1
|
Rams TE, Contreras A, Slots J. Aggressive periodontitis in southwestern American Indian adolescents. J Periodontol 2024; 95:594-602. [PMID: 37910464 DOI: 10.1002/jper.23-0410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND This study determined the prevalence of aggressive (molar-incisor pattern) (Ag/MI) periodontitis and assessed the associated subgingival bacterial-herpesvirus microbiota in Pueblo Indian adolescents in the southwestern United States. METHODS The study included 240 Pueblo Indian adolescents, aged 13-20 years old, residing in three Rio Grande River villages in New Mexico and the Hopi Pueblo reservation in Arizona. Adolescents with Ag/MI periodontitis or periodontal health provided subgingival samples for culture of bacterial pathogens and for polymerase chain reaction detection of periodontal herpesviruses. RESULTS Ag/MI periodontitis was detected in 22 (9.2%) Pueblo Indian adolescents, with 21 exhibiting a localized molar-incisor breakdown pattern. Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and other red/orange complex bacterial pathogens predominated in Ag/MI periodontitis, whereas periodontal health yielded mainly viridans streptococci and Actinomyces species. Periodontal herpesviruses demonstrated a 3.5 odds ratio relationship with Ag/MI periodontitis. The only adolescent with generalized Ag/MI periodontitis harbored viral co-infection by cytomegalovirus plus Epstein-Barr virus Type 1, in addition to A. actinomycetemcomitans, P. gingivalis, and several other periodontopathic bacteria. CONCLUSIONS Pueblo Indian adolescents showed an unusually high prevalence of early-age Ag/MI periodontitis predominated by periodontopathic bacteria and herpesviruses suspected to be major etiologic agents of the disease.
Collapse
Affiliation(s)
- Thomas E Rams
- Department of Periodontology and Oral Implantology, Temple University School of Dentistry, Philadelphia, Pennsylvania, USA
| | - Adolfo Contreras
- Periodontal Medicine Research Group, Department of Periodontology, Universidad del Valle School of Dentistry, Cali, Colombia
| | - Jørgen Slots
- Division of Periodontology and Diagnostic Sciences, University of Southern California School of Dentistry, Los Angeles, California, USA
| |
Collapse
|
2
|
Loaiza Oliva M, Morales Uchima SM, Puerta Suárez J, Mesa Arango AC, Martínez Pabón MC. Lippia origanoides derivatives in vitro evaluation on polymicrobial biofilms: Streptococcus mutans, Lactobacillus rhamnosus and Candida albicans. Arch Oral Biol 2023; 148:105656. [PMID: 36827930 DOI: 10.1016/j.archoralbio.2023.105656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
OBJECTIVE This work evaluated the Lippia origanoides derivatives in vitro effect on polymicrobial biofilms of Streptococcus mutans, Lactobacillus rhamnosus and Candida albicans. Additionally, the cytotoxic effect of the oils on human skin keratinocytes (HaCaT) and fibroblasts of the periodontal ligament (FLP) cell lines was evaluated. DESIGN The minimum inhibitory concentration, the inhibitory activity on monomicrobial (S. mutans) and polymicrobial biofilm (S. mutans, L. rhamnosus and C. albicans) of L. origanoides four essential oils and terpenes (thymol and carvacrol) were evaluated. The cytotoxic effect of each one of the compounds was measured, and all the tests were compared against chlorhexidine. RESULTS All the evaluated compounds reached an inhibition percentage of S. mutans monomicrobial biofilms formation of 100 % at 600 µg/mL (p < 0.0001). The highest concentration (2 MIC) eradicated 100 % of S. mutans-preformed biofilms after 5 min L. origanoides carvacrol + thymol and thymol chemotypes showed marked reductions in topography, the number of microbial cells and extracellular matrix on polymicrobial biofilm. The cytotoxic effect of the compounds was very similar to chlorhexidine. CONCLUSIONS L. origanoides essential oils have an inhibitory effect on mono and polymicrobial biofilms. The oils present a similar cytotoxic effect to chlorhexidine on HaCaT and FLP cell lines. However, including these compounds in formulations for clinical use is an exciting proposal yet to be investigated.
