CsβCA4, CsSBP, and CsFBA) can increase the carboxylation activity of RuBisCO and promote the regeneration of RuBP. As a result, the 14SF transgenic plants showed a higher net photosynthetic rate and biomass yield even under low-CO2environment.These findings demonstrate the possibility of cultivating crops with high photosynthetic efficiency by manipulating genes involved in the photosynthetic carbon assimilation metabolic pathway.
Collapse
Affiliation(s)
- Zhi-Feng Chen
- College of Biology and Agricultural Technology, Zunyi Normal College, Zunyi, China
| | - Tian-Hong Wang
- Fruit and Vegetable Research Institute, Academy of Agricultural Sciences, Zunyi, China
| | - Chao-Yang Feng
- College of Biology and Agricultural Technology, Zunyi Normal College, Zunyi, China
| | - Hai-Feng Guo
- College of Biology and Agricultural Technology, Zunyi Normal College, Zunyi, China
| | - Xiao-Xi Guan
- College of Biology and Agricultural Technology, Zunyi Normal College, Zunyi, China
| | - Tian-Li Zhang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Wen-Zhao Li
- College of Biology and Agricultural Technology, Zunyi Normal College, Zunyi, China
| | - Guo-Ming Xing
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Sheng Sun
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Guo-Fei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang, China
| |
Collapse
|
13
|
Li J, Xie J, Yu J, Lyv J, Zhang J, Ding D, Li N, Zhang J, Bakpa EP, Yang Y, Niu T, Gao F. Melatonin enhanced low-temperature combined with low-light tolerance of pepper ( Capsicum annuum L.) seedlings by regulating root growth, antioxidant defense system, and osmotic adjustment. FRONTIERS IN PLANT SCIENCE 2022; 13:998293. [PMID: 36247609 PMCID: PMC9554354 DOI: 10.3389/fpls.2022.998293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Melatonin (MT) is an important biologically active hormone that plays a vital role in plant growth and development. In particular, it has been investigated for its roles in abiotic stress management. In this study, pepper seedlings were subjected to low-temperature combined with low-light stress (LL) (15/5°C, 100 μmol m-2s-1) prior to a foliar spray of 200mM MT for 168h to investigate the protective role of MT in pepper seedlings. Our results demonstrated that LL stress negatively affected root growth, and accelerated the accumulation of reactive oxygen species (ROS), including H2O2 and O 2 - , changed the osmolytes contents, and antioxidative system. However, these were reversed by exogenous MT application. MT effectively promoted the root growth as indicated by significant increase in root length, surface area, root volume, tips, forks, and crossings. In addition, MT reduced the burst of ROS and MDA contents induced by LL, enhanced the activities of SOD, CAT, POD, APX, DHAR, and MDHAR resulted by upregulated expressions of CaSOD, CaPOD, CaCAT, CaAPX, CaDHAR, and CaMDHAR, and elevated the contents of AsA and GSH, declined DHA and GSSH contents, which prevented membrane lipid peroxidation and protected plants from oxidative damages under LL stress. Furthermore, seedlings treated with MT released high contents of soluble sugar and soluble protein in leave, which might enhance LL tolerance by maintaining substance biosynthesis and maintaining cellular homeostasis resulted by high levels of osmolytes and carbohydrate in the cytosol. Our current findings confirmed the mitigating potential of MT application for LL stress by promoting pepper root growth, improving antioxidative defense system, ascorbate-glutathione cycle, and osmotic adjustment.
