1
|
Li J, Yang P, Fu H, Li J, Wang Y, Zhu K, Yu J, Li J. Transcriptome analysis reveals key regulatory networks and genes involved in the acquisition of cold stress memory in pepper seedlings. BMC PLANT BIOLOGY 2024; 24:959. [PMID: 39396950 PMCID: PMC11479542 DOI: 10.1186/s12870-024-05660-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Temperature is an important limiting factor in the counter-seasonal cultivation of pepper. Currently, there are no studies on transcriptomic analysis of 'cold stress memory' in pepper. In this study, in order to understand the mechanism of 'cold stress memory' in pepper (Capsicum annuum L.), seedlings were subjected to the following treatments: normal temperature treatment (P0), the first cold treatment for 3 days (P3), the recovery temperature treatment for 3 days (R3), and another cold treatment for 3 days (RP3). The results showed that P3 plants wilted the most, RP3 the second and R3 the least. Leaf reactive oxygen species (ROS) and electrolyte leakage were the most in P3, the second in RP3 and the least in R3. In addition, RP3 had the highest accumulation of zeaxanthin, violaxanthin and β-cryptoxanthin, followed by P3, and R3 had the least. These results suggest that pepper seedlings are characterized by 'cold stress memory'. Transcriptomics was used to analyze the key genes and transcription factors involved in the biosynthesis of zeaxanthin, violaxanthin and β-cryptoxanthin during the formation of 'cold stress memory'. This study provides candidate genes and transcription factors for an in-depth study of the cold tolerance mechanism in pepper.
Collapse
Affiliation(s)
- Jian Li
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, China
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China
| | - Ping Yang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China
| | - Hongbo Fu
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China
| | - Juan Li
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China
- College of Horticulture and Forestry, Tarim University, Alar, 843300, China
| | - Yanzhuang Wang
- College of Horticulture and Forestry, Tarim University, Alar, 843300, China
| | - Keyan Zhu
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, China
| | - Jihua Yu
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, China.
| | - Jie Li
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661100, China.
| |
Collapse
|
2
|
Kim S, Kim TH. Identification of the Novel Small Compound Stress Response Regulators 1 and 2 That Affect Plant Abiotic Stress Signaling. Biomolecules 2024; 14:1177. [PMID: 39334943 PMCID: PMC11429841 DOI: 10.3390/biom14091177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Abiotic stresses, such as drought, salinity, and extreme temperatures, limit plant growth and development, reducing crop yields. Therefore, a more comprehensive understanding of the signaling mechanisms and responses of plants to changing environmental conditions is crucial for improving sustainable agricultural productivity. Chemical screening was conducted to find novel small compounds that act as regulators of the abiotic stress signaling pathway using the ABA-inducible transgenic reporter line. Small molecules called stress response regulators (SRRs) were isolated by screening a synthetic library composed of 14,400 small compounds, affecting phenotypes such as seed germination, root growth, and gene expression in response to multiple abiotic stresses. Seeds pretreated with SRR compounds positively affected the germination rate and radicle emergence of Arabidopsis and tomato plants under abiotic stress conditions. The SRR-priming treatment enhanced the transcriptional responses of abiotic stress-responsive genes in response to subsequent salt stress. The isolation of the novel molecules SRR1 and SRR2 will provide a tool to elucidate the complex molecular networks underlying the plant stress-tolerant responses.