Collapse
Affiliation(s)
- Manuela Loaiza Oliva
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | | | - Jenniffer Puerta Suárez
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - Ana Cecilia Mesa Arango
- Group of Investigative Dermatology, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | | |
Collapse
|
3
|
Rams TE, Slots J. Antimicrobial Chemotherapy for Recalcitrant Severe Human Periodontitis. Antibiotics (Basel) 2023; 12:265. [PMID: 36830176 PMCID: PMC9951977 DOI: 10.3390/antibiotics12020265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
This study evaluated a combined systemic and topical anti-infective periodontal treatment of 35 adults who had experienced ongoing periodontal breakdown following conventional surgical periodontics. The prescribed anti-infective therapy, based on microbiological testing, consisted of a single course of metronidazole plus ciprofloxacin (23 patients), metronidazole plus amoxicillin/clavulanic acid (10 patients), and metronidazole plus ciprofloxacin followed by metronidazole plus amoxicillin/clavulanic acid (2 patients). In addition, the study patients received 0.1% povidone-iodine subgingival disinfection during non-surgical root debridement and daily patient administered oral irrigation with 0.1% sodium hypochlorite. At 1 and 5 years post-treatment, all study patients showed gains in clinical periodontal attachment with no further attachment loss, and significant decreases in pocket probing depth, bleeding on probing, and subgingival temperature. The greatest disease resolution occurred in patients who at baseline harbored predominantly major periodontal pathogens which post-antibiotics became non-detectable and substituted by non-periodontopathic viridans streptococci. The personalized and minimally invasive anti-infective treatment regimen described here controlled periodontitis disease activity and markedly improved the clinical and microbiological status of the refractory periodontitis patients.
Collapse
Affiliation(s)
- Thomas E. Rams
- Department of Periodontology and Oral Implantology, Temple University School of Dentistry, Philadelphia, PA 19140, USA
| | - Jørgen Slots
- Division of Periodontology and Diagnostic Sciences, University of Southern California School of Dentistry, Los Angeles, CA 90089, USA
| |
Collapse
|
4
|
The circular RNA circ_0099630/miR-940/receptor-associated factor 6 regulation cascade modulates the pathogenesis of periodontitis. J Dent Sci 2022; 17:1566-1576. [PMID: 36299308 PMCID: PMC9588814 DOI: 10.1016/j.jds.2022.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/06/2022] [Indexed: 11/21/2022] Open
Abstract
Background/purpose Materials and methods Results Conclusion
Collapse
|
5
|
Tafaj G, Iniesta M, Sanz M, Herrera D. The subgingival cultivable bacteria of Albanian subjects with different periodontal status compared to a similar population of Spanish subjects: a case control study. BMC Oral Health 2022; 22:89. [PMID: 35321708 PMCID: PMC8944025 DOI: 10.1186/s12903-022-02121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background The objective was to qualitatively and quantitatively describe the subgingival cultivable bacteria in Albanian subjects and to compare it with a similar Spanish population.
Materials and methods Consecutive patients, diagnosed as periodontitis in stages I–II or III–IV, and as periodontally healthy or with gingivitis, were studied clinically and microbiologically by means of microbiological culture, including total anaerobic counts, proportions, and frequency of detection of target species. Outcome variables were analysed by Mann–Whitney, Kruskal–Wallis, ANOVA, ANCOVA and Chi-square tests.
Results In this cross-sectional study, 83 (Albania) and 90 (Spain) subjects were included. No statistically significant differences were observed between test and control populations regarding demographic variables or smoking habit. Significantly higher total anaerobic counts in the Albanian population (p = 0.022) were observed, especially in the periodontal health/gingivitis group (p = 0.001). In the test population, the proportions of the cultivable bacteria of Fusobacterium nucleatum were significantly lower in both the healthy/gingivitis (p = 0.022) and stages I–II periodontitis (p = 0.034) groups.
Conclusions The subgingival cultivable bacteria in both periodontitis and non-periodontitis subjects from Albania showed significantly higher total anaerobic counts and lower proportions of the cultivable bacteria of F. nucleatum than a similar population of subjects from Spain. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02121-5.
Collapse
Affiliation(s)
- Gerila Tafaj
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, School of Dentistry, University Complutense of Madrid (UCM), Madrid, Spain.,Dental Clinic, School of Dentistry, Albanian University, Tirana, Albania
| | - Margarita Iniesta
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, School of Dentistry, University Complutense of Madrid (UCM), Madrid, Spain.
