1
|
Van Oosterwijck S, Meeus M, van Der Wekken J, Dhondt E, Billens A, Van Oosterwijck J. Physical Activity Is Predictive of Conditioned Pain Modulation in Healthy Individuals: A Cross-Sectional Study. THE JOURNAL OF PAIN 2024; 25:104639. [PMID: 39029881 DOI: 10.1016/j.jpain.2024.104639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Even in healthy populations, conditioned pain modulation (CPM) magnitude varies. This may be accounted for by (non-)modifiable factors, including physical activity (PA). Yet, little research has thoroughly examined PA and its relation with CPM magnitude in a representative sample. Therefore, the present study investigated the predictive effect of PA on CPM magnitude in 105 healthy adults. PA was assessed during 7 consecutive days by self-report using the International Physical Activity Questionnaire and by monitor-based accelerometry. CPM was examined using a heterotopic noxious-conditioning stimulation protocol during which the effect of a hot water-conditioning stimulus on pressure pain thresholds was evaluated. Comparative, correlation, and hierarchical linear regression analyses were performed. Report-based walking predicts 4.8% of variance in pain-modulatory capacity, moderate PA predicts 10.2% of variance in pain-modulatory capacity, and report-based time spent on total PA predicts 7.0% of variance in pain-modulatory capacity. More metabolic equivalent-minutes/week spent on total PA, including walking and moderate PA, is associated with greater pain-modulatory capacity. The findings of this study add to the limited evidence on the predictive effect of PA on CPM. It urges to consider PA a confounding factor when examining CPM. The current study provides evidence that a physically active lifestyle benefits endogenous pain modulation in healthy adults. Given its potential, walking and moderate-intensity PA might be achievable treatment strategies for pain patients known to have impaired CPM. PERSPECTIVE: The results of this article show that a physically active lifestyle, including larger amounts of walking and moderate activity, predicts greater pain-modulatory capacity. TRIAL REGISTRATION: This study has not been preregistered.
Collapse
Affiliation(s)
- Sophie Van Oosterwijck
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Pain in Motion International Research Group (www.paininmotion.be); Research Foundation - Flanders (FWO), Brussels, Belgium
| | - Mira Meeus
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Pain in Motion International Research Group (www.paininmotion.be); Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Jacob van Der Wekken
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Evy Dhondt
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Pain in Motion International Research Group (www.paininmotion.be)
| | - Amber Billens
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Pain in Motion International Research Group (www.paininmotion.be)
| | - Jessica Van Oosterwijck
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Pain in Motion International Research Group (www.paininmotion.be); Research Foundation - Flanders (FWO), Brussels, Belgium; Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
2
|
Yang J, Rolnick N, Merriwether E, Rao S. Hypoalgesia and Conditioned Pain Modulation in Blood Flow Restriction Resistance Exercise. Int J Sports Med 2024; 45:810-819. [PMID: 38588713 DOI: 10.1055/a-2301-9115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
We compared the magnitude of exercise-induced hypoalgesia and conditioned pain modulation between blood-flow restriction (BFR) resistance exercise (RE) and moderate-intensity RE. Twenty-five asymptomatic participants performed unilateral leg press in two visits. For moderate-intensity RE, subjects exercised at 50% 1RM without BFR, whereas BFR RE exercised at 30% 1RM with a cuff inflated to 60% limb occlusion pressure. Exercise-induced hypoalgesia was quantified by pressure pain threshold changes before and after RE. Conditioned pain modulation was tested using cold water as the conditioning stimulus and mechanical pressure as the test stimulus and quantified as pressure pain threshold change. Difference in conditioned pain modulation pre- to post-RE was then calculated. The differences of RE on pain modulations were compared using paired t-tests. Pearson's r was used to examine the correlation between exercise-induced hypoalgesia and changes in conditioned pain modulation. We found greater hypoalgesia with BFR RE compared to moderate-intensity RE (p=0.008). Significant moderate correlations were found between exercise-induced hypoalgesia and changes in conditioned pain modulation (BFR: r=0.63, moderate-intensity: r=0.72). BFR RE has favorable effects on pain modulation in healthy adults and the magnitude of exercise-induced hypoalgesia is positively correlated with conditioned pain modulation activation.
