1
|
Datta S, Paul S, Ballabh L, Mitra A. Histochemical and molecular analyses reveal an insight into the scent volatiles synthesis and emission in ephemeral flowers of Murraya paniculata (L.) Jack. PLANTA 2024; 260:119. [PMID: 39422757 DOI: 10.1007/s00425-024-04552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
MAIN CONCLUSION Temporal histolocalization of floral volatiles in the petal epidermis of Murraya paniculata was found to be linked with the coordinated expression of candidate genes and successive accumulation of an internal pool of volatiles. Murraya paniculata (Rutaceae) is known for its highly fragrant ephemeral flowers that emit volatiles to attract nocturnal pollinators. To unfold the patterns of volatile emission in relation to floral life-span, we studied time-course accumulation and emission rate of scent volatiles at six timepoints of floral maturation, at an interval of 4 h starting from the bud stage to the senescence stage on the next day. This study revealed the maximum emission rate of scent volatiles at the anthesis stage at 18:00 h. This finding correlates well with the maximum accumulation of volatiles in the internal pool of the flowers at this stage. The key volatiles detected in both emitted and internal pools were benzaldehyde, benzeneacetaldehyde, linalool, caryophyllene, germacrene-D and α-farnesene. In addition, the internal pool also contained substantial amounts of indole, scopoletin, caffeine and osthole. To histochemically localize the temporal accumulation of major volatile groups in the epidermal cells, petal cross sections were stained with NaDi and ferric chloride to visualize terpenes and phenolics, respectively, under light microscope. Histolocalization studies showed a higher accumulation of terpenes at 14:00 h and 18:00 h, which subsequently was reduced as senescence approached. Significant phenolics in the abaxial and adaxial layers of the petal epidermis accumulated at 18:00 h and at the early senescence (06:00 h) stages. Furthermore, temporal localization of active shikimate dehydrogenase (SKDH) protein through in-gel activity assay demonstrated higher enzymatic activities at anthesis (18:00 h) and fully bloomed (02:00 h) stages, supporting the findings of higher accumulation of phenolic volatiles at 18:00 h and 06:00 h stages. Expression analysis of major candidate genes of floral scent volatiles pathway supported the hypothesis that the emission rate of floral fragrance reached its maximum at the anthesis (18:00 h) stage. In contrast, biosynthesis of scent compounds started at the bud (14:00 h) stage itself as indicated by the RT-PCR semi-quantitative estimation. As flowers of M. paniculata attract multiple pollinator species, this study could also serve as a springboard for pollination biology in Rutaceae, which includes important fruit crops.
Collapse
Affiliation(s)
- Sinjini Datta
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| | - Shobhon Paul
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| | - Lopamudra Ballabh
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| | - Adinpunya Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India.
| |
Collapse
|
2
|
Prosche S, Stappen I. Flower Power: An Overview on Chemistry and Biological Impact of Selected Essential Oils from Blossoms. PLANTA MEDICA 2024; 90:595-626. [PMID: 38843799 DOI: 10.1055/a-2215-2791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Natural raw materials such as essential oils have received more and more attention in recent decades, whether in the food industry, as flavorings and preservatives, or as insecticides and insect repellents. They are, furthermore, very popular as fragrances in perfumes, cosmetics, and household products. In addition, aromatherapy is widely used to complement conventional medicine. This review summarizes investigations on the chemical composition and the most important biological impacts of essential oils and volatile compounds extracted from selected aromatic blossoms, including Lavandula angustifolia, Matricaria recutita, Rosa x damascena, Jasminum grandiflorum, Citrus x aurantium, Cananga odorata, and Michelia alba. The literature was collected from PubMed, Google Scholar, and Science Direct. Blossom essential oils discussed in this work are used in a wide variety of clinical issues. The application is consistently described as safe in studies and meta-analyses, although there are notes that using essential oils can also have side effects, especially dermatologically. However, it can be considered as confirmed that essential oils have positive influences on humans and can improve quality of life in patients with psychiatric disorders, critically ill patients, and patients in other exceptional situations. Although the positive effect of essential oils from blossoms has repeatedly been reported, evidence-based clinical investigations are still underrepresented, and the need for research is demanded.