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, School of Dentistry, University Complutense of Madrid (UCM), Madrid, Spain
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, School of Dentistry, University Complutense of Madrid (UCM), Madrid, Spain
| |
Collapse
|
6
|
Teles F, Collman RG, Mominkhan D, Wang Y. Viruses, periodontitis, and comorbidities. Periodontol 2000 2022; 89:190-206. [PMID: 35244970 DOI: 10.1111/prd.12435] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Seminal studies published in the 1990s and 2000s explored connections between periodontal diseases and systemic conditions, revealing potential contributions of periodontal diseases in the initiation or worsening of systemic conditions. The resulting field of periodontal medicine led to the publication of studies indicating that periodontal diseases can influence the risk of systemic conditions, including adverse pregnancy outcomes, cardiovascular and respiratory diseases, as well as Alzheimer disease and cancers. In general, these studies hypothesized that the periodontal bacterial insult and/or the associated proinflammatory cascade could contribute to the pathogenesis of these systemic diseases. While investigations of the biological basis of the connections between periodontal diseases and systemic conditions generally emphasized the bacteriome, it is also biologically plausible, under an analogous hypothesis, that other types of organisms may have a similar role. Human viruses would be logical "suspects" in this role, given their ubiquity in the oral cavity, association with periodontal diseases, and ability to elicit strong inflammatory response, compromise immune responses, and synergize with bacteria in favor of a more pathogenic microbial consortium. In this review, the current knowledge of the role of viruses in connecting periodontal diseases and systemic conditions is examined. We will also delve into the mechanistic basis for such connections and highlight the importance of those relationships in the management and treatment of patients.
Collapse
Affiliation(s)
- Flavia Teles
- Department of Basic and Translational Sciences, School of Dental Medicine, Center for Innovation & Precision Dentistry, School of Dental Medicine & School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronald G Collman
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dana Mominkhan
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yu Wang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Characterization of the Subgingival Cultivable Microbiota in Patients with Different Stages of Periodontitis in Spain and Colombia. A Cross-Sectional Study. Microorganisms 2021; 9:microorganisms9091940. [PMID: 34576835 PMCID: PMC8469102 DOI: 10.3390/microorganisms9091940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 09/11/2021] [Indexed: 02/04/2023] Open
Abstract
The objective was to characterize and compare the subgingival microbiota in patients diagnosed according to the World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions 2018. For this cross-sectional study, Spanish and Colombian subjects (characterized as health/gingivitis, periodontitis in stages I-II or stages III-IV) were clinically assessed, and subgingival samples were taken and processed by culture. The comparisons among patients with periodontal status (and between countries) was made using Mann–Whitney, Kruskal–Wallis, ANOVA and chi-square tests. The final sample consisted of 167 subjects. Eikenella corrodens and Parvimonas micra were more frequently detected in health/gingivitis and Porphyromonas gingivalis in periodontitis (p < 0.05). Higher total counts were observed in Colombia (p = 0.036). In Spain, significantly higher levels of P. gingivalis and Campylobacter rectus were observed, and of Tannerella forsythia, P. micra, Prevotella intermedia, Fusobacterium nucleatum, Actinomyces odontolyticus and Capnocytophaga spp. in Colombia (p < 0.001). P. micra was more prevalent in health/gingivitis and stage I-II periodontitis in Colombia, and P. gingivalis in all periodontitis groups in Spain (p < 0.05). As conclusions, significant differences were detected in the microbiota between health/gingivitis and periodontitis, with minor differences between stages of periodontitis. Differences were also relevant between countries, with Colombia showing larger counts and variability of bacterial species.
Collapse
|
8
|
Wei Y, Deng Y, Ma S, Ran M, Jia Y, Meng J, Han F, Gou J, Yin T, He H, Wang Y, Zhang Y, Tang X. Local drug delivery systems as therapeutic strategies against periodontitis: A systematic review. J Control Release 2021; 333:269-282. [PMID: 33798664 DOI: 10.1016/j.jconrel.2021.03.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/27/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022]
Abstract
Periodontitis is a chronic inflammation of the soft tissue surrounding and supporting the teeth, which causes periodontal structural damage, alveolar bone resorption, and even tooth loss. Its prevalence is very high, with nearly 60% of the global population affected. Hence, periodontitis is an important public health concern, and the development of effective healing treatments for oral diseases is a major target of the health sciences. Currently, the application of local drug delivery systems (LDDS) as an adjunctive therapy to scaling and root planning (SRP) in periodontitis is a promising strategy, giving higher efficacy and fewer side effects by controlling drug release. The cornerstone of successful periodontitis therapy is to select an appropriate bioactive agent and route of administration. In this context, this review highlights applications of LDDS with different properties in the treatment of periodontitis with or without systemic diseases, in order to reveal existing challenges and future research directions.