Collapse
Affiliation(s)
- Seojung Kim
- Department of Bio-Health Convergence, Duksung Women’s University, Seoul 01369, Republic of Korea;
| | - Tae-Houn Kim
- Department of Bio-Health Convergence, Duksung Women’s University, Seoul 01369, Republic of Korea;
- Department of Biotechnology, Duksung Women’s University, Seoul 01369, Republic of Korea
| |
Collapse
|
3
|
Evans KV, Ransom E, Nayakoti S, Wilding B, Mohd Salleh F, Gržina I, Erber L, Tse C, Hill C, Polanski K, Holland A, Bukhat S, Herbert RJ, de Graaf BHJ, Denby K, Buchanan-Wollaston V, Rogers HJ. Expression of the Arabidopsis redox-related LEA protein, SAG21 is regulated by ERF, NAC and WRKY transcription factors. Sci Rep 2024; 14:7756. [PMID: 38565965 PMCID: PMC10987515 DOI: 10.1038/s41598-024-58161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
SAG21/LEA5 is an unusual late embryogenesis abundant protein in Arabidopsis thaliana, that is primarily mitochondrially located and may be important in regulating translation in both chloroplasts and mitochondria. SAG21 expression is regulated by a plethora of abiotic and biotic stresses and plant growth regulators indicating a complex regulatory network. To identify key transcription factors regulating SAG21 expression, yeast-1-hybrid screens were used to identify transcription factors that bind the 1685 bp upstream of the SAG21 translational start site. Thirty-three transcription factors from nine different families bound to the SAG21 promoter, including members of the ERF, WRKY and NAC families. Key binding sites for both NAC and WRKY transcription factors were tested through site directed mutagenesis indicating the presence of cryptic binding sites for both these transcription factor families. Co-expression in protoplasts confirmed the activation of SAG21 by WRKY63/ABO3, and SAG21 upregulation elicited by oligogalacturonide elicitors was partially dependent on WRKY63, indicating its role in SAG21 pathogen responses. SAG21 upregulation by ethylene was abolished in the erf1 mutant, while wound-induced SAG21 expression was abolished in anac71 mutants, indicating SAG21 expression can be regulated by several distinct transcription factors depending on the stress condition.
Collapse
Affiliation(s)
- Kelly V Evans
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Elspeth Ransom
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Swapna Nayakoti
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Ben Wilding
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Faezah Mohd Salleh
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
- Investigative and Forensic Sciences Research Group, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Irena Gržina
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Lieselotte Erber
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Carmen Tse
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Claire Hill
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Alistair Holland
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Sherien Bukhat
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Robert J Herbert
- School of Science and the Environment, University of Worcester, Henwick Grove, Worcester, WR2 6AJ, UK
| | - Barend H J de Graaf
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Katherine Denby
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, Heslington, York, YO10 5DD, UK
| | | | - Hilary J Rogers
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK.
| |
Collapse
|
4
|
Tan Y, Zhan H, Chen H, Li X, Chen C, Liu H, Chen Y, Zhao Z, Xiao Y, Liu J, Zhao Y, Su Z, Xu C. Genome-wide identification of XTH gene family in Musa acuminata and response analyses of MaXTHs and xyloglucan to low temperature. PHYSIOLOGIA PLANTARUM 2024; 176:e14231. [PMID: 38419576 DOI: 10.1111/ppl.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Banana (Musa spp.) production is seriously threatened by low temperature (LT) in tropical and subtropical regions. Xyloglucan endotransglycosylase/hydrolases (XTHs) are considered chief enzymes in cell wall remodelling and play a central role in stress responses. However, whether MaXTHs are involved in the low temperature stress tolerance in banana is not clear. Here, the identification and characterization of MaXTHs were carried out, followed by prediction of their cis-acting elements and protein-protein interactions. In addition, candidate MaXTHs involved in banana tolerance to LT were screened through a comparison of their responses to LT between tolerant and sensitive cultivars using RNA-Seq analysis. Moreover, immunofluorescence (IF) labelling was employed to compare changes in the temporal and spatial distribution of different types of xyloglucan components between these two cultivars upon stress. In total, 53 MaXTHs have been identified, and all were predicted to be located in the cell wall, 14 of them also in the cytoplasm. Only 11 MaXTHs have been found to interact with other proteins. Among 16 MaXTHs with LT responsiveness elements, MaXTH26/29/32/35/50 (Group I/II members) and MaXTH7/8 (Group IIIB members) might be involved in banana tolerance to LT stress. IF results suggested that the content of xyloglucan components recognized by CCRC-M87/103/104/106 antibodies might be negatively related to banana chilling tolerance. In conclusion, we have identified the MaXTH gene family and assessed cell wall re-modelling under LT stress. These results will be beneficial for banana breeding against stresses and enrich the cell wall-mediated resistance mechanism in plants to stresses.