Collapse
Affiliation(s)
- Jing Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyv
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Junfeng Zhang
- Institution of Vegetable, Gansu Academy of Agricultural Science, Lanzhou, China
| | - Dongxia Ding
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Nenghui Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | | | - Yan Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Tianhang Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Feng Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
14
|
Understanding and Comprehensive Evaluation of Cold Resistance in the Seedlings of Multiple Maize Genotypes. PLANTS 2022; 11:plants11141881. [PMID: 35890515 PMCID: PMC9320912 DOI: 10.3390/plants11141881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 12/02/2022]
Abstract
Maize is a cold-sensitive crop, and it exhibits severe retardation of growth and development when exposed to cold snaps during and right after seedling emergence. Although different agronomic, physiological, and molecular approaches have been tried to overcome the problems related to cold stress in recent years, the mechanisms causing cold resistance in maize are still unclear. Screening and breeding of varieties for cold resistance may be a sustainable option to boost maize production under low-temperature environments. Herein, seedlings of 39 different maize genotypes were treated under both 10 °C low temperature and 22 °C normal temperature conditions for 7 days, to assess the changes in seven growth parameters, two membrane characteristics, two reactive oxygen species (ROS) levels, and four antioxidant enzymes activities. The changes in ten photosynthetic performances, one osmotic substance accumulation, and three polyamines (PAs) metabolisms were also measured. Results indicated that significant differences among genotypes, temperature treatments, and their interactions were found in 29 studied traits, and cold–stressed seedlings were capable to enhance their cold resistance by maintaining high levels of membrane stability index (66.07%); antioxidant enzymes activities including the activity of superoxide dismutase (2.44 Unit g−1 protein), peroxidase (1.65 Unit g−1 protein), catalase (0.65 μM min−1 g−1 protein), and ascorbate peroxidase (5.45 μM min−1 g−1 protein); chlorophyll (Chl) content, i.e., Chl a (0.36 mg g−1 FW) and Chl b (0.40 mg g−1 FW); photosynthetic capacity such as net photosynthetic rate (5.52 μM m−2 s−1) and ribulose 1,5–biphosphate carboxylase activity (6.57 M m−2 s−1); PAs concentration, mainly putrescine (274.89 nM g−1 FW), spermidine (52.69 nM g−1 FW), and spermine (45.81 nM g−1 FW), particularly under extended cold stress. Importantly, 16 traits can be good indicators for screening of cold–resistant genotypes of maize. Gene expression analysis showed that GRMZM2G059991, GRMZM2G089982, GRMZM2G088212, GRMZM2G396553, GRMZM2G120578, and GRMZM2G396856 involved in antioxidant enzymes activity and PAs metabolism, and these genes may be used for genetic modification to improve maize cold resistance. Moreover, seven strong cold–resistant genotypes were identified, and they can be used as parents in maize breeding programs to develop new varieties.
Collapse
|
15
|
Lv C, Li F, Ai X, Bi H. H 2O 2 participates in ABA regulation of grafting-induced chilling tolerance in cucumber. PLANT CELL REPORTS 2022; 41:1115-1130. [PMID: 35260922 DOI: 10.1007/s00299-022-02841-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/01/2022] [Indexed: 05/20/2023]
Abstract
Rootstock provides more abscisic acid (ABA) content to scions to increase the chilling tolerance of seedlings. H2O2 is involved in ABA regulation of grafting-induced chilling tolerance of cucumber. Here we examined the role of ABA in the response of grafted cucumber to chilling stress. The data showed chilling induced an increase in leaf and root ABA content and there was a positive correlation between ABA content and the chilling tolerance of the varieties. The increase of ABA content and NCED mRNA abundance in the leaf of both Cs/Cs (self-root) and Cs/Cm (grafted with pumpkin as rootstock) showed a delay under aerial stress compared with those under whole plant and root-zone stress. Intriguingly, an increase in ABA in xylem was found under whole-plant and root-zone chilling stress but was not detected under aerial stress, implying the increases in ABA content in leaves were mainly from root ABA transportation. Compared to Cs/Cs, a higher ABA content and NCED mRNA abundance were observed in Cs/Cm, which showed that Cm could output more ABA than Cs. The removal of endogenous ABA decreased the difference in chilling tolerance induced by Cm, as evidenced by the observed similar oxidative stress levels and photosynthetic capacity between Cs/Cs and Cs/Cm after chilling stress. Moreover, we found that the H2O2 signal in grafted cucumber could respond to chilling stress earlier than the H2O2 signal in self-rooted cucumber. The inhibition of endogenous H2O2 decreased the chilling tolerance of grafted cucumber induced by ABA by reducing photosynthesis and the mRNA abundance of CBF1 and COR. Thus, our results indicate that H2O2, as the downstream signal, participated in the rootstock-induced chilling tolerance of grafted seedlings induced by ABA.