Collapse
Affiliation(s)
- Ying Wei
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yaxin Deng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Shuting Ma
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Meixin Ran
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yannan Jia
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao 028000, Neimenggu, China
| | - Jia Meng
- Liaoning Institute of Basic Medicine, Shenyang 110016, Liaoning, China
| | - Fei Han
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yanjiao Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| |
Collapse
|
9
|
Slots J. Primer on etiology and treatment of progressive/severe periodontitis: A systemic health perspective. Periodontol 2000 2020; 83:272-276. [PMID: 32385884 DOI: 10.1111/prd.12325] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Periodontology is an infectious disease-based discipline. The etiopathology of progressive/severe periodontitis includes active herpesviruses, specific bacterial pathogens, and proinflammatory cytokines. Herpesviruses and periodontopathic bacteria may interact synergistically to produce periodontal breakdown, and periodontal herpesviruses may contribute to systemic diseases. The infectious agents of severe periodontitis reside in deep pockets, furcation lesions, and inflamed gingiva, sites inaccessible by conventional (purely mechanical) surgical or nonsurgical therapy but accessible by systemic antibiotic treatment. This brief overview presents an effective anti-infective treatment of severe periodontitis, which includes systemic chemotherapy/antibiotics against herpesviruses (valacyclovir [acyclovir]) and bacterial pathogens (amoxicillin + metronidazole or ciprofloxacin + metronidazole) plus common antiseptics (povidone-iodine and sodium hypochlorite) and select ultrasonic scaling. The proposed treatment can cause a marked reduction or elimination of major periodontal pathogens, is acceptably safe, and can be carried out in minimal time with minimal cost.
Collapse
Affiliation(s)
- Jørgen Slots
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Afacan B, Çınarcık S, Gürkan A, Özdemir G, İlhan HA, Vural C, Köse T, Emingil G. Full-mouth disinfection effects on gingival fluid calprotectin, osteocalcin, and N-telopeptide of Type I collagen in severe periodontitis. J Periodontol 2020; 91:638-650. [PMID: 32023661 DOI: 10.1002/jper.19-0445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/08/2019] [Accepted: 12/29/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND To compare the effects of full-mouth disinfection (FMD) and full-mouth ultrasonic debridement (FMUD) on clinical, microbiological and biochemical parameters with conventional quadrant-wise scaling and root planning (Q-SRP) in severe chronic periodontitis. METHODS In the present prospective randomized controlled clinical trial with three parallel arms (#NCT04038801), 60 chronic periodontitis patients were randomly assigned to three study groups by a consecutive number in ascending order: FMD (n = 20), FMUD (n = 20), and Q-SRP (n = 20). All measurements and treatments were performed by the same investigator. At baseline, gingival crevicular fluid (GCF) and subgingival plaque were collected and clinical periodontal parameters were recorded. Ultrasonic debridement was completed within 24 hours in FMD and FMUD groups. Chlorhexidine gluconate was used for FMD. Q-SRP was performed by hand instruments per quadrant at 1-week-intervals. Clinical measurements and sampling were repeated at 1, 3, and 6 months after treatment. Real-time PCR was used for quantitative analysis of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythia, Fusobacterium nucleatum, and total bacteria count. GCF Calprotectin, osteocalcin, and N-telopeptide of type I collagen (NTx) levels were analyzed by ELISA. The changes of GCF biomarker levels after treatment between groups were the primary outcomes. RESULTS No harm was observed. All treatment strategies resulted in significant improvements in all clinical parameters (P < 0.05), with no significant differences between study groups at all time-points (P ˃ 0.05). Aggregatibacter actinomycetemcomitans was significantly decreased in FMD compared to FMUD and Q-SRP at 6 months (P < 0.05). Although GCF NTx total amounts increased in all groups during the study period, this increase was less prominent in full-mouth groups at three time points after treatment (P < 0.05). CONCLUSIONS Present results represent the short-term effects. Full-mouth treatment approaches offered limited beneficial effects on microbiological and biochemical parameters over quadrant-wise approach. All three treatment strategies can be recommended in the management of severe chronic periodontitis.
