1
|
Domínguez-Figueroa J, Gómez-Rojas A, Escobar C. Functional studies of plant transcription factors and their relevance in the plant root-knot nematode interaction. FRONTIERS IN PLANT SCIENCE 2024; 15:1370532. [PMID: 38784063 PMCID: PMC11113014 DOI: 10.3389/fpls.2024.1370532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Root-knot nematodes are polyphagous parasitic nematodes that cause severe losses in the agriculture worldwide. They enter the root in the elongation zone and subtly migrate to the root meristem where they reach the vascular cylinder and establish a feeding site called gall. Inside the galls they induce a group of transfer cells that serve to nurture them along their parasitic stage, the giant cells. Galls and giant cells develop through a process of post-embryogenic organogenesis that involves manipulating different genetic regulatory networks within the cells, some of them through hijacking some molecular transducers of established plant developmental processes, such as lateral root formation or root regeneration. Galls/giant cells formation involves different mechanisms orchestrated by the nematode´s effectors that generate diverse plant responses in different plant tissues, some of them include sophisticated mechanisms to overcome plant defenses. Yet, the plant-nematode interaction is normally accompanied to dramatic transcriptomic changes within the galls and giant cells. It is therefore expected a key regulatory role of plant-transcription factors, coordinating both, the new organogenesis process induced by the RKNs and the plant response against the nematode. Knowing the role of plant-transcription factors participating in this process becomes essential for a clear understanding of the plant-RKNs interaction and provides an opportunity for the future development and design of directed control strategies. In this review, we present the existing knowledge of the TFs with a functional role in the plant-RKN interaction through a comprehensive analysis of current scientific literature and available transcriptomic data.
Collapse
Affiliation(s)
- Jose Domínguez-Figueroa
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
- Centro de Biotecnologia y Genomica de Plantas (CBGP), Universidad Politecnica de Madrid and Instituto de Investigacion y Tecnologia Agraria y Alimentaria-Consejo Superior de investigaciones Cientificas (UPM-INIA/CSIC), Madrid, Spain
| | - Almudena Gómez-Rojas
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Carolina Escobar
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
2
|
Zhao J, Huang K, Liu R, Lai Y, Abad P, Favery B, Jian H, Ling J, Li Y, Yang Y, Xie B, Quentin M, Mao Z. The root-knot nematode effector Mi2G02 hijacks a host plant trihelix transcription factor to promote nematode parasitism. PLANT COMMUNICATIONS 2024; 5:100723. [PMID: 37742073 PMCID: PMC10873892 DOI: 10.1016/j.xplc.2023.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/12/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Root-knot nematodes (RKNs) cause huge agricultural losses every year. They secrete a repertoire of effectors to facilitate parasitism through the induction of plant-derived giant feeding cells, which serve as their sole source of nutrients. However, the mode of action of these effectors and their targeted host proteins remain largely unknown. In this study, we investigated the role of the effector Mi2G02 in Meloidogyne incognita parasitism. Host-derived Mi2G02 RNA interference in Arabidopsis thaliana affected giant cell development, whereas ectopic expression of Mi2G02 promoted root growth and increased plant susceptibility to M. incognita. We used various combinations of approaches to study the specific interactions between Mi2G02 and A. thaliana GT-3a, a trihelix transcription factor. GT-3a knockout in A. thaliana affected feeding-site development, resulting in production of fewer egg masses, whereas GT-3a overexpression in A. thaliana increased susceptibility to M. incognita and also root growth. Moreover, we demonstrated that Mi2G02 plays a role in maintaining GT-3a protein stabilization by inhibiting the 26S proteasome-dependent pathway, leading to suppression of TOZ and RAD23C expression and thus promoting nematode parasitism. This work enhances our understanding of how a pathogen effector manipulates the role and regulation of a transcription factor by interfering with a proteolysis pathway to reprogram gene expression for development of nematode feeding cells.
Collapse
Affiliation(s)
- Jianlong Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Kaiwei Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rui Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuqing Lai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pierre Abad
- INRAE, Université Côte d'Azur, CNRS, ISA, 06903 Sophia Antipolis, France
| | - Bruno Favery
- INRAE, Université Côte d'Azur, CNRS, ISA, 06903 Sophia Antipolis, France
| | - Heng Jian
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Jian Ling
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuhong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bingyan Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Michaël Quentin
- INRAE, Université Côte d'Azur, CNRS, ISA, 06903 Sophia Antipolis, France.