Collapse
Affiliation(s)
- Chunyu Lv
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Fude Li
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xizhen Ai
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Huangai Bi
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
16
|
Effects of the Chloroplast Fructose-1,6-Bisphosphate Aldolase Gene on Growth and Low-Temperature Tolerance of Tomato. Int J Mol Sci 2022; 23:ijms23020728. [PMID: 35054921 PMCID: PMC8775715 DOI: 10.3390/ijms23020728] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 01/27/2023] Open
Abstract
Tomato (Solanum lycopersicum) is one of the most important greenhouse vegetables, with a large cultivated area across the world. However, in northern China, tomato plants often suffer from low-temperature stress in solar greenhouse cultivation, which affects plant growth and development and results in economic losses. We previously found that a chloroplast aldolase gene in tomato, SlFBA4, plays an important role in the Calvin-Benson cycle (CBC), and its expression level and activity can be significantly altered when subjected to low-temperature stress. To further study the function of SlFBA4 in the photosynthesis and chilling tolerance of tomato, we obtained transgenic tomato plants by the over-expression and RNA interference (RNAi) of SlFBA4. The over-expression of SlFBA4 led to higher fructose-1,6-bisphosphate aldolase activity, net photosynthetic rate (Pn) and activity of other enzymes in the CBC than wild type. Opposite results were observed in the RNAi lines. Moreover, an increase in thousand-seed weight, plant height, stem diameter and germination rate in optimal and sub-optimal temperatures was observed in the over-expression lines, while opposite effects were observed in the RNAi lines. Furthermore, over-expression of SlFBA4 increased Pn and enzyme activity and decreased malonaldehyde (MDA) content under chilling conditions. On the other hand, Pn and MDA content were more severely influenced by chilling stress in the RNAi lines. These results indicate that SlFBA4 plays an important role in tomato growth and tolerance to chilling stress.
Collapse
|
17
|
Zhang X, Feng Y, Jing T, Liu X, Ai X, Bi H. Melatonin Promotes the Chilling Tolerance of Cucumber Seedlings by Regulating Antioxidant System and Relieving Photoinhibition. FRONTIERS IN PLANT SCIENCE 2021; 12:789617. [PMID: 34956288 PMCID: PMC8695794 DOI: 10.3389/fpls.2021.789617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/10/2021] [Indexed: 05/31/2023]
Abstract
Chilling adversely affects the photosynthesis of thermophilic plants, which further leads to a decline in growth and yield. The role of melatonin (MT) in the stress response of plants has been investigated, while the mechanisms by which MT regulates the chilling tolerance of chilling-sensitive cucumber remain unclear. This study demonstrated that MT positively regulated the chilling tolerance of cucumber seedlings and that 1.0 μmol⋅L-1 was the optimum concentration, of which the chilling injury index, electrolyte leakage (EL), and malondialdehyde (MDA) were the lowest, while growth was the highest among all treatments. MT triggered the activity and expression of antioxidant enzymes, which in turn decreased hydrogen peroxide (H2O2) and superoxide anion (O2 ⋅-) accumulation caused by chilling stress. Meanwhile, MT attenuated the chilling-induced decrease, in the net photosynthetic rate (Pn) and promoted photoprotection for both photosystem II (PSII) and photosystem I (PSI), regarding the higher maximum quantum efficiency of PSII (Fv/Fm), actual photochemical efficiency (ΦPSII), the content of active P700 (ΔI/I0), and photosynthetic electron transport. The proteome analysis and western blot data revealed that MT upregulated the protein levels of PSI reaction center subunits (PsaD, PsaE, PsaF, PsaH, and PsaN), PSII-associated protein PsbA (D1), and ribulose-1,5-bisphosphate carboxylase or oxygenase large subunit (RBCL) and Rubisco activase (RCA). These results suggest that MT enhances the chilling tolerance of cucumber through the activation of antioxidant enzymes and the induction of key PSI-, PSII-related and carbon assimilation genes, which finally alleviates damage to the photosynthetic apparatus and decreases oxidative damage to cucumber seedlings under chilling stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Huangai Bi
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
18
|
Wu HY, Liu LA, Shi L, Zhang WF, Jiang CD. Photosynthetic acclimation during low-light-induced leaf senescence in post-anthesis maize plants. PHOTOSYNTHESIS RESEARCH 2021; 150:313-326. [PMID: 34086146 DOI: 10.1007/s11120-021-00851-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Low light conditions not only induce leaf senescence, but also photosynthetic acclimation. This study aimed to determine whether plants exhibit photosynthetic acclimation during low-light-induced leaf senescence. The influences of shading on leaf senescence and photosynthetic acclimation were explored in post-anthesis maize plants. The results showed that whole shading (WS) of maize plants accelerated leaf senescence, whereas partial shading (PS) slowed leaf senescence. WS led to larger decreases in the photosynthetic rate (Pn) and stomatal conductance (Gs) compared to those of the PS treatment. Interestingly, chlorophyll a fluorescence (ChlF) demonstrated that the absorption flux (ABS/CSo) and trapped energy flux (TRo/CSo) per cross section in leaves remained relatively stable under WS, whereas significant decreases in the active PSII reaction centers (RC/CSo) resulted in considerable increases in absorption (ABS/RC) and trapped energy flux (TRo/RC) per reaction center. ABS/CSo, TRo/CSo, ABS/RC, and TRo/RC increased markedly under PS, whereas there were slight decreases in RC/CSo and electron transport activity. These results suggest that the PS treatment resulted in obvious improvements in the absorption and capture of light energy in shaded leaves. Further analysis demonstrated that both the WS and PS treatments resulted in a greater decrease in the activity of Rubisco compared to that of phosphoenolpyruvate carboxylase (PEPC). Moreover, PEPC activity in PS was maintained at a high level. Consequently, the current study proposed that the improvement of the absorption and capture of light energy and the maintenance of PEPC activity of mesophyll cells were due to photosynthetic acclimation of low-light-induced leaf senescence in maize plants. In addition, the rate of senescence of vascular bundle cells in maize leaves exceeded that of mesophyll cells under low light, showing obvious tissue specificity.