Collapse
Affiliation(s)
- Beral Afacan
- Department of Periodontology, Faculty of Dentistry, Adnan Menderes University, Aydın, Turkey
| | - Serhat Çınarcık
- Department of Periodontology, Faculty of Dentistry, Ege University, İzmir, Turkey
| | - Ali Gürkan
- Department of Periodontology, Faculty of Dentistry, Ege University, İzmir, Turkey
| | - Güven Özdemir
- Department of Biology, Basic and Industrial Microbiology Section, Faculty of Science, Ege University, Izmir, Turkey
| | - Harika Atmaca İlhan
- Department of Biology, Section of Molecular Biology, Faculty of Science and Letters, Celal Bayar University, Manisa, Turkey
| | - Caner Vural
- Department of Biology, Basic and Industrial Microbiology Section, Faculty of Science, Ege University, Izmir, Turkey
| | - Timur Köse
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Gülnur Emingil
- Department of Periodontology, Faculty of Dentistry, Ege University, İzmir, Turkey
| |
Collapse
|
11
|
Pardo-Castaño C, Vásquez D, Bolaños G, Contreras A. Strong antimicrobial activity of collinin and isocollinin against periodontal and superinfectant pathogens in vitro. Anaerobe 2020; 62:102163. [PMID: 32007684 DOI: 10.1016/j.anaerobe.2020.102163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 02/09/2023]
Abstract
Periodontitis pathogenesis involves activation of host immune responses triggered by microbial dysbiosis. Therefore, controlling periodontal pathogens in-vivo is a main goal of periodontal therapy. New antimicrobials might help to control periodontal infection and improve treatment outcomes at "the dark times" of increasing antibiotic resistance. Here, we determined the biological activity of collinin and isocollinin against 8 bacterial strains. Antimicrobial activity of collinin and isocollinin, chlorhexidine digluconate (CHX) and sodium hypochlorite (NaClO) was evaluated against clinically relevant periodontal bacteria, like Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Fusobacterium nucleatum, Prevotella intermedia, Dialister pneumosintes strains and superinfectants like Escherichia coli, Staphylococcusaureus, and Pseudomonasaeruginosa strains. A broth microdilution test was carried out to determine the minimum inhibitory concentration of collinin and isocollinin against those strains, and bacterial viability was determined by resazurin assay at diverse concentration and exposure times. P. gingivalis was the most susceptible strain to collinin and isocollinin (MIC 2.1 μg/mL and 4.2 μg/mL respectively). Other periodontal pathogens showed MICs <17 μg/mL for collinin and MICs between 20 and 42 μg/mL for isocollinin, whereas CHX and NaClO showed MICs of 62 and 326 μg/mL, respectively. Collinin and isocollinin also exhibited antimicrobial activity against superinfectant bacteria (MIC < 21 and < 42 μg/mL, respectively). Overall, collinin and isocollinin showed a remarkable antibacterial activity against relevant periodontal and superinfective bacteria, especially against P. gingivalis (MIC 2.1 μg/mL and 4.2 μg/mL respectively) and the highly virulent P. aeruginosa (MIC 5.2 and 20.8 μg/mL, respectively).
Collapse
Affiliation(s)
- Camilo Pardo-Castaño
- Applied Thermodynamic Research Group, School of Chemical Engineering, Universidad del Valle, 760032, Cali, Colombia
| | - Daniel Vásquez
- Periodontal Medicine Research Group, School of Dentistry, Universidad del Valle, 760043, Cali, Colombia
| | - Gustavo Bolaños
- Applied Thermodynamic Research Group, School of Chemical Engineering, Universidad del Valle, 760032, Cali, Colombia
| | - Adolfo Contreras
- Periodontal Medicine Research Group, School of Dentistry, Universidad del Valle, 760043, Cali, Colombia.
| |
Collapse
|
12
|
de Alencar JB, Zacarias JMV, Tsuneto PY, de Souza VH, Silva CDOE, Visentainer JEL, Sell AM. Influence of inflammasome NLRP3, and IL1B and IL2 gene polymorphisms in periodontitis susceptibility. PLoS One 2020; 15:e0227905. [PMID: 31978095 PMCID: PMC6980600 DOI: 10.1371/journal.pone.0227905] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/22/2019] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of periodontitis (PD) involves several molecules of the immune system that interact in a network to eliminate the periodontopathogens, yet, they contribute to periodontal tissue destruction. The different mechanisms that lead to periodontal tissue damage are not clear. Despite this, immune response genes have been related to the development of PD previously, such as those involved in inflammasomes which are multiprotein complexes and cytokines including Interleukin-1. The aim of the study was to evaluate the polymorphisms in NLRP3 inflammasome, cytokine and receptor of cytokines genes in the development of periodontitis. This case-control study was conducted in 186 patients with PD (stage II and III and grade B) and 208 controls (localized gingivitis and periodontally healthy individuals). Genotyping was performed using PCR-RFLP for the SNP rs4612666 in NLRP3 and using PCR-SSP for IL1A, IL1B, IL1R, IL1RN, IL4RA, INFG, TGFB1, TNF, IL2, IL4, IL6, and IL10. Cytokine serum levels were measured using Luminex technology. SNPStats and OpenEpi software were used to perform statistical analysis. The higher frequencies of NLRP3 T/C and IL1B -511 T/T genotypes and IL2 (+166, -330) GT haplotype were observed in patients with PD compared to controls. The SNPs in NLRP3, IL1R +1970, IL6–174, TNF -308, IL2 +166 and -330, TGFB1 +869 and +915, IL4RA +1902, IL4–1098 and -590 were associated to PD in men. In conclusion, polymorphisms in NLRP3, IL1B and IL2 genes were associated to PD susceptibility. Men carrying the NLRP3, IL1R, IL6, TNF, IL2, TGFB1, IL4RA and IL4 polymorphisms had greater susceptibility than women for developing PD.