Collapse
Affiliation(s)
- Jinghui Yang
- Physical Therapy, New York University Steinhardt School of Culture Education and Human Development, New York, United States
| | - Nicholas Rolnick
- The Human Performance Mechanic, Lehman College, Bronx, United States
| | - Ericka Merriwether
- Physical Therapy, New York University Steinhardt School of Culture Education and Human Development, New York, United States
- Department of Medicine, NYU Grossman School of Medicine, New York, United States
| | - Smita Rao
- Physical Therapy, New York University Steinhardt School of Culture Education and Human Development, New York, United States
| |
Collapse
|
3
|
Ye D, Drummond PD, Vo L. Comparable Conditioned Pain Modulation and Painful-Exercise-Induced Hypoalgesia in Healthy Young Adults: A Randomized Crossover Trial. THE JOURNAL OF PAIN 2024:104670. [PMID: 39245195 DOI: 10.1016/j.jpain.2024.104670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/23/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
Conditioned pain modulation and exercise-induced hypoalgesia reflect inhibitory pain controls emanating from the brain. The aim of this study was to compare the extent of pain inhibition from exercise-induced hypoalgesia (isometric wall squat), conditioned pain modulation (cold-water immersion), and their combination (wall squat followed by cold water in fixed order) in healthy pain-free adults. Sixty-one participants (median age 21 years) completed 3 sessions (wall-squat, cold-water, and combined) in random order. Sessions were separated by at least a week. In each session, pressure-pain thresholds, single-pinprick-pain ratings, and pinprick-temporal summation of pain (the fifth minus the first) were obtained at quadriceps, forearms, and forehead, before and after wall squat and/or cold water. Each intervention inhibited pain to pressure (partial η2 = .26) and single pinprick (partial η2 = .16) to a similar extent; however, pressure-pain inhibition was negligible in the forehead. After adjusting for age and sex, single-pinprick-pain inhibition in the forehead induced by wall squat was associated with that induced by cold water (adjusted R2 = .15; P = .007), and stronger pain inhibition was predicted by a higher thigh-pain rating to wall squat (adjusted R2 = .10; P = .027). Neither intervention affected pinprick-temporal summation of pain. Together, the findings suggest that pain-inhibitory effects of exercise-induced hypoalgesia and conditioned pain modulation may overlap when exercise is at least moderately painful (6/10 intensity). Pressure pain in body regions remote from the exercised or conditioned sites may be weakly modulated. PERSPECTIVE: The current findings suggest that pain-inhibitory effects induced by painful wall squat and by cold-water immersion may overlap. The magnitude of pain inhibition in the forehead remote from the exercised thigh or the conditioned foot appears smaller, which could be examined further in future research.
Collapse
Affiliation(s)
- Di Ye
- School of Psychology and Centre for Healthy Ageing, College of Health and Education, Murdoch University, Murdoch, Western Australia, Australia.
| | - Peter D Drummond
- School of Psychology and Centre for Healthy Ageing, College of Health and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Lechi Vo
- School of Psychology and Centre for Healthy Ageing, College of Health and Education, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
4
|
Norbury R, Grant I, Woodhead A, Hughes L, Tallent J, Patterson SD. Acute hypoalgesic, neurophysiological and perceptual responses to low-load blood flow restriction exercise and high-load resistance exercise. Exp Physiol 2024; 109:672-688. [PMID: 38578259 PMCID: PMC11061633 DOI: 10.1113/ep091705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
This study compared the acute hypoalgesic and neurophysiological responses to low-load resistance exercise with and without blood flow restriction (BFR), and free-flow, high-load exercise. Participants performed four experimental conditions where they completed baseline measures of pain pressure threshold (PPT), maximum voluntary force (MVF) with peripheral nerve stimulation to determine central and peripheral fatigue. Corticospinal excitability (CSE), corticospinal inhibition and short interval intracortical inhibition (SICI) were estimated with transcranial magnetic stimulation. Participants then performed low-load leg press exercise at 30% of one-repetition maximum (LL); low-load leg press with BFR at 40% (BFR40) or 80% (BFR80) of limb occlusion pressure; or high-load leg press of four sets of 10 repetitions at 70% one-repetition maximum (HL). Measurements were repeated at 5, 45 min and 24 h post-exercise. There were no differences in CSE or SICI between conditions (all P > 0.05); however, corticospinal inhibition was reduced to a greater extent (11%-14%) in all low-load conditions compared to HL (P < 0.005). PPTs were 12%-16% greater at 5 min post-exercise in BFR40, BFR80 and HL compared to LL (P ≤ 0.016). Neuromuscular fatigue displayed no clear difference in the magnitude or time course between conditions (all P > 0.05). In summary, low-load BFR resistance exercise does not induce different acute neurophysiological responses to low-load, free-flow exercise but it does promote a greater degree of hypoalgesia and reduces corticospinal inhibition more than high-load exercise, making it a useful rehabilitation tool. The changes in neurophysiology following exercise were not related to changes in PPT.