Collapse
Affiliation(s)
- Han-Yu Wu
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps/College of Agronomy, Shihezi University, Shihezi, 832003, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Li-An Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lei Shi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wang-Feng Zhang
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps/College of Agronomy, Shihezi University, Shihezi, 832003, China.
| | - Chuang-Dao Jiang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
19
|
Wijewardene I, Shen G, Zhang H. Enhancing crop yield by using Rubisco activase to improve photosynthesis under elevated temperatures. STRESS BIOLOGY 2021; 1:2. [PMID: 37676541 PMCID: PMC10429496 DOI: 10.1007/s44154-021-00002-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/29/2021] [Indexed: 09/08/2023]
Abstract
With the rapid growth of world population, it is essential to increase agricultural productivity to feed the growing population. Over the past decades, many methods have been used to increase crop yields. Despite the success in boosting the crop yield through these methods, global food production still needs to be increased to be on par with the increasing population and its dynamic consumption patterns. Additionally, given the prevailing environmental conditions pertaining to the global temperature increase, heat stress will likely be a critical factor that negatively affects plant biomass and crop yield. One of the key elements hindering photosynthesis and plant productivity under heat stress is the thermo-sensitivity of the Rubisco activase (RCA), a molecular chaperone that converts Rubisco back to active form after it becomes inactive. It would be an attractive and practical strategy to maintain photosynthetic activity under elevated temperatures by enhancing the thermo-stability of RCA. In this context, this review discusses the need to improve the thermo-tolerance of RCA under current climatic conditions and to further study RCA structure and regulation, and its limitations at elevated temperatures. This review summarizes successful results and provides a perspective on RCA research and its implication in improving crop yield under elevated temperature conditions in the future.
Collapse
Affiliation(s)
- Inosha Wijewardene
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
20
|
Wu HY, Tang HK, Liu LA, Shi L, Zhang WF, Jiang CD. Local weak light induces the improvement of photosynthesis in adjacent illuminated leaves in maize seedlings. PHYSIOLOGIA PLANTARUM 2021; 171:125-136. [PMID: 32981119 DOI: 10.1111/ppl.13220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
To copy with highly heterogeneous light environment, plants can regulate photosynthesis locally and systemically, thus, maximizing the photosynthesis of individual plants. Therefore, we speculated that local weak light may induce the improvement of photosynthesis in adjacent illuminated leaves in plants. In order to test this hypothesis, maize seedlings were partially shaded, and gas exchange, chlorophyll a fluorescence and biochemical analysis were carefully assessed. It was shown that local shading exacerbated the declines in the photosynthetic rates, chlorophyll contents, electron transport and carbon assimilation-related enzyme activities in shaded leaves as plants growth progressed. While, the decreases of these parameters in adjacent illuminated leaves of shaded plants were considerably alleviated compared to the corresponding leaves of control plants. Obviously, the photosynthesis in adjacent illuminated leaves in shaded plants was improved by local shading, and the improvement in adjacent lower leaves was larger than that in adjacent upper ones. As growth progressed, local shading induced higher abscisic acid contents in shaded leaves, but it alleviated the increase in the abscisic acid contents in adjacent leaves in shaded plants. Moreover, the difference in sugar content between shaded leaves and adjacent illuminated ones was gradually increased. Consequently, local weak light suppressed the photosynthesis in shaded leaves, while it markedly improved the photosynthesis of adjacent illuminated ones. Sugar gradient between shaded leaves and adjacent illuminated ones might play a key role in photosynthetic regulation of adjacent illuminated leaves.