Collapse
Affiliation(s)
- Josiane Bazzo de Alencar
- Department of Clinical Analysis and Biomedicine, Post-Graduation Program in Biosciences and Physiophatology, State University of Maringá, Maringá, Paraná, Brazil
- * E-mail:
| | - Joana Maira Valentini Zacarias
- Department of Clinical Analysis and Biomedicine, Post-Graduation Program in Biosciences and Physiophatology, State University of Maringá, Maringá, Paraná, Brazil
| | - Patrícia Yumeko Tsuneto
- Department of Clinical Analysis and Biomedicine, Post-Graduation Program in Biosciences and Physiophatology, State University of Maringá, Maringá, Paraná, Brazil
| | - Victor Hugo de Souza
- Department of Clinical Analysis and Biomedicine, Post-Graduation Program in Biosciences and Physiophatology, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Jeane Eliete Laguila Visentainer
- Department of Clinical Analysis and Biomedicine, Post-Graduation Program in Biosciences and Physiophatology, State University of Maringá, Maringá, Paraná, Brazil
- Department of Basic Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Ana Maria Sell
- Department of Clinical Analysis and Biomedicine, Post-Graduation Program in Biosciences and Physiophatology, State University of Maringá, Maringá, Paraná, Brazil
- Department of Basic Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
13
|
dos Santos DM, Chagas PA, Leite IS, Inada NM, de Annunzio SR, Fontana CR, Campana-Filho SP, Correa DS. Core-sheath nanostructured chitosan-based nonwovens as a potential drug delivery system for periodontitis treatment. Int J Biol Macromol 2020; 142:521-534. [DOI: 10.1016/j.ijbiomac.2019.09.124] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/14/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022]
|
14
|
Abstract
Four billion individuals worldwide have a history of periodontitis, with the poorest people in society most affected. Periodontitis can lead to unsightly drifting of teeth and tooth loss that may interfere with the wellbeing of daily living and has also been linked to at least 57 medical diseases and disabilities. The etiology of severe periodontitis includes active herpesviruses, specific bacterial pathogens, and destructive immune responses, but herpesviruses seem to be the major pathogenic determinant. Periodontal herpesviruses that disseminate via the systemic circulation to nonoral sites may represent a major link between periodontitis and systemic diseases. Current treatment of periodontitis focuses almost exclusively on bacterial biofilm and will require revision. Periodontal therapy that targets both herpesviruses and bacterial pathogens can provide long-term clinical improvement and potentially reduces the risk of systemic diseases. Molecular diagnostic tests for periodontal pathogens may enable early microbial identification and preemptive therapy. This review details an efficient and reliable anti-infective treatment of severe periodontitis that can be carried out in minimal time with minimal cost.