Collapse
Affiliation(s)
- Sinah Prosche
- Department of Pharmaceutical Sciences, University of Vienna, Austria
| | - Iris Stappen
- Department of Pharmaceutical Sciences, University of Vienna, Austria
| |
Collapse
|
3
|
Peng Q, Tao W, Yu F, Xiong Q, Nong C, Zhang W, Fan J. Physiological and Biochemical Analysis Revealing the Key Factors Influencing 2-Phenylethanol and Benzyl Alcohol Production in Crabapple Flowers. PLANTS (BASEL, SWITZERLAND) 2024; 13:631. [PMID: 38475477 DOI: 10.3390/plants13050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Floral scent (FS) plays a crucial role in the ecological functions and industrial applications of plants. However, the physiological and metabolic mechanisms underlying FS formation remain inadequately explored. Our investigation focused on elucidating the differential formation mechanisms of 2-phenylethanol (2-PE) and benzyl alcohol (BA) by examining seven related enzyme concentrations and the content of soluble sugar, soluble proteins, carbon (C) and nitrogen (N), as well as the C/N ratio. The findings revealed that the peak content of 2-PE in M. 'Praire Rose' and BA in M. 'Lollipop' occurred during the end flowering stage (S4) and flowering stage (S3) periods, respectively. The enzyme concentration change trends of phenylpyruvate decarboxylase (PDL), phenylacetaldehyde reductase (PAR), soluble protein, C, N, and C/N ratio changes during the S3-S4 period in M. 'Praire Rose' and M. 'Lollipop' were entirely opposite. Correlation and PCA analysis demonstrated that the content of CYP79D73 (a P450) and N, and the C/N ratio were key factors in 2-PE production in M. 'Praire Rose'. The production of BA in M. 'Lollipop' was more influenced by the content of phenylacetaldehyde synthase (PAAS), CYP79D73, and soluble sugar. As CYP79D73 exits oppositely in correlation to 2-PE (M. 'Praire Rose') and BA (M. 'Lollipop'), it is hypothesized that CYP79D73 was postulated as the primary factor contributing to the observed differences of 2-PE (M. 'Praire Rose') and BA (M. 'Lollipop') formation. These results carry significant implications for crabapple aromatic flower breeding and the essential oil industry etc.
Collapse
Affiliation(s)
- Qin Peng
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Wenkai Tao
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Fangyuan Yu
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Qinqin Xiong
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Chunshi Nong
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Wangxiang Zhang
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Junjun Fan
- College of Horticulture, Jinling Institute of Technology, No. 99 Hongjing Avenue, Jiangning District, Nanjing 211169, China
| |
Collapse
|
4
|
Zhang P, Ma X, Zhang Q, Guo Z, Hao J, Zhang Z, Sun M, Liu Y. Determination of Volatile Organic Compounds and Endogenous Extracts and Study of Expression Patterns of TPS and BSMT in the Flowers of Seven Lilium Cultivars. Molecules 2023; 28:7938. [PMID: 38138428 PMCID: PMC10745987 DOI: 10.3390/molecules28247938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Lily is one of the most important cut flowers in the world, with a rich floral fragrance. To further explore the fragrance emission mechanisms of lily cultivars, headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and organic solvent extraction-gas chromatography-mass spectrometry (OSE-GC-MS) were used to unveil the volatile organic compounds (VOCs) and endogenous extracts of seven lily cultivars. Furthermore, real-time quantitative PCR (qRT-PCR) was used to determine the expression levels of two key genes (TPS and BSMT) related to the biosynthesis of monoterpenoids and methyl benzoate. The results show that forty-five VOCs were detected in the petals of seven lily cultivars, and the main compounds were monoterpenoids and phenylpropanoids/benzenoids. Dichloromethane was the best solvent for extracting the endogenous extracts of Lilium 'Viviana' petals and eighteen endogenous extracts were detected using dichloromethane to extract the petals of seven lily cultivars. Each compound's emission ratio (natural logarithm of the ratio of VOC content to endogenous extract content) was calculated, and linear regression analyses between emission ratios and boiling points were conducted. Significant linear negative correlations existed between the emission ratios and boiling points of compounds, and the regression equations' coefficients of determination (R2) were all greater than 0.7. TPS was expressed highly in 'Viviana', 'Pink News', and 'Palazzo', and BSMT was expressed highly in 'Pink News' and 'Palazzo'. Correlation analyses between the gene expression levels and the monoterpenoids and methyl benzoate contents found that the TPS expression levels have strong positive correlations with monoterpenoids content, while no correlations were found between the expression levels of BSMT and the contents of methyl benzoate. This study lays the foundation for research on the release patterns of VOCs in the flowers of Lilium, and the breeding of lilies for their floral fragrance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (P.Z.); (X.M.); (Q.Z.); (Z.G.); (J.H.); (Z.Z.)