Collapse
Affiliation(s)
- Han-Yu Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Agriculture, Shihezi University / Key Laboratory of Oasis Ecology Agriculture of Xinjiang Production and Construction Corps, Shihezi, 832003, China
| | - Hai-Kun Tang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Li-An Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lei Shi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wang-Feng Zhang
- College of Agriculture, Shihezi University / Key Laboratory of Oasis Ecology Agriculture of Xinjiang Production and Construction Corps, Shihezi, 832003, China
| | - Chuang-Dao Jiang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
21
|
Yin X, Tang M, Xia X, Yu J. BRASSINAZOLE RESISTANT 1 Mediates Brassinosteroid-Induced Calvin Cycle to Promote Photosynthesis in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:811948. [PMID: 35126434 PMCID: PMC8810641 DOI: 10.3389/fpls.2021.811948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/20/2021] [Indexed: 05/03/2023]
Abstract
Calvin cycle is a sequence of enzymatic reactions that assimilate atmospheric CO2 in photosynthesis. Multiple components are known to participate in the induction or suppression of the Calvin cycle but the mechanism of its regulation by phytohormones is still unclear. Brassinosteroids (BRs) are steroid phytohormones that promote photosynthesis and crop yields. In this study, we study the role of BRs in regulating Calvin cycle genes to further understand the regulation of the Calvin cycle by phytohormones in tomatoes. BRs and their signal effector BRASSINAZOLE RESISTANT 1 (BZR1) can enhance the Calvin cycle activity and improve the photosynthetic ability. BRs increased the accumulation of dephosphorylated form of BZR1 by 94% and induced an 88-126% increase in the transcription of key genes in Calvin cycle FBA1, RCA1, FBP5, and PGK1. BZR1 activated the transcription of these Calvin cycle genes by directly binding to their promoters. Moreover, silencing these Calvin cycle genes impaired 24-epibrassinolide (EBR)-induced enhancement of photosynthetic rate, the quantum efficiency of PSII, and V c,max and J max . Taken together, these results strongly suggest that BRs regulate the Calvin cycle in a BZR1-dependent manner in tomatoes. BRs that mediate coordinated regulation of photosynthetic genes are potential targets for increasing crop yields.
Collapse
Affiliation(s)
- Xiaowei Yin
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Mingjia Tang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Hangzhou, China
- *Correspondence: Xiaojian Xia,
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development, and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
22
|
Liu Y, Pan T, Tang Y, Zhuang Y, Liu Z, Li P, Li H, Huang W, Tu S, Ren G, Wang T, Wang S. Proteomic Analysis of Rice Subjected to Low Light Stress and Overexpression of OsGAPB Increases the Stress Tolerance. RICE (NEW YORK, N.Y.) 2020; 13:30. [PMID: 32488648 PMCID: PMC7266901 DOI: 10.1186/s12284-020-00390-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/11/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Light provides the energy for photosynthesis and determines plant morphogenesis and development. Low light compromises photosynthetic efficiency and leads to crop yield loss. It remains unknown how rice responds to low light stress at a proteomic level. RESULTS In this study, the quantitative proteomic analysis with isobaric tags for relative and absolute quantitation (iTRAQ) was used and 1221 differentially expressed proteins (DEPs) were identified from wild type rice plants grown in control or low light condition (17% light intensity of control), respectively. Bioinformatic analysis of DEPs indicated low light remarkably affects the abundance of chloroplastic proteins. Specifically, the proteins involved in carbon fixation (Calvin cycle), electron transport, and ATPase complex are severely downregulated under low light. Furthermore, overexpression of the downregulated gene encoding rice β subunit of glyceraldehyde-3-phosphate dehydrogenase (OsGAPB), an enzyme in Calvin cycle, significantly increased the CO2 assimilation rate, chlorophyll content and fresh weight under low light conditions but have no obvious effect on rice growth and development under control light. CONCLUSION Our results revealed that low light stress on vegetative stage of rice inhibits photosynthesis possibly by decreasing the photosynthetic proteins and OsGAPB gene is a good candidate for manipulating rice tolerance to low light stress.
Collapse
Affiliation(s)
- Yangxuan Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuying Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Zhuang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhijian Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Penghui Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Weizao Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengbin Tu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjun Ren
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, People's Republic of China
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Songhu Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar.