Collapse
Affiliation(s)
- Ryan Norbury
- Faculty of Sport, Technology and Health SciencesSt Mary's UniversityTwickenhamUK
| | - Ian Grant
- Faculty of Sport, Technology and Health SciencesSt Mary's UniversityTwickenhamUK
| | - Alex Woodhead
- Faculty of Sport, Technology and Health SciencesSt Mary's UniversityTwickenhamUK
| | - Luke Hughes
- Department of Sport, Exercise and RehabilitationNorthumbria UniversityNewcastle‐Upon TyneUK
| | - Jamie Tallent
- School of Sport, Rehabilitation and Exercise SciencesUniversity of EssexColchesterUK
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneVAAustralia
| | - Stephen D. Patterson
- Faculty of Sport, Technology and Health SciencesSt Mary's UniversityTwickenhamUK
| |
Collapse
|
5
|
Tomschi F, Schulz J, Stephan H, Hilberg T. Short all-out isokinetic cycling exercises of 90 and 15 s unlock exercise-induced hypoalgesia. Eur J Pain 2024. [PMID: 38632673 DOI: 10.1002/ejp.2276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Acute physical activity leads to exercise-induced hypoalgesia (EIH). However, to what degree it can be induced by very short but highly intensive exercise is largely unknown. This study aims to investigate the effects of two different short all-out isokinetic exercise sessions on EIH. METHODS Twenty young male participants underwent three different interventions (90, 15 s all-out isokinetic cycling, respectively, and control) after an individualized low-intensity warm-up in a randomized-controlled-crossover design. Before (pre), after warm-up (post 1) as well as immediately post-intervention (post 2) pain sensitivity was measured employing pressure pain thresholds (PPT; in N) at the elbow, knee and ankle joints as well as the sternum and forehead. Performance parameters (e.g. lactate, perceived exertion, heart rate) were documented. RESULTS A 'time' × 'intervention' × 'body site' interaction effect (p < 0.001, η2 partial = 0.110) was observed for PPT. Both isokinetic interventions resulted in EIH at all body sites, even after ruling out any warm-up effects, while effects were larger for 90 s (maximum increase of 25.7 ± 11.7 N) compared to 15 s (maximum increase of 19.3 ± 18.9 N), and control (maximum increase of 8.0 ± 6.1 N). Compared to control, 15 s also resulted in hypoalgesic effects and differences were not observed at all sites. In this study, 90 s resulted in higher lactate, subjective exhaustion and heart rate levels compared to 15 s and control (p < 0.001), while higher values were also observed for 15 s compared to control. CONCLUSION Global EIH assessed immediately after exercise can be induced by short highly intensive exercises. The effects are greater when the subjective and the objective exertion are higher as induced by the 90 s intervention. SIGNIFICANCE STATEMENT This study investigates the potential for brief, highly intensive exercise sessions to induce exercise-induced hypoalgesia (EIH). The research demonstrates that EIH can indeed be triggered by such short workouts, with greater effects observed during a 90 s session compared to a 15 s one, most likely due to higher subjective and objective exertion. These findings offer insights into the potential for extremely brief but intense exercises to alleviate pain, impacting exercise recommendations and pain management strategies.