| | - Yan Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (P.Z.); (X.M.); (Q.Z.); (Z.G.); (J.H.); (Z.Z.)
| |
Collapse
|
5
|
Goswami A, Mitra A. Light spectra manipulation stimulates growth, specialized metabolites and nutritional quality in Anethum graveolens. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 249:112812. [PMID: 37972447 DOI: 10.1016/j.jphotobiol.2023.112812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Light-Emitting Diodes (LED) play a major role in manipulating light spectra that helps in regulating the growth and specialized metabolite synthesis relevant to the plant defence system. In this study, we assessed photosynthetic performance, phytonutrients, and anatomical variations of an aromatic herb Anethum graveolens (also known as dill), grown under various combinations of LED lights viz. red (100R:0B), red:blue (50R:50B); blue (0R:100B) and warm white (WW, served as control). Exposure to 0R:100B LED lights led to the tallest stem height, whereas, the number of leaves were highest under 50R:50B LED lights. The photosynthetic performance was observed to be highest under 50R:50B LED lights. HPLC analysis revealed chlorogenic acid and rosmarinic acid as the major phenolic compounds accumulated under different spectral irradiations. The highest chlorogenic acid content was observed in 50R:50B LED treated dill plants, while 100R:0B light showed the highest accumulation of rosmarinic acid. Dill plants grown under 50R:50B light displayed a relatively higher content of volatile compounds including, myristicin (phenylpropene), psi-limonene, and α-phellandrene (monoterpenoids). Expression analyses of candidate genes of phenylpropanoid and monoterpenoid biosynthetic pathways showed good correlations with the enhanced phenolic compounds and monoterpenes detected under appropriate light treatments. Further, the stem anatomy revealed higher vascularization under the influence of 0R:100B LED lights, whereas, intense histochemical localization of specialized metabolites could be correlated with enhanced accumulation of phenolic compounds and terpenoids observed in this study. Taken together, these studies suggest that proper combinations of blue and red spectra of light could play important role to augment the growth and phytochemical characteristics of dill, thus improving its value addition in the food industry.
Collapse
Affiliation(s)
- Ambika Goswami
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
| | - Adinpunya Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
| |
Collapse
|
6
|
Zheng BQ, Li XQ, Wang Y. New Insights into the Mechanism of Spatiotemporal Scent Accumulation in Orchid Flowers. PLANTS (BASEL, SWITZERLAND) 2023; 12:304. [PMID: 36679016 PMCID: PMC9866394 DOI: 10.3390/plants12020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/27/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Orchid flowers have a unique structure that consists of three sepals and three petals, with one of the petals forming the labellum (lip) that can be differentiated into the hypochile and epichile. In orchids, the emission of floral scent is specific and spatially complex. Little is understood about the molecular and biochemical mechanisms of the differing scent emissions between the parts of orchid flowers. Here, we investigated this in the Cattleya hybrid KOVA, and our study showed that monoterpenes, including linalool and geraniol, are the main components responsible for the KOVA floral scent. The KOVA flower was scentless to the human nose before it reached full bloom, potentially because the 1-deoxy-d-xylulose 5-phosphate synthases (RcDXSs) and 4-hydroxy-3-methylbut-2-enyl diphosphate synthases (RcHDSs) that biosynthesize monoterpenes were highly expressed in flowers only when it reached full flowering. Additionally, the spatial expression profile of the monoterpene synthases (RcMTPSs), which were highly expressed in the basal region of the lip (hypochile), contributed to the highest monoterpene emissions from this part of the flower. This might have caused the hypochile to be more fragrant than the other parts of the flower. These findings enrich our understanding of the difference in scents between different flower parts in plants and provide information to breed novel orchid cultivars with special floral scents.