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
23
|
Liu F, Zhang X, Cai B, Pan D, Fu X, Bi H, Ai X. Physiological response and transcription profiling analysis reveal the role of glutathione in H 2S-induced chilling stress tolerance of cucumber seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110363. [PMID: 31928658 DOI: 10.1016/j.plantsci.2019.110363] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 05/07/2023]
Abstract
Recent reports have uncovered the multifunctional role of H2S in the physiological response of plants to biotic and abiotic stresses. Here, we studied whether NaHS (an H2S donor) pretreatment could provoke the tolerance of cucumber (Cucumis sativus L.) seedlings subsequently exposed to chilling stress and whether glutathione was involved in this process. Results showed that cucumber seedlings sprayed with NaHS exhibited remarkably increased chilling tolerance, as evidenced by the observed plant tolerant phenotype, as well as the lower levels of electrolyte leakage (EL), malondialdehyde (MDA) content, hydrogen peroxide (H2O2) content and RBOH mRNA abundance, compared with the control plants. In addition, NaHS treatment increased the endogenous content of the reduced glutathione (GSH) and the ratio of reduced/oxidized glutathione (GSH/GSSG), meanwhile, the higher net photosynthetic rate (Anet), the light-saturated CO2 assimilation rate (Asat), the photochemical efficiency (Fv/Fm) and the maximum photochemical efficiency of PSII in darkness (ФPSII) as well as the mRNA levels and activities of the key photosynthetic enzymes (Rubisco, TK, SBPase and FBA) were observed in NaHS-treated seedlings under chilling stress, whereas this effect of NaHS was weakened by buthionine sulfoximine (BSO, an inhibitor of glutathione) or 6-Aminonicotinamide (6-AN, a specific pentose inhibitor and thus inhibits the NADPH production), which preliminarily proved the interaction between H2S and GSH. Moreover, transcription profiling analysis revealed that the GSH-associated genes (GST Tau, MAAI, APX, GR, GS and MDHAR) were significantly up-regulated in NaHS-treated cucumber seedlings, compared to the H2O-treated seedlings under chilling stress. Thus, novel results highlight the importance of glutathione as a downstream signal of H2S-induced plant tolerance to chilling stress.
Collapse
Affiliation(s)
- Fengjiao Liu
- State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture/Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Xiaowei Zhang
- State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture/Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Bingbing Cai
- State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture/Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Dongyun Pan
- State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture/Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Xin Fu
- State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture/Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Huangai Bi
- State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture/Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Xizhen Ai
- State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture/Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
24
|
Response of Photosynthesis and Chlorophyll Fluorescence Parameters of Castanopsis kawakamii Seedlings to Forest Gaps. FORESTS 2019. [DOI: 10.3390/f11010021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Light is a major environmental factor limiting the growth and survival of plants. The heterogeneity of the light environment after gap formation in forest influences the leaf chlorophyll contents, net photosynthetic rate (Pn), and chlorophyll fluorescence, thus influencing the growth and regeneration of Castanopsis kawakamii seedlings. The aim of this study was to explore the effects of weak light on the photosynthetic physiology of C. kawakamii seedlings in forest gaps and non-gaps. The results showed that (1) the contents of chlorophyll a (Chl-a), chlorophyll b (Chl-b), and total chlorophyll (Chl-T) in forest gaps were lower than in non-gaps. Seedlings tended to increase chlorophyll content to absorb light energy to adapt to low light intensity in non-gap environments. (2) The Pn values of C. kawakamii seedlings in forest gaps were significantly higher than in non-gaps, and forest gaps could improve the seedlings’ photosynthetic capacity. (3) The C. kawakamii seedlings in forest gaps were more sensitive to weak light and control group treatment, especially the tall seedlings, indicating that seedlings require more light to satisfy their growth needs in the winter. The seedlings in non-gaps demonstrated better adaptability to low light intensity. The light intensity was not adequate in weak light conditions and limited seedling growth. We suggest that partial forest selection cutting could improve light intensity in non-gaps, thus promoting seedling growth and regeneration of C. kawakamii more effectively in this forest.