Collapse
Affiliation(s)
- Yehuan Tan
- College of Horticulture, South China Agricultural University, Guangzhou, China
- Institute of Fruit Tree Research, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou, China
| | - Huiling Zhan
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Houbin Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming Branch, Maoming, China
| | - Xiaoquan Li
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Chengjie Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Hui Liu
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yilin Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ziyue Zhao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yinyan Xiao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jing Liu
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yafang Zhao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zuxiang Su
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Chunxiang Xu
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Ren H, Wang Z, Shang X, Zhang X, Ma L, Bian Y, Wang D, Liu W. Involvement of GA3-oxidase in inhibitory effect of nitric oxide on primary root growth in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:117-125. [PMID: 38014496 DOI: 10.1111/plb.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Both NO and GAs are essential for regulating various physiological processes and stress responses in plants. However, the interaction between these two molecules remains unclear. We investigated the distinct response patterns of Arabidopsis thaliana Col-0 and GA synthesis functional deficiency mutants to NO by measuring root length. To investigate underlying mechanisms, we detected bioactive GA content using UHPLC-ESI-MS/MS, assessed the accumulation of ROS by chemical staining Arabidopsis roots. We also conducted RNA-seq analysis and compared results between Col-0 and ga3ox1, with and without SNP (as NO donor) treatment. Phenotypic results revealed that the inhibitory effect of NO on primary roots of Arabidopsis was primarily mediated by GA3-oxidase, rather than GA20-oxidase or GA2-oxidase. The content of GA3 decreased in Col-0 treated with SNP, whereas this decrease was not observed in ga3ox1. The deficiency of GA3-oxidase alleviated the buildup of H2 O2 in roots when treated with SNP. We identified 222 DEGs. GO annotation of these DEGs revealed that all top 20 GO terms were related to stress responses. Moreover, three DEGs were annotated to GA-related processes (DDF1, DDF2, EXPA1), and seven DEGs were associated with root development (RAV1, RGF2, ERF71, ZAT6, MYB77, XT1, and DTX50). In summary, NO inhibits primary root growth partially by repressing GA3-oxidase catalysed GA3 synthesis in Arabidopsis. ROS, Ca2+ , DDF1, DDF2, EXPA1 and seven root development-related genes may be involved in crosstalk between NO and GAs.
Collapse
Affiliation(s)
- H Ren
- Shanxi Normal University, Taiyuan, Shanxi, China
| | - Z Wang
- Shanxi Normal University, Taiyuan, Shanxi, China
| | - X Shang
- Shanxi Normal University, Taiyuan, Shanxi, China
| | - X Zhang
- Shanxi Normal University, Taiyuan, Shanxi, China
| | - L Ma
- Shanxi Normal University, Taiyuan, Shanxi, China
| | - Y Bian
- Shanxi Normal University, Taiyuan, Shanxi, China
| | - D Wang
- Shanxi Normal University, Taiyuan, Shanxi, China
| | - W Liu
- Shanxi Normal University, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
Peterson A, Kishchenko O, Kuhlmann M, Tschiersch H, Fuchs J, Tikhenko N, Schubert I, Nagel M. Cryopreservation of Duckweed Genetic Diversity as Model for Long-Term Preservation of Aquatic Flowering Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3302. [PMID: 37765466 PMCID: PMC10534739 DOI: 10.3390/plants12183302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/26/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Vegetatively propagating aquatic angiosperms, the Lemnaceae family (duckweeds) represents valuable genetic resources for circular bioeconomics and other sustainable applications. Due to extremely fast growth and laborious cultivation of in vitro collections, duckweeds are an urgent subject for cryopreservation. We developed a robust and fast DMSO-free protocol for duckweed cryopreservation by vitrification. A single-use device was designed for sampling of duckweed fronds from donor culture, further spin-drying, and subsequent transferring to cryo-tubes with plant vitrification solution 3 (PVS3). Following cultivation in darkness and applying elevated temperatures during early regrowth stage, a specific pulsed illumination instead of a diurnal regime enabled successful regrowth after the cryopreservation of 21 accessions of Spirodela, Landoltia, Lemna, and Wolffia genera, including interspecific hybrids, auto- and allopolyploids. Genome size measurements revealed no quantitative genomic changes potentially caused by cryopreservation. The expression of CBF/DREB1 genes, considered as key factors in the development of freezing tolerance, was studied prior to cooling but was not linked with duckweed regrowth after rewarming. Despite preserving chlorophyll fluorescence after rewarming, the rewarmed fronds demonstrated nearly zero photosynthetic activity, which did not recover. The novel protocol provides the basis for future routine application of cryostorage to duckweed germplasm collections, saving labor for in vitro cultivation and maintaining characterized reference and mutant samples.