Collapse
Affiliation(s)
- Jørgen Slots
- School of Dentistry, University of Southern California, Los Angeles, California
| | - Henrik Slots
- University of Nevada at Reno School of Medicine, Reno, Nevada.,St. George's School of Medicine, St. George, Grenada.,Renown Medical Center, Reno, Nevada
| |
Collapse
|
15
|
Zhong W, Peng Y, Yue E, Huang B, Zhang W, Zhao Z, Jiang J, Wang Q, Zhao H. Gingival crevicular fluid levels of SLIT3 are increased in periodontal disease. Oral Dis 2019; 26:182-192. [PMID: 31696592 DOI: 10.1111/odi.13227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/01/2022]
Abstract
This study aims to investigate the levels of SLIT3 in gingival crevicular fluid (GCF) of healthy and periodontal disease subjects, and their correlations to periodontal disease. A total of 45 periodontal patients and 45 periodontally healthy volunteers were enrolled. The clinical parameters, radiographic bone loss and the levels of SLIT3, receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) in GCF were measured. The prevalences of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia in subgingival plaque were also analyzed. The expression of SLIT3 and RANKL was detected in the periodontium of experimental periodontitis in rats and lipopolysaccharide (LPS)-induced mouse macrophage. The total amounts and concentrations of SLIT3 and RANKL were significantly higher in periodontitis than those in healthy, while the level of OPG was significantly lower (p < .05). Significant positive correlations were observed between the level of GCF SLIT3 and clinical attachment level and radiographic bone loss (p < .05). There existed a significant positive correlation between SLIT3 and RANKL (p < .05). Increased expression of SLIT3 and RANKL was observed in the periodontium of periodontal rats. SLIT3 expression was induced by LPS stimulation in macrophages. These results suggest that SLIT3 may act as a diagnostic indicator of periodontal disease and should be further investigated.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Youmei Peng
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Erli Yue
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Huang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Zhao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinhua Jiang
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qingduan Wang
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongyu Zhao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Abstract
This volume of Periodontology 2000 represents the 25th anniversary of the Journal, and uses the occasion to assess important advancements in periodontology over the past quarter-century as well as the hurdles that remain. Periodontitis is defined by pathologic loss of the periodontal ligament and alveolar bone. The disease involves complex dynamic interactions among active herpesviruses, specific bacterial pathogens and destructive immune responses. Periodontal diagnostics is currently based on clinical rather than etiologic criteria, and provides limited therapeutic guidance. Periodontal causative treatment consists of scaling, antiseptic rinses and occasionally systemic antibiotics, and surgical intervention has been de-emphasized, except perhaps for the most advanced types of periodontitis. Plastic surgical therapy includes soft-tissue grafting to cover exposed root surfaces and bone grafting to provide support for implants. Dental implants are used to replace severely diseased or missing teeth, but implant overuse is of concern. The utility of laser treatment for periodontitis remains unresolved. Host modulation and risk-factor modification therapies may benefit select patient groups. Patient self-care is a critical part of periodontal health care, and twice-weekly oral rinsing with 0.10-0.25% sodium hypochlorite constitutes a valuable adjunct to conventional anti-plaque and anti-gingivitis treatments. A link between periodontal herpesviruses and systemic diseases is a strong biological plausibility. In summary, research during the past 25 years has significantly changed our concepts of periodontitis pathobiology and has produced more-effective and less-costly therapeutic options.
Collapse
|
17
|
[Periodontal microbiota and microorganisms isolated from heart valves in patients undergoing valve replacement surgery in a clinic in Cali, Colombia]. BIOMEDICA 2017; 37:516-525. [PMID: 29373772 DOI: 10.7705/biomedica.v37i4.3232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 11/08/2016] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Periodontitis is an infectious disease that affects the support tissue of the teeth and it is associated with different systemic diseases, including cardiovascular disease. Microbiological studies facilitate the detection of microorganisms from subgingival and cardiovascular samples. OBJECTIVE To describe the cultivable periodontal microbiota and the presence of microorganisms in heart valves from patients undergoing valve replacement surgery in a clinic in Cali. MATERIALS AND METHODS We analyzed 30 subgingival and valvular tissue samples by means of two-phase culture medium, supplemented blood agar and trypticase soy agar with antibiotics. Conventional PCR was performed on samples of valve tissue. RESULTS The periodontal pathogens isolated from periodontal pockets were: Fusobacterium nucleatum (50%), Prevotella intermedia/ nigrescens (40%), Campylobacter rectus (40%), Eikenella corrodens (36.7%), Gram negative enteric bacilli (36.7%), Porphyromonas gingivalis (33.3%), and Eubacterium spp. (33.3%). The pathogens isolated from the aortic valve were Propionibacterium acnes (12%), Gram negative enteric bacilli (8%), Bacteroides merdae (4%), and Clostridium bifermentans (4%), and from the mitral valve we isolated P. acnes and Clostridium beijerinckii. Conventional PCR did not return positive results for oral pathogens and bacterial DNA was detected only in two samples. CONCLUSIONS Periodontal microbiota of patients undergoing surgery for heart valve replacement consisted of species of Gram-negative bacteria that have been associated with infections in extraoral tissues. However, there is no evidence of the presence of periodontal pathogens in valve tissue, because even though there were valve and subgingival samples positive for Gram-negative enteric bacilli, it is not possible to maintain they corresponded to the same phylogenetic origin.