Collapse
|
25
|
Bi H, Li F, Wang H, Ai X. Overexpression of transketolase gene promotes chilling tolerance by increasing the activities of photosynthetic enzymes, alleviating oxidative damage and stabilizing cell structure in Cucumis sativus L. PHYSIOLOGIA PLANTARUM 2019; 167:502-515. [PMID: 30548278 DOI: 10.1111/ppl.12903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Despite being a key enzyme of Cavin cycle, transketolase (TK) is believed to be related to abiotic resistance in higher plants. However, how TK affects chilling tolerance still remains largely unknown. Here, we describe the effect of overexpression of the Cucumis sativa TK gene (CsTK) on growth, photosynthesis, ROS metabolism and cell ultrastructure under chilling stress. Low temperature led to a decrease of the photosynthetic rate (Pn), the stomatal conductance (Gs), the actual photochemical efficiency (ΦPSII) and the sucrose content, whereas there was an increase of the intercellular CO2 concentration (Ci) and MDA content. These changes were alleviated in the CsTK plants after 5 days of chilling stress, however, inhibition of CsTK showed the opposite results. Furthermore, transgenic plants with overexpression of CsTK showed higher increase in leaf area and dry matter, higher activity of the enzymes and higher increase in the contents of metabolism substance involved in Calvin cycle and reactive oxygen scavenging system as well as lower • OH and H2 O2 content, superoxide anion production rate compared with the control cucumber plants under chilling stress. At the end of the chilling stress, compared to wild-type (WT) which exhibited dramatically destroyed cell ultrastructure, expanded chloroplast, broken cell and chloroplast membranes as well as the disappeared grana lamella, the CsTK sense plants showed a more complete cell ultrastructure, whereas, the damage of the cell ultrastructure was aggravated in CsTK antisense plants. Taken together, these results imply that CsTK promoted chilling tolerance in cucumber plants mainly through increasing the capacity to assimilate carbon, alleviating oxidative damage and stabilizing cell structure.
Collapse
Affiliation(s)
- Huangai Bi
- StateKey Laboratory of Crop Biology/Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Fude Li
- StateKey Laboratory of Crop Biology/Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Haiguang Wang
- StateKey Laboratory of Crop Biology/Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xizhen Ai
- StateKey Laboratory of Crop Biology/Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
26
|
A Genome-Wide Association Study Revealed Key SNPs/Genes Associated With Salinity Stress Tolerance In Upland Cotton. Genes (Basel) 2019; 10:genes10100829. [PMID: 31640174 PMCID: PMC6826536 DOI: 10.3390/genes10100829] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
Millions of hectares of land are too saline to produce economically valuable crop yields. Salt tolerance in cotton is an imperative approach for improvement in response to ever-increasing soil salinization. Little is known about the genetic basis of salt tolerance in cotton at the seedling stage. To address this issue, a genome-wide association study (GWAS) was conducted on a core collection of a genetically diverse population of upland cotton (Gossypium hirsutum L.) comprising of 419 accessions, representing various geographic origins, including China, USA, Pakistan, the former Soviet Union, Chad, Australia, Brazil, Mexico, Sudan, and Uganda. Phenotypic evaluation of 7 traits under control (0 mM) and treatment (150 mM) NaCl conditions depicted the presence of broad natural variation in the studied population. The association study was carried out with the efficient mixed-model association eXpedited software package. A total of 17,264 single-nucleotide polymorphisms (SNPs) associated with different salinity stress tolerance related traits were found. Twenty-three candidate SNPs related to salinity stress-related traits were selected. Final key SNPs were selected based on the r2 value with nearby SNPs in a linkage disequilibrium (LD) block. Twenty putative candidate genes surrounding SNPs, A10_95330133 and D10_61258588, associated with leaf relative water content, RWC_150, and leaf fresh weight, FW_150, were identified, respectively. We further validated the expression patterns of twelve candidate genes with qRT-PCR, which revealed different expression levels in salt-tolerant and salt-sensitive genotypes. The results of our GWAS provide useful knowledge about the genetic control of salt tolerance at the seedling stage, which could assist in elucidating the genetic and molecular mechanisms of salinity stress tolerance in cotton plants.