Collapse
|
7
|
Yang G, Qin Y, Jia Y, Xie X, Li D, Jiang B, Wang Q, Feng S, Wu Y. Transcriptomic and metabolomic data reveal key genes that are involved in the phenylpropanoid pathway and regulate the floral fragrance of Rhododendron fortunei. BMC PLANT BIOLOGY 2023; 23:8. [PMID: 36600207 PMCID: PMC9814181 DOI: 10.1186/s12870-022-04016-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND To reveal the key genes involved in the phenylpropanoid pathway, which ultimately governs the fragrance of Rhododendron fortunei, we performed a comprehensive transcriptome and metabolomic analysis of the petals of two different varieties of two alpine rhododendrons: the scented R. fortunei and the unscented Rhododendron 'Nova Zembla'. RESULTS Our transcriptomic and qRT-PCR data showed that nine candidate genes were highly expressed in R. fortunei but were downregulated in Rhododendron 'Nova Zembla'. Among these genes, EGS expression was significantly positively correlated with various volatile benzene/phenylpropanoid compounds and significantly negatively correlated with the contents of various nonvolatile compounds, whereas CCoAOMT, PAL, C4H, and BALDH expression was significantly negatively correlated with the contents of various volatile benzene/phenylpropanoid compounds and significantly positively correlated with the contents of various nonvolatile compounds. CCR, CAD, 4CL, and SAMT expression was significantly negatively correlated with the contents of various benzene/phenylpropanoid compounds. The validation of RfSAMT showed that the RfSAMT gene regulates the synthesis of aromatic metabolites in R. fortunei. CONCLUSION The findings of this study indicated that key candidate genes and metabolites involved in the phenylpropanoid biosynthesis pathway may govern the fragrance of R. fortunei. This lays a foundation for further research on the molecular mechanism underlying fragrance in the genus Rhododendron.
Collapse
Affiliation(s)
- Guoxia Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, China
| | - Yi Qin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, China
| | - Yonghong Jia
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, China
| | - Xiaohong Xie
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, China
| | - Dongbin Li
- Ningbo Forest Farm, Ningbo, 315100, Zhejiang, China
| | - Baoxin Jiang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, China
| | - Qu Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, China
| | - Siyu Feng
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, China
| | - Yueyan Wu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, China.
| |
Collapse
|
8
|
Ghissing U, Kutty NN, Bimolata W, Samanta T, Mitra A. Comparative transcriptome analysis reveals an insight into the candidate genes involved in anthocyanin and scent volatiles biosynthesis in colour changing flowers of Combretum indicum. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:85-95. [PMID: 36271596 DOI: 10.1111/plb.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Combretum indicum is a widely cultivated ornamental species displaying the distinct phenomenon of floral colour change. Flowers display a gradual colour change from white to red, attributed to increased cyanidin 3-O glucoside in petal tissues. The differently coloured flowers also emanate a complex blend of VOCs with trans-linalool oxide (furanoid) as the major compound in the emission profile. To understand molecular mechanisms regulating floral colour shifts and scent biosynthesis, we performed Illumina transcriptome sequencing, including de novo assembly and functional annotation, for the two stages of floral maturation (white and red). Homology analysis with functional classification identified 84 and 42 candidate genes associated with pigment and scent biosynthesis, respectively. Genes encoding transcription factors, such as MYB, ERF, WD40, WRKY, NAC, bHLH and bZIP, that play critical roles in regulating specialized metabolism were also identified in the transcriptome data. Differences in expression of genes were consistent with accumulation patterns of anthocyanins in the two different flower colours. A clear upregulation of flavonoid biosynthesis genes in red flower tissue is associated with increased pigment content. RT-qPCR-based expression analyses gave results consistent with the RNA-Seq data, suggesting the sequencing data are consistent and reliable. This study presents the first report of genetic information for C. indicum. Gene sequences generated from RNA-Seq, along with candidate genes identified by pathway mapping and their expression profiles, provide a valuable resource for subsequent studies towards molecular understanding of specialized metabolism in C. indicum flowers.