| | - Zhenchuan Mao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Dutta TK, Ray S, Phani V. The status of the CRISPR/Cas9 research in plant-nematode interactions. PLANTA 2023; 258:103. [PMID: 37874380 DOI: 10.1007/s00425-023-04259-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/01/2023] [Indexed: 10/25/2023]
Abstract
MAIN CONCLUSION As an important biotic stressor, plant-parasitic nematodes afflict global crop productivity. Deployment of CRISPR/Cas9 system that selectively knock out host susceptibility genes conferred improved nematode tolerance in crop plants. As an important biotic stressor, plant-parasitic nematodes cause a considerable yield decline in crop plants that eventually contributes to a negative impact on global food security. Being obligate plant parasites, the root-knot and cyst nematodes maintain an intricate and sophisticated relationship with their host plants by hijacking the host's physiological and metabolic pathways for their own benefit. Significant progress has been made toward developing RNAi-based transgenic crops that confer nematode resistance. However, the strategy of host-induced gene silencing that targets nematode effectors is likely to fail because the induced silencing of effectors (which interact with plant R genes) may lead to the development of nematode phenotypes that break resistance. Lately, the CRISPR/Cas9-based genome editing system has been deployed to achieve host resistance against bacteria, fungi, and viruses. In these studies, host susceptibility (S) genes were knocked out to achieve resistance via loss of susceptibility. As the S genes are recessively inherited in plants, induced mutations of the S genes are likely to be long-lasting and confer broad-spectrum resistance. A number of S genes contributing to plant susceptibility to nematodes have been identified in Arabidopsis thaliana, rice, tomato, cucumber, and soybean. A few of these S genes were targeted for CRISPR/Cas9-based knockout experiments to improve nematode tolerance in crop plants. Nevertheless, the CRISPR/Cas9 system was mostly utilized to interrogate the molecular basis of plant-nematode interactions rather than direct research toward achieving tolerance in crop plants. The current standalone article summarizes the progress made so far on CRISPR/Cas9 research in plant-nematode interactions.
Collapse
Affiliation(s)
- Tushar K Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Soham Ray
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Dakshin Dinajpur, West Bengal, 733133, India
| |
Collapse
|
4
|
Abril-Urias P, Ruiz-Ferrer V, Cabrera J, Olmo R, Silva AC, Díaz-Manzano FE, Domínguez-Figueroa J, Martínez-Gómez Á, Gómez-Rojas A, Moreno-Risueno MÁ, Fenoll C, Escobar C. Divergent regulation of auxin responsive genes in root-knot and cyst nematodes feeding sites formed in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1024815. [PMID: 36875577 PMCID: PMC9976713 DOI: 10.3389/fpls.2023.1024815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Cysts (CNs) and root-knot nematodes (RKNs) induce specialized feeding cells, syncytia, and giant cells (GCs), respectively, within plant roots. The plant tissues around the GCs usually by respond forming a root swelling called a gall that contains the GCs. The ontogenesis of feeding cells is different. GC formation is a process of new organogenesis from vascular cells, which are still not well characterized, that differentiate into GCs. In contrast, syncytia formation involves the fusion of adjacent cells that have already differentiated. Nonetheless, both feeding sites show an auxin maximum pertinent to feeding site formation. However, data on the molecular divergences and similarities between the formation of both feeding sites regarding auxin-responsive genes are still scarce. We studied genes from the auxin transduction pathways that are crucial during gall and lateral root (LR) development in the CN interaction by using promoter-reporter (GUS/LUC)transgenic lines, as well as loss of function lines of Arabidopsis. The promoters pGATA23 and several deletions of pmiR390a were active in syncytia, as were in galls, but pAHP6 or putative up-stream regulators as ARF5/7/19 were not active in syncytia. Additionally, none of these genes seemed to play a key role during cyst nematode establishment in Arabidopsis, as the infection rates in loss of function lines did not show significant differences compared to control Col-0 plants. Furthermore, the presence of only canonical AuxRe elements in their proximal promoter regions is highly correlated with their activation in galls/GCs (AHP6, LBD16), but those promoters active in syncytia (miR390, GATA23) carry AuxRe overlapping core cis-elements for other transcription factor families (i.e., bHLH, bZIP). Strikingly, in silico transcriptomic analysis showed very few genes upregulated by auxins common to those induced in GCs and syncytia, despite the high number of upregulated IAA responsive genes in syncytia and galls. The complex regulation of auxin transduction pathways, where different members of the auxin response factor (ARF) family may interact with other factors, and the differences in auxin sensitivity, as indicated by the lower induction of the DR5 sensor in syncytia than galls, among other factors, may explain the divergent regulation of auxin responsive genes in the two types of nematode feeding sites.