Collapse
Affiliation(s)
- Anton Peterson
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben (ROR (Research Organization Registry)-ID of IPK: https://ror.org/02skbsp27), Corrensstraße 3, 06466 Seeland, Germany; (O.K.); (M.K.); (H.T.); (J.F.); (N.T.); (I.S.)
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Acad. Zabolotnogo Str. 148, 03143 Kyiv, Ukraine
| | - Olena Kishchenko
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben (ROR (Research Organization Registry)-ID of IPK: https://ror.org/02skbsp27), Corrensstraße 3, 06466 Seeland, Germany; (O.K.); (M.K.); (H.T.); (J.F.); (N.T.); (I.S.)
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Acad. Zabolotnogo Str. 148, 03143 Kyiv, Ukraine
| | - Markus Kuhlmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben (ROR (Research Organization Registry)-ID of IPK: https://ror.org/02skbsp27), Corrensstraße 3, 06466 Seeland, Germany; (O.K.); (M.K.); (H.T.); (J.F.); (N.T.); (I.S.)
| | - Henning Tschiersch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben (ROR (Research Organization Registry)-ID of IPK: https://ror.org/02skbsp27), Corrensstraße 3, 06466 Seeland, Germany; (O.K.); (M.K.); (H.T.); (J.F.); (N.T.); (I.S.)
| | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben (ROR (Research Organization Registry)-ID of IPK: https://ror.org/02skbsp27), Corrensstraße 3, 06466 Seeland, Germany; (O.K.); (M.K.); (H.T.); (J.F.); (N.T.); (I.S.)
| | - Natalia Tikhenko
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben (ROR (Research Organization Registry)-ID of IPK: https://ror.org/02skbsp27), Corrensstraße 3, 06466 Seeland, Germany; (O.K.); (M.K.); (H.T.); (J.F.); (N.T.); (I.S.)
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben (ROR (Research Organization Registry)-ID of IPK: https://ror.org/02skbsp27), Corrensstraße 3, 06466 Seeland, Germany; (O.K.); (M.K.); (H.T.); (J.F.); (N.T.); (I.S.)
| | - Manuela Nagel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben (ROR (Research Organization Registry)-ID of IPK: https://ror.org/02skbsp27), Corrensstraße 3, 06466 Seeland, Germany; (O.K.); (M.K.); (H.T.); (J.F.); (N.T.); (I.S.)
| |
Collapse
|
7
|
El-Sayed AFM, Khaled AA, Hamdan AM, Makled SO, Hafez EE, Saleh AA. The role of antifreeze genes in the tolerance of cold stress in the Nile tilapia (Oreochromis niloticus). BMC Genomics 2023; 24:476. [PMID: 37612592 PMCID: PMC10464439 DOI: 10.1186/s12864-023-09569-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Tilapia is one of the most essential farmed fishes in the world. It is a tropical and subtropical freshwater fish well adapted to warm water but sensitive to cold weather. Extreme cold weather could cause severe stress and mass mortalities in tilapia. The present study was carried out to investigate the effects of cold stress on the up-regulation of antifreeze protein (AFP) genes in Nile tilapia (Oreochromis niloticus). Two treatment groups of fish were investigated (5 replicates of 15 fish for each group in fibreglass tanks/70 L each): 1) a control group; the fish were acclimated to lab conditions for two weeks and the water temperature was maintained at 25 °C during the whole experimental period with feeding on a commercial diet (30% crude protein). 2) Cold stress group; the same conditions as the control group except for the temperature. Initially, the temperature was decreased by one degree every 12 h. The fish started showing death symptoms when the water temperature reached 6-8 °C. In this stage the tissue (muscle) samples were taken from both groups. The immune response of fish exposed to cold stress was detected and characterized using Differential Display-PCR (DD-PCR). RESULTS The results indicated that nine different up-regulation genes were detected in the cold-stressed fish compared to the control group. These genes are Integrin-alpha-2 (ITGA-2), Gap junction gamma-1 protein-like (GJC1), WD repeat-containing protein 59 isoform X2 (WDRP59), NUAK family SNF1-like kinase, G-protein coupled receptor-176 (GPR-176), Actin cytoskeleton-regulatory complex protein pan1-like (PAN-1), Whirlin protein (WHRN), Suppressor of tumorigenicity 7 protein isoform X2 (ST7P) and ATP-binding cassette sub-family A member 1-like isoform X2 (ABCA1). The antifreeze gene type-II amplification using a specific PCR product of 600 bp, followed by cloning and sequencing analysis revealed that the identified gene is antifreeze type-II, with similarity ranging from 70 to 95%. The in-vitro transcribed gene induced an antifreeze protein with a molecular size of 22 kDa. The antifreeze gene, ITGA-2 and the WD repeat protein belong to the lectin family (sugar-protein). CONCLUSIONS In conclusion, under cold stress, Nile tilapia express many defence genes, an antifreeze gene consisting of one open reading frame of approximately 0.6 kbp.