Collapse
Affiliation(s)
- U Ghissing
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - N N Kutty
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
- School of Biology, Dr Vishwanath Karad MIT World Peace University, Pune, India
| | - W Bimolata
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - T Samanta
- BioX Center, School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - A Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
9
|
Mukherjee S, Pal A, Mitra A. An insight into fruit aroma volatilome during postharvest maturation in two popular Musa cultivars of tropics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4276-4286. [PMID: 35040138 DOI: 10.1002/jsfa.11779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/02/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Banana is one of the major global horticultural fruit crops cultivated in the humid tropics and subtropics. Fruit quality and consumer acceptability of any climacteric fruit depend mainly on its postharvest aroma volatile profiles. The present study aimed to profile fruit volatiles status during postharvest storage of two banana cultivars: Kanthali (Musa sp. cv. Kanthali, Kt) and Kacha Kela (Musa sp. cv. Kacha Kela, Kk) from the ABB genome group. RESULTS Both cultivars showed differences in the soluble sugar contents, with Kt being higher than Kk. The volatile compounds were profiled from the pulp as emitted, endogenous and glycosyl-bound forms, along with peel-endogenous and whole fruit volatiles during postharvest storage. Both cultivars showed a wide range of variations in volatile aroma pools; nevertheless, esters and aliphatic compounds were found to be the major contributors of fruit volatiles in Kt and Kk, respectively. The pulp-endogenous volatiles served as the major pool, which showed a sharp decline with a corresponding increase of emission. Many volatiles were found to be glycosylated during early postharvest storage, with de-glycosylation occurring with an increase in storage time, resulting in fruit softening and a concurrent supply of sugar bound volatiles towards emission. CONCLUSION As a whole, the study outcome provides an overview of fruit volatilome during postharvest storage and suggests a possible inter-linking among the volatile components in the cultivars. It is plausible that the release of aroma volatiles from pulp is mediated via peel, with volatiles accumulating as peel-endogenous volatiles representing the temporary pool reservoir. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Subhadip Mukherjee
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Ananya Pal
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Adinpunya Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
10
|
Mitra M, Singh R, Ghissing U, Das AK, Mitra A, Maiti MK. Characterization of an alcohol acetyltransferase GcAAT responsible for the production of antifungal volatile esters in endophytic Geotrichum candidum PF005. Microbiol Res 2022; 260:127021. [DOI: 10.1016/j.micres.2022.127021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/26/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
|
11
|
Characterization of Two BAHD Acetyltransferases Highly Expressed in the Flowers of Jasminum sambac (L.) Aiton. PLANTS 2021; 11:plants11010013. [PMID: 35009018 PMCID: PMC8747370 DOI: 10.3390/plants11010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022]
Abstract
Volatile benzenoid compounds are found in diverse aromatic bouquets emitted by most moth-pollinated flowers. The night-blooming Jasminum sambac is widely cultivated worldwide in the tropics and subtropics for ornamental and industrial purposes owing to its fragrant flowers. Benzylacetate is a characteristic constituent in jasmine scent which makes up to approximately 20–30% of the total emission in the headspace or extract, but the biosynthesis enzymes and the encoding genes have not yet been described. Here, we identify two cytosolic BAHD acyltransferases specifically expressed in the petals with a positive correlation closely to the emission pattern of the volatile benzenoids. Both JsBEAT1 and JsBEAT2 could use benzylalcohol and acetate-CoA as substrates to make benzylacetate in vitro. The recombinant GST-JsBEAT1 has an estimated apparent Km of 447.3 μM for benzylalcohol and 546.0 μM for acetate-CoA, whereas in the instance of the His-JsBEAT2, the Km values are marginally lower, being 278.7 and 317.3 μM, respectively. However, the catalytic reactions by the GST-JsBEAT1 are more efficient than that by the His-JsBEAT2, based on the steady-state kcat parameters. Furthermore, ectopic expression of JsBEAT1 and JsBEAT2 in the transgenic P. hybrida plants, driven by a flower-specific promotor, significantly enhances the biosynthesis of benzylbenzoate and benzylacetate, as well as the total VOCs.