Collapse
Affiliation(s)
- Patricia Abril-Urias
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Virginia Ruiz-Ferrer
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Javier Cabrera
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid and Instituto de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (UPM-INIA/CSIC), Campus de Montegancedo, Madrid, Spain
| | - Rocio Olmo
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
- FFoQSI GmbH—Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Ana Cláudia Silva
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
- Centro Tecnológico Nacional Agroalimentario "Extremadura", Badajoz, Spain
| | | | - Jose Domínguez-Figueroa
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
- Technical University of Madrid, Madrid, Spain
| | - Ángela Martínez-Gómez
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Almudena Gómez-Rojas
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Miguel Ángel Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid and Instituto de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (UPM-INIA/CSIC), Campus de Montegancedo, Madrid, Spain
| | - Carmen Fenoll
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Carolina Escobar
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Olmo R, Cabrera J, Díaz-Manzano FE, Ruiz-Ferrer V, Barcala M, Ishida T, García A, Andrés MF, Ruiz-Lara S, Verdugo I, Pernas M, Fukaki H, Del Pozo JC, Moreno-Risueno MÁ, Kyndt T, Gheysen G, Fenoll C, Sawa S, Escobar C. Root-knot nematodes induce gall formation by recruiting developmental pathways of post-embryonic organogenesis and regeneration to promote transient pluripotency. THE NEW PHYTOLOGIST 2020; 227:200-215. [PMID: 32129890 DOI: 10.1111/nph.16521] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/18/2020] [Indexed: 05/08/2023]
Abstract
Root-knot nematodes (RKNs; Meloidogyne spp.) induce new post-embryogenic organs within the roots (galls) where they stablish and differentiate nematode feeding cells, giant cells (GCs). The developmental programmes and functional genes involved remain poorly defined. Arabidopsis root apical meristem (RAM), lateral root (LR) and callus marker lines, SHORT-ROOT/SHR, SCARECROW/SCR, SCHIZORIZA/SCZ, WUSCHEL-RELATED-HOMEOBOX-5/WOX5, AUXIN-RESPONSIVE-FACTOR-5/ARF5, ARABIDOPSIS-HISTIDINE PHOSPHOTRANSFER-PROTEIN-6/AHP6, GATA-TRANSCRIPTION FACTOR-23/GATA23 and S-PHASE-KINASE-ASSOCIATED-PROTEIN2B/SKP2B, were analysed for nematode-dependent expression. Their corresponding loss-of-function lines, including those for LR upstream regulators, SOLITARY ROOT/SLR/IAA14, BONDELOS/BDL/IAA12 and INDOLE-3-ACETIC-ACID-INDUCIBLE-28/IAA28, were tested for RKN resistance/tolerance. LR genes, for example ARF5 (key factor for root stem-cell niche regeneration), GATA23 (which specifies pluripotent founder cells) and AHP6 (cytokinin-signalling-inhibitor regulating pericycle cell-divisions orientation), show a crucial function during gall formation. RKNs do not compromise the number of founder cells or LR primordia but locally induce gall formation possibly by tuning the auxin/cytokinin balance in which AHP6 might be necessary. Key RAM marker genes were induced and functional in galls. Therefore, the activation of plant developmental programmes promoting transient-pluripotency/stemness leads to the generation of quiescent-centre and meristematic-like cell identities within the vascular cylinder of galls. Nematodes enlist developmental pathways of new organogenesis and/or root regeneration in the vascular cells of galls. This should determine meristematic cell identities with sufficient transient pluripotency for gall organogenesis.
Collapse
Affiliation(s)
- Rocío Olmo
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, 45071, Toledo, Spain
| | - Javier Cabrera
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Fernando E Díaz-Manzano
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, 45071, Toledo, Spain
| | - Virginia Ruiz-Ferrer
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, 45071, Toledo, Spain
| | - Marta Barcala
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, 45071, Toledo, Spain
| | - Takashi Ishida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
| | - Alejandra García
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, 45071, Toledo, Spain
| | - María Fe Andrés
- Protección Vegetal, Instituto de Ciencias Agrarias (ICA, CSIC), Calle de Serrano 115, 28006, Madrid, Spain
| | - Simón Ruiz-Lara
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, 3460000, Chile
| | - Isabel Verdugo
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, 3460000, Chile
| | - Mónica Pernas
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501, Japan
| | - Juan Carlos Del Pozo
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Miguel Ángel Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Tina Kyndt
- Department of Molecular Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Godelieve Gheysen
- Department of Molecular Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Carmen Fenoll
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, 45071, Toledo, Spain
| | - Shinichiro Sawa
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
| | - Carolina Escobar
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, 45071, Toledo, Spain
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
| |
Collapse
|
6
|
Baral A. Parasitic worms hijack key plant protein to build their nest. PHYSIOLOGIA PLANTARUM 2019; 165:2-3. [PMID: 30565278 DOI: 10.1111/ppl.12877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Parasitic nematode worms infect a variety of crop plants worldwide. Roots infected by these worms start to look rather unsavory - with knot like tumors (galls) developing all over them. At the core of each gall, a worm matures and lays its eggs. Olmo et al. (2018) looked into the developmental reprogramming that leads to gall formation and found an Arabidopsis protein to be a necessary component in this process.
Collapse
Affiliation(s)
- Anirban Baral
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, 901 83, Umeå, Sweden
| |
Collapse
|