Collapse
Affiliation(s)
| | - Asmaa A Khaled
- Animal and Fish Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria City, 21531, Egypt
| | - Amira M Hamdan
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria City, Egypt
| | - Sara O Makled
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria City, Egypt
| | - Elsayed E Hafez
- Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria City, 21934, Egypt
| | - Ahmed A Saleh
- Animal and Fish Production Department, Faculty of Agriculture (Alshatby), Alexandria University, Alexandria City, 11865, Egypt.
| |
Collapse
|
8
|
Edrisi Maryan K, Farrokhi N, Samizadeh Lahiji H. Cold-responsive transcription factors in Arabidopsis and rice: A regulatory network analysis using array data and gene co-expression network. PLoS One 2023; 18:e0286324. [PMID: 37289769 PMCID: PMC10249815 DOI: 10.1371/journal.pone.0286324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Plant growth and development can be influenced by cold stress. Responses of plants to cold are regulated in part by transcription factors (TFs) and microRNAs, which their determination would be necessary in comprehension of the corresponding molecular cues. Here, transcriptomes of Arabidopsis and rice were analyzed to computationally determine TFs and microRNAs that are differentially responsive to cold treatment, and their co-expression networks were established. Among 181 Arabidopsis and 168 rice differentially expressed TF genes, 37 (26 novel) were up- and 16 (8 novel) were downregulated. Common TF encoding genes were from ERF, MYB, bHLH, NFY, bZIP, GATA, HSF and WRKY families. NFY A4/C2/A10 were the significant hub TFs in both plants. Phytohormone responsive cis-elements such as ABRE, TGA, TCA and LTR were the common cis-elements in TF promoters. Arabidopsis had more responsive TFs compared to rice possibly due to its greater adaptation to ranges geographical latitudes. Rice had more relevant miRNAs probably because of its bigger genome size. The interacting partners and co-expressed genes were different for the common TFs so that of the downstream regulatory networks and the corresponding metabolic pathways. Identified cold-responsive TFs in (A + R) seemed to be more engaged in energy metabolism esp. photosynthesis, and signal transduction, respectively. At post-transcriptional level, miR5075 showed to target many identified TFs in rice. In comparison, the predictions showed that identified TFs are being targeted by diverse groups of miRNAs in Arabidopsis. Novel TFs, miRNAs and co-expressed genes were introduced as cold-responsive markers that can be harnessed in future studies and development of crop tolerant varieties.