Collapse
|
12
|
Wang X, Wu Y, Zhu H, Zhang H, Xu J, Fu Q, Bao M, Zhang J. Headspace Volatiles and Endogenous Extracts of Prunus mume Cultivars with Different Aroma Types. Molecules 2021; 26:molecules26237256. [PMID: 34885838 PMCID: PMC8658796 DOI: 10.3390/molecules26237256] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Prunus mume is a traditional ornamental plant, which owed a unique floral scent. However, the diversity of the floral scent in P. mume cultivars with different aroma types was not identified. In this study, the floral scent of eight P. mume cultivars was studied using headspace solid-phase microextraction (HS-SPME) and organic solvent extraction (OSE), combined with gas chromatography-mass spectrometry (GC-MS). In total, 66 headspace volatiles and 74 endogenous extracts were putatively identified, of which phenylpropanoids/benzenoids were the main volatile organic compounds categories. As a result of GC-MS analysis, benzyl acetate (1.55-61.26%), eugenol (0.87-6.03%), benzaldehyde (5.34-46.46%), benzyl alcohol (5.13-57.13%), chavicol (0-5.46%), and cinnamyl alcohol (0-6.49%) were considered to be the main components in most varieties. However, the volatilization rate of these main components was different. Based on the variable importance in projection (VIP) values in the orthogonal partial least-squares discriminate analysis (OPLS-DA), differential components of four aroma types were identified as biomarkers, and 10 volatile and 12 endogenous biomarkers were screened out, respectively. The odor activity value (OAV) revealed that several biomarkers, including (Z)-2-hexen-1-ol, pentyl acetate, (E)-cinnamaldehyde, methyl salicylate, cinnamyl alcohol, and benzoyl cyanide, contributed greatly to the strong-scented, fresh-scented, sweet-scented, and light-scented types of P. mume cultivars. This study provided a theoretical basis for the floral scent evaluation and breeding of P. mume cultivars.
Collapse
|
13
|
Kutty NN, Ghissing U, Mitra A. Revealing floral metabolite network in tuberose that underpins scent volatiles synthesis, storage and emission. PLANT MOLECULAR BIOLOGY 2021; 106:533-554. [PMID: 34263437 DOI: 10.1007/s11103-021-01171-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
The role of central carbon metabolism in the synthesis and emission of scent volatiles in tuberose flowers was revealed through measurement of changes in transcripts and metabolites levels. Tuberose or Agave amica (Medikus) Thiede & Govaerts is a widely cultivated ornamental plant in several subtropical countries. Little is known about metabolite networking involved in biosynthesis of specialized metabolites utilizing primary metabolites. In this study, metabolite profiling and gene expression analyses were carried out from six stages of maturation throughout floral lifespan. Multivariate analysis indicated distinction between early and late maturation stages. Further, the roles of sugars viz. sucrose, glucose and fructose in synthesis, glycosylation and emission of floral scent volatiles were studied. Transcript levels of an ABC G family transporter (picked up from the floral transcriptome) was in synchronization with terpene volatiles emission during the anthesis stage. A diversion from phenylpropanoid/benzenoid to flavonoid metabolism was observed as flowers mature. Further, it was suggested that this metabolic shift could be mediated by isoforms of 4-Coumarate-CoA ligase along with Myb308 transcription factor. Maximum glycosylation of floral scent volatiles was shown to occur at the late mature stage when emission declined, facilitating both storage and export from the floral tissues. Thus, this study provides an insight into floral scent volatiles synthesis, storage and emission by measuring changes at transcripts and metabolites levels in tuberose throughout floral lifespan.
Collapse
Affiliation(s)
- Nithya N Kutty
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| | - Upashana Ghissing
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| | - Adinpunya Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India.
| |
Collapse
|
14
|
Joulain D. Jasminum grandiflorum
flowers—Phytochemical complexity and its capture in extracts: a review. FLAVOUR FRAG J 2021. [DOI: 10.1002/ffj.3672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Terry MI, Ruiz-Hernández V, Águila DJ, Weiss J, Egea-Cortines M. The Effect of Post-harvest Conditions in Narcissus sp. Cut Flowers Scent Profile. FRONTIERS IN PLANT SCIENCE 2021; 11:540821. [PMID: 33488635 PMCID: PMC7817618 DOI: 10.3389/fpls.2020.540821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 12/08/2020] [Indexed: 05/08/2023]
Abstract
Narcissus flowers are used as cut flowers and to obtain high quality essential oils for the perfume industry. As a winter crop in the Mediterranean area, it flowers at temperatures ranging between 10 and 15°C during the day and 3-10°C during the night. Here we tested the impact of different light and temperature conditions on scent quality during post-harvest. These two types of thermoperiod and photoperiod. We also used constant darkness and constant temperatures. We found that under conditions of 12:12 Light Dark and 15-5°C, Narcissus emitted monoterpenes and phenylpropanoids. Increasing the temperature to 20°-10°C in a 12:12 LD cycle caused the loss of cinnamyl acetate and emission of indole. Under constant dark, there was a loss of scent complexity. Constant temperatures of 20°C caused a decrease of scent complexity that was more dramatic at 5°C, when the total number of compounds emitted decreased from thirteen to six. Distance analysis confirmed that 20°C constant temperature causes the most divergent scent profile. We found a set of four volatiles, benzyl acetate, eucalyptol, linalool, and ocimene that display a robust production under differing environmental conditions, while others were consistently dependent on light or thermoperiod. Scent emission changed significantly during the day and between different light and temperature treatments. Under a light:dark cycle and 15-5°C the maximum was detected during the light phase but this peak shifted toward night under 20-10°C. Moreover, under constant darkness the peak occurred at midnight and under constant temperature, at the end of night. Using Machine Learning we found that indole was the volatile with a highest ranking of discrimination followed by D-limonene. Our results indicate that light and temperature regimes play a critical role in scent quality. The richest scent profile is obtained by keeping flowers at 15°-5°C thermoperiod and a 12:12 Light Dark photoperiod.