Collapse
|
27
|
Chen ZF, Kang XP, Nie HM, Zheng SW, Zhang TL, Zhou D, Xing GM, Sun S. Introduction of Exogenous Glycolate Catabolic Pathway Can Strongly Enhances Photosynthesis and Biomass Yield of Cucumber Grown in a Low-CO 2 Environment. FRONTIERS IN PLANT SCIENCE 2019; 10:702. [PMID: 31191593 PMCID: PMC6549358 DOI: 10.3389/fpls.2019.00702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/13/2019] [Indexed: 05/24/2023]
Abstract
Carbon dioxide (CO2) is very important for photosynthesis of green plants. CO2 concentration in the atmosphere is relatively stable, but it drops sharply after sunrise due to the tightness of the greenhouse and the absorption of CO2 by vegetable crops. Vegetables in greenhouses are chronically CO2 starved. To investigate the feasibility of using genetic engineering to improve the photosynthesis and yield of greenhouse cucumber in a low CO2 environment, five genes encoding glyoxylate carboligase (GCL), tartronic semialdehyde reductase (TSR), and glycolate dehydrogenase (GlcDH) in the glycolate catabolic pathway of Escherichia coli were partially or completely introduced into cucumber chloroplast. Both partial pathway by introducing GlcDH and full pathway expressing lines exhibited higher photosynthetic efficiency and biomass yield than wild-type (WT) controls in low CO2 environments. Expression of partial pathway by introducing GlcDH increased net photosynthesis by 14.9% and biomass yield by 44.9%, whereas the expression of the full pathway increased seed yield by 33.4% and biomass yield by 59.0%. Photosynthesis, fluorescence parameters, and enzymatic measurements confirmed that the introduction of glycolate catabolic pathway increased the activity of photosynthetic carbon assimilation-related enzymes and reduced the activity of photorespiration-related enzymes in cucumber, thereby promoting the operation of Calvin cycle and resulting in higher net photosynthetic rate even in low CO2 environments. This increase shows an improvement in the efficiency of the operation of the photosynthetic loop. However, the utilization of cucumber of low concentration CO2 was not alleviated. This study demonstrated the feasibility of introducing the pathway of exogenous glycolate catabolic pathway to improve the photosynthetic and bio-yield of cucumber in a low CO2 environment. These findings are of great significance for high photosynthetic efficiency breeding of greenhouse cucumber.
Collapse
Affiliation(s)
- Zhi-feng Chen
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for improving the Quality and Efficiency of Greenhouse Vegetable in Shanxi Province, Taigu County, China
| | - Xiu-ping Kang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for improving the Quality and Efficiency of Greenhouse Vegetable in Shanxi Province, Taigu County, China
| | - Hong-mei Nie
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for improving the Quality and Efficiency of Greenhouse Vegetable in Shanxi Province, Taigu County, China
| | - Shao-wen Zheng
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for improving the Quality and Efficiency of Greenhouse Vegetable in Shanxi Province, Taigu County, China
| | - Tian-li Zhang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Dan Zhou
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Guo-ming Xing
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for improving the Quality and Efficiency of Greenhouse Vegetable in Shanxi Province, Taigu County, China
| | - Sheng Sun
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center for improving the Quality and Efficiency of Greenhouse Vegetable in Shanxi Province, Taigu County, China
| |
Collapse
|
28
|
Lu T, Yu H, Li Q, Chai L, Jiang W. Improving Plant Growth and Alleviating Photosynthetic Inhibition and Oxidative Stress From Low-Light Stress With Exogenous GR24 in Tomato ( Solanum lycopersicum L.) Seedlings. FRONTIERS IN PLANT SCIENCE 2019; 10:490. [PMID: 31057589 PMCID: PMC6477451 DOI: 10.3389/fpls.2019.00490] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/01/2019] [Indexed: 05/20/2023]
Abstract
Low light (LL) is one of the main limiting factors that negatively affect tomato growth and yield. Techniques of chemical regulation are effective horticultural methods to improve stress resistance. Strigolactones (SLs), newly discovered phytohormones, are considered as important regulators of physiological responses. We investigated the effects of foliage spray of GR24, a synthesized SLs, on tomato seedlings grown under LL stress conditions. The results showed that application of GR24 effectively mitigated the inhibition of plant growth and increased the fresh and dry weight of tomato plants under LL. Additionally, GR24 also increased the chlorophyll content (Chla and Chlb), the net photosynthetic rate (Pn), the photochemical efficiency of photosystem (PS) II (Fv/Fm), and the effective quantum yield of PSII and I [Y(II) and Y(I)], but decreased the excitation pressure of PSII (1-qP), the non-regulatory quantum yield of energy dissipation [Y(NO)] and the donor side limitation of PSI [Y(ND)] under LL. Moreover, application of GR24 to LL-stressed tomato leaves increased the electron transport rate of PSII and PSI [ETR(II) and ETR(I)], the ratio of the quantum yield of cyclic electron flow (CEF) to Y(II) [Y(CEF)/Y(II)], the oxidized plastoquinone (PQ) pool size and the non-photochemical quenching. Besides, GR24 application increased the activity and gene expression of antioxidant enzymes, but it reduced malonaldehyde (MDA) and hydrogen peroxide (H2O2) content in LL-stressed plants. These results suggest that exogenous application of GR24 enhances plant tolerance to LL by promoting plant utilization of light energy to alleviate the photosystem injuries induced by excess light energy and ROS, and enhancing photosynthesis efficiency to improve plant growth.
Collapse
Affiliation(s)
| | | | | | | | - Weijie Jiang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|