Collapse
Affiliation(s)
- Khazar Edrisi Maryan
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
- Department of Plant Biotechnology, Faculty of Agriculture, University of Guilan, Rasht, Iran
| | - Naser Farrokhi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
9
|
Kanbar A, Beisel J, Gutierrez MT, Graeff-Hönninger S, Nick P. Peruvian Amaranth (kiwicha) Accumulates Higher Levels of the Unsaturated Linoleic Acid. Int J Mol Sci 2023; 24:ijms24076215. [PMID: 37047191 PMCID: PMC10093863 DOI: 10.3390/ijms24076215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Grain amaranth (Amaranthus spp.) is an emerging crop rich in proteins and other valuable nutrients. It was domesticated twice, in Mexico and Peru. Although global trade is dominated by Mexican species of amaranth, Peruvian amaranth (A. caudatus, kiwicha) has remained neglected, although it harbours valuable traits. In the current study, we investigate the accumulation of polyunsaturated fatty acids, comparing four genotypes of A. caudatus with K432, a commercial variety deriving from the Mexican species A. hypochondriacus under the temperate environment of Southwest Germany. We show that the A. caudatus genotypes flowered later (only in late autumn), such that they were taller as compared to the Mexican hybrid but yielded fewer grains. The oil of kiwicha showed a significantly higher content of unsaturated fatty acids, especially of linoleic acid and α-linolenic acid compared to early flowering genotype K432. To gain insight into the molecular mechanisms behind these differences, we sequenced the genomes of the A. hypochondriacus × hybridus variety K432 and the Peruvian kiwicha genotype 8300 and identified the homologues for genes involved in the ω3 fatty-acid pathway and concurrent oxylipin metabolism, as well as of key factors for jasmonate signalling and cold acclimation. We followed the expression of these transcripts over three stages of seed development in all five genotypes. We find that transcripts for Δ6 desaturases are elevated in kiwicha, whereas in the Mexican hybrid, the concurrent lipoxygenase is more active, which is followed by the activation of jasmonate biosynthesis and signalling. The early accumulation of transcripts involved in cold-stress signalling reports that the Mexican hybrid experiences cold stress already early in autumn, whereas the kiwicha genotypes do not display indications for cold stress, except for the very final phase, when there were already freezing temperatures. We interpret the higher content of unsaturated fatty acids in the context of the different climatic conditions shaping domestication (tropical conditions in the case of Mexican amaranth, sharp cold snaps in the case of kiwicha) and suggest that kiwicha oil has high potential as functional food which can be developed further by tailoring genetic backgrounds, agricultural practice, and processing.
Collapse
Affiliation(s)
- Adnan Kanbar
- Molecular Cell Biology, Joseph Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Julia Beisel
- Molecular Cell Biology, Joseph Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | | | | | - Peter Nick
- Molecular Cell Biology, Joseph Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Correspondence:
| |
Collapse
|
10
|
Charrier G, Willick IR, Takahashi D. Cross-disciplinary insights into the mechanisms of plant cold hardiness: From molecules to ecosystems. PHYSIOLOGIA PLANTARUM 2023; 175:e13901. [PMID: 37096430 DOI: 10.1111/ppl.13901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Affiliation(s)
| | - Ian R Willick
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, Nova Scotia, Canada
| | - Daisuke Takahashi
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
11
|
van Es SW. Remember the time. PHYSIOLOGIA PLANTARUM 2022; 174:e13823. [PMID: 36572662 PMCID: PMC10107925 DOI: 10.1111/ppl.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Like the ability of a fox to avoid the same snare twice, the plant Arabidopsis thaliana seems to be able to respond differently to an event it has previously encountered. Shrewdness is no surprising characteristic of a fox, but the comparison does invite the question: do plants possess memory? In this edition of Physiologia Plantarum, the article by Vyse et al. (2022) describes how Arabidopsis responds differently to cold-stress, when encountering it for the first time (priming) and to a second similar stress after a memory phase (triggering). Arabidopsis seems to perceive the stress after triggering as a milder one and the authors postulate that the memory of the first occurrence of the stress reduces the amount of resources needed to cope with the cold-stress a second time.
Collapse
Affiliation(s)
- Sam W. van Es
- Department of Plant PhysiologyUmeå UniversityUmeåSweden
| |
Collapse
|
12
|
Dehydration Stress Memory Genes in Triticum turgidum L. ssp. durum (Desf.). BIOTECH 2022; 11:biotech11030043. [PMID: 36134917 PMCID: PMC9497085 DOI: 10.3390/biotech11030043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure to successive stress cycles can result in a variety of memory response patterns in several plant species. We have investigated a group of these patterns at both the transcriptional and physiological memory levels in durum wheat. The data revealed huge discrepancies between investigated durum wheat cultivars, which presumably are all drought tolerant. It was possible to generate a consensus memory response pattern for each cultivar, where Hourani 27 was the most tolerant followed by Balikh 2 and then Omrabi 5. When durum wheat homologs from rice and maize were compared, only 18% gave similar memory response patterns. The data would indicate the presence of potentially divergent memory mechanisms in different plant species and genotypes. Ultimately, a thorough examination is required for each genotype before giving solid memory-based conclusions that can be applied in plant breeding and agricultural management practices.
Collapse
|