Collapse
Affiliation(s)
- Marta I. Terry
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | | | - Diego J. Águila
- Las Cabezuelas Sociedad Cooperativa, Alhama de Murcia, Spain
| | - Julia Weiss
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Marcos Egea-Cortines
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| |
Collapse
|
16
|
Muravnik LE, Mosina AA, Zaporozhets NL, Bhattacharya R, Saha S, Ghissing U, Mitra A. Glandular trichomes of the flowers and leaves in Millingtonia hortensis (Bignoniaceae). PLANTA 2021; 253:13. [PMID: 33389109 DOI: 10.1007/s00425-020-03541-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/06/2020] [Indexed: 05/08/2023]
Abstract
Three types of the glandular trichomes are developed on the flowers and leaves of Millingtonia hortensis. Morphology, cell ultrastructure and content of the volatile compounds are specific to each trichome type. The aim of this study was to characterize the structural and histochemical features of the glandular trichomes (GTs) of two types localized on the different flower parts and leaves in Millingtonia hortensis, as well as to identify the composition of the internal pool of metabolites. The peltate GTs are most common; they are founded on peduncle, calyx, ovary, and leaves. GTs consist of 12-24-cell disk-shaped head and a single-celled neck. The capitate GTs are located on corolla tube and have four to eight-cell head, single-celled neck and a wide multicellular stalk. A series of histochemical reactions and fluorescent microscopy revealed the various substances in the chemical composition of GTs. Acid polysaccharides are predominately identified in the capitate trichomes of the corolla tube and peltate trichomes of calyx, terpenes present in larger quantity in the trichomes of the corolla tube and ovary, whilst phenolic substances prevail in the trichomes of the calyx and ovary. GTs of each type are characterized by specific ultrastructural traits. Smooth endoplasmic reticulum (SER) and leucoplasts prevail in the peltate trichomes of peduncle, calyx and ovary; Golgi apparatus is the common organelle in the capitate trichomes of the corolla tube and peltate trichomes of calyx; the huge aggregates of the RER cisterns there are in cytoplasm of all leaf trichomes. Synthesized secretion accumulates in the subcuticular cavity of all GTs except the leaf peltate trichomes. In the trichomes of the leaves secretion is stored in the thick upper cell wall with the wide cutinized layer. For the first time content of the internal pool of metabolites from the flowers and leaves was identified by GC-MS. Seventeen compounds, including alcohols, fatty acid derivatives, monoterpenes, sesquiterpenes, and benzenoids were identified. 1-octen 3-ol, 3-carene, methyl salicylate, p-hydroxybenzeneethanol and 1-hydroxy-2,4-di-tertbutyl-benzene were the main compounds of the flower scent. We consider GTs of the reproductive organs in M. hortensis synthesizing acid polysaccharides and volatile compounds as secretory structures attracting of pollinators, whereas the leaf peltate trichomes accumulating predominately non-volatile phenols, protect young vegetative shoots against small herbivorous insects and pathogens.