Collapse
|
18
|
Elamin A, Ali RW, Bakken V. Putative periodontopathic bacteria and herpes viruses interactions in the subgingival plaque of patients with aggressive periodontitis and healthy controls. Clin Exp Dent Res 2017; 3:183-190. [PMID: 29744199 PMCID: PMC5839261 DOI: 10.1002/cre2.80] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 12/17/2022] Open
Abstract
The microbial profile of aggressive periodontitis patients is considered to be complex with variations among populations in different geographical areas. The aim of this study was to assess the presences of 4 putative periodontopathic bacteria (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola) and 2 periodontal herpes viruses (Epstein-Barr virus type 1 [EBV-1] and human cytomegalovirus [HMCV]) in subgingival plaque of Sudanese subjects with aggressive periodontitis and healthy controls. The study group consisted of 34 subjects, 17 aggressive periodontitis patients and 17 periodontally healthy controls (14-19 years of age). Pooled subgingival plaque samples were collected and analyzed for detection of bacteria and viruses using loop-mediated isothermal amplification. Prevalence of subgingival A. actinomycetemcomitans, HCMV, and P. gingivalis were significantly higher among aggressive periodontitis patients than periodontally healthy controls. Coinfection with A. actinomycetemcomitans, HCMV, and/or EBV-1 was restricted to the cases. Increased risk of aggressive periodontitis was the highest when A. actinomycetemcomitans was detected together with EBV-1 (OD 49.0, 95% CI [2.5, 948.7], p = .01) and HCMV (OD 39.1, 95% CI [2.0, 754.6], p = .02). In Sudanese patients, A. actinomycetemcomitans and HCMV were the most associated test pathogens with aggressive periodontitis.
Collapse
Affiliation(s)
- Amal Elamin
- Department of Health Sciences, College of Natural and Health SciencesZayed UniversityDubaiUAE
- Department of Clinical ScienceUniversity of BergenBergenNorway
| | - Raouf Wahab Ali
- Department of PeriodontologyUniversity of Science and TechnologyOmdurmanSudan
| | - Vidar Bakken
- Department of Clinical ScienceUniversity of BergenBergenNorway
| |
Collapse
|
19
|
Li Y, Feng X, Xu L, Zhang L, Lu R, Shi D, Wang X, Chen F, Li J, Meng H. Oral microbiome in chinese patients with aggressive periodontitis and their family members. J Clin Periodontol 2015; 42:1015-23. [PMID: 26412568 DOI: 10.1111/jcpe.12463] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Yi Li
- Department of Periodontology; Peking University School and Hospital of Stomatology; Beijing China
| | - Xianghui Feng
- Department of Periodontology; Peking University School and Hospital of Stomatology; Beijing China
| | - Li Xu
- Department of Periodontology; Peking University School and Hospital of Stomatology; Beijing China
| | - Li Zhang
- Department of Periodontology; Peking University School and Hospital of Stomatology; Beijing China
| | - Ruifang Lu
- Department of Periodontology; Peking University School and Hospital of Stomatology; Beijing China
| | - Dong Shi
- Department of Periodontology; Peking University School and Hospital of Stomatology; Beijing China
| | - Xiane Wang
- Department of Periodontology; Peking University School and Hospital of Stomatology; Beijing China
| | - Feng Chen
- Central laboratory; Peking University School and Hospital of Stomatology; Beijing China
| | - Jie Li
- BGI; Beishan Industrial Zone; Guangdong China
| | - Huanxin Meng
- Department of Periodontology; Peking University School and Hospital of Stomatology; Beijing China
| |
Collapse
|
20
|
Abstract
Periodontal diseases occur worldwide, and Latin American populations are significantly affected by different manifestations of periodontal disease. The interest in periodontics and periodontal therapy first developed in the early 1930s in the southernmost countries of Latin America, and spread, as the years went by, throughout the region. Today, periodontal research is vibrant in Latin America. The aim of this volume of Periodontology 2000 was to present an overview of the periodontal research currently being performed in different countries of Latin America. The epidemiology of periodontal diseases in adults, children and adolescents, and the pathogenesis of such diseases (including microbiological characteristics and risk factors), are discussed. The role of systemic antibiotic therapy and the effect of smoking are discussed in relation to the progression and the treatment of periodontitis. In addition, the benefit of lasers in periodontal therapy is evaluated. Latin American research groups have been active in exploring new venues of regenerative periodontal treatment, addressing the role of cementum proteins, growth factors and oral mesenchymal stem cells in tissue engineering. Finally, basic research to study cancerization is reported.
Collapse
|