Collapse
Affiliation(s)
- Lyudmila E Muravnik
- Laboratory of Plant Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, Professor Popov Street, 2, 197376, St. Petersburg, Russia.
| | - Anna A Mosina
- Laboratory of Plant Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, Professor Popov Street, 2, 197376, St. Petersburg, Russia
| | - Nikita L Zaporozhets
- Laboratory of Plant Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, Professor Popov Street, 2, 197376, St. Petersburg, Russia
| | - Raktim Bhattacharya
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| | - Sulagna Saha
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| | - Upashana Ghissing
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| | - Adinpunya Mitra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| |
Collapse
|
17
|
Seasonal and diel variations in scent composition of ephemeral Murraya paniculata (Linn.) Jack flowers are contributed by separate volatile components. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Paul I, Chatterjee A, Maiti S, Bhadoria PBS, Mitra A. Dynamic trajectories of volatile and non-volatile specialised metabolites in 'overnight' fragrant flowers of Murraya paniculata. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:899-910. [PMID: 30866144 DOI: 10.1111/plb.12983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Ephemeral flowers, especially nocturnal ones, usually emit characteristic scent profiles within their post-anthesis lifespans of a few hours. Whether these flowers exhibit temporal variability in the composition and profile of volatile and non-volatile specialised metabolites has received little attention. Flowers of Murraya paniculata bloom in the evenings during the summer and monsoon, and their sweet, intense fragrance enhances the plant's value as an ornamental. We aimed to investigate profiles of both volatile and non-volatile endogenous specialised metabolites (ESM) in nocturnal ephemeral flowers of M. paniculata to examine whether any biochemically diverse groups of ESM follow distinct patterns of accumulation while maintaining synchrony with defensive physiological functions. Targeted ESM contents of M. paniculata flowers were profiled at ten time points at 2-h intervals, starting from late bud stage (afternoon) up to the start of petal senescence (mid-morning). Emitted volatiles were monitored continuously within the whole 20-h period using headspace sampling. The ESM contents were mapped by time point to obtain a highly dynamic and biochemically diverse profile. Relative temporal patterns of ESM accumulation indicated that the active fragrance-emitting period might be divided into 'early bloom', 'mid-bloom' and 'late bloom' phases. Early and late bloom phases were characterised by high free radical generation, with immediate enhancement of antioxidant enzymes and phenolic compounds. The mid-bloom phase was relatively stable and dedicated to maximum fragrance emission, with provision for strong terpenoid-mediated defence against herbivores. The late bloom phase merged into senescence with the start of daylight; however, even the senescent petals continued to emit fragrance to attract diurnal pollinators. Our study suggests that dynamic relations between the different ESM groups regulate the short-term requirements of floral advertisement and phytochemical defence in this ephemeral flower. This study also provided fundamental information on the temporal occurrence of emitted volatiles and internal pools of specialised metabolites in M. paniculata flowers, which could serve as an important model for pollination biology of Rutaceae, which includes many important fruit crops.
Collapse
Affiliation(s)
- I Paul
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
- Soil Science and Plant Nutrition Laboratory, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - A Chatterjee
- Soil Science and Plant Nutrition Laboratory, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - S Maiti
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - P B S Bhadoria
- Soil Science and Plant Nutrition Laboratory, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - A Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
19
|
Kutty NN, Mitra A. Profiling of volatile and non-volatile metabolites in Polianthes tuberosa L. flowers reveals intraspecific variation among cultivars. PHYTOCHEMISTRY 2019; 162:10-20. [PMID: 30844491 DOI: 10.1016/j.phytochem.2019.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Polianthes tuberosa L. (tuberose) is a widely cultivated ornamental crop in Asian countries. Different cultivars of tuberose have been developed through breeding programs in India. However, no reports on floral fragrance and metabolite contents of these cultivars are available. In this study, an attempt has been made to evaluate the levels of both volatile and non-volatile metabolites from seven different cultivars of P. tuberosa. Presence of benzenoids, phenylpropanoids, terpenoids, and few fatty acid derivatives as emitted, endogenous and glycosylated forms were revealed from the studied cultivars. Further, chemometric analyses in both supervised and unsupervised manner led to identification of patterns among the cultivars. Among the seven cultivars, four distinct clusters were obtained linking to their volatiles, flavonoids and primary metabolite levels. Metabolic variations obtained from the cultivars also suggest cross-talks between phenylpropanoid, benzenoid, and flavonoid pathways. Thus metabolite profiling reported here may help in characterization of tuberose cultivars for perfumery utility and future breeding programme.
Collapse
Affiliation(s)
- Nithya N Kutty
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Adinpunya Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|