Collapse
Affiliation(s)
- Fabian Tomschi
- Department of Sports Medicine, University of Wuppertal, Wuppertal, Germany
| | - Jana Schulz
- Department of Sports Medicine, University of Wuppertal, Wuppertal, Germany
| | - Holger Stephan
- Department of Sports Medicine, University of Wuppertal, Wuppertal, Germany
| | - Thomas Hilberg
- Department of Sports Medicine, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
6
|
Aron V, Strul D, Vaegter HB, Pitance L, Armijo-Olivo S. Reliability and measurement error of exercise-induced hypoalgesia in pain-free adults and adults with musculoskeletal pain: A systematic review. Scand J Pain 2024; 24:sjpain-2023-0104. [PMID: 38619552 DOI: 10.1515/sjpain-2023-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVES We systematically reviewed the reliability and measurement error of exercise-induced hypoalgesia (EIH) in pain-free adults and in adults with musculoskeletal (MSK) pain. METHODS We searched EMBASE, PUBMED, SCOPUS, CINAHL, and PSYCINFO from inception to November 2021 (updated in February 2024). In addition, manual searches of the grey literature were conducted in March 2022, September 2023, and February 2024. The inclusion criteria were as follows: adults - pain-free and with MSK pain - a single bout of exercise (any type) combined with experimental pre-post pain tests, and assessment of the reliability and/or measurement error of EIH. Two independent reviewers selected the studies, assessed their Risk of Bias (RoB) with the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) RoB tool, and graded the individual results (COSMIN modified Grading of Recommendations Assessment, Development, and Evaluation). RESULTS We included five studies involving pain-free individuals (n = 168), which were deemed to have an overall "doubtful" RoB. No study including adults with MSK pain was found. The following ranges of parameters of reliability and measurement error of EIH were reported: intraclass correlation coefficients: 0-0.61; kappa: 0.01-0.46; standard error of measurement: 30.1-105 kPa and 10.4-21%; smallest detectable changes: 83.54-291.1 kPa and 28.83-58.21%. CONCLUSIONS We concluded, with a very low level of certainty, that the reliability and measurement error of EIH is, in pain-free adults, respectively, "insufficient" and "indeterminate." Future studies should focus on people with MSK pain and could consider using tailored exercises, other test modalities than pressure pain threshold, rater/assessor blinding, and strict control of the sources of variations (e.g., participants' expectations).
Collapse
Affiliation(s)
- Vladimir Aron
- Faculty of Medicine, Institute of Neuroscience (IoNS), Université Catholique de Louvain, Brussels B-1200, Belgium
| | | | - Henrik Bjarke Vaegter
- Pain Research Group, Pain Center, Department of Anesthesiology and Intensive Care Medicine, University Hospital Odense, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Laurent Pitance
- Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
- Oral and Maxillofacial Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Susan Armijo-Olivo
- Faculty of Economics and Social Sciences, Osnabrück University of Applied Sciences, Osnabrück, Germany
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Hammert WB, Song JS, Yamada Y, Kataoka R, Wong V, Spitz RW, Seffrin A, Kang A, Loenneke JP. Blood flow restriction augments exercise-induced pressure pain thresholds over repetition and effort matched conditions. J Sports Sci 2024; 42:73-84. [PMID: 38412241 DOI: 10.1080/02640414.2024.2321012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
We sought to determine the effects of blood flow restriction (BFR) on exercise-induced hypoalgesia, specifically using low-load (LL) resistance exercise (30% 1RM) protocols that accounted for each individual's local muscular endurance capabilities. Forty-four participants completed four conditions: (1) 70% of maximal BFR repetitions with blood flow restriction (LL+BFR exercise); (2) 70% maximal BFR repetitions without LL+BFR (LL exercise); (3) 70% maximal free flow repetitions (LL+EFFORT exercise); (4) time-matched, non-exercise control (CON). Pressure pain threshold (PPT) was measured before and after exercise. Ischaemic pain threshold and tolerance was assessed only at post. The change in upper body PPT was greater for LL+BFR exercise compared to LL exercise [difference of 0.15 (0.35) kg/cm2], LL+EFFORT exercise [difference of 0.23 (0.45) kg/cm2], and the CON condition. The change in lower body PPT was greater for LL+BFR exercise compared to LL exercise [difference of 0.40 (0.55) kg/cm2], LL+EFFORT exercise [difference of 0.36 (0.62) kg/cm2], and the CON condition. Ischaemic pain thresholds and tolerances did not change. Submaximal exercise with BFR resulted in systemic increases in PPT but had no influence on ischaemic pain sensitivity. This effect is likely unique to BFR as we did not see changes in the effort matched free flow condition.
Collapse
Affiliation(s)
- William B Hammert
- Department of Health, Exercise Science and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Jun Seob Song
- Department of Health, Exercise Science and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Yujiro Yamada
- Department of Health, Exercise Science and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Ryo Kataoka
- Department of Health, Exercise Science and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Vickie Wong
- Health and Exercise Science, Solent University, Southampton, UK
| | - Robert W Spitz
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Aldo Seffrin
- Department of Health, Exercise Science and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Anna Kang
- Department of Health, Exercise Science and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Jeremy P Loenneke
- Department of Health, Exercise Science and Recreation Management. Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| |
Collapse
|
8
|
Goldfarb AH, Kraemer RR, Baiamonte BA. Endogenous Opioids and Exercise-Related Hypoalgesia: Modern Models, Measurement, and Mechanisms of Action. ADVANCES IN NEUROBIOLOGY 2024; 35:137-155. [PMID: 38874722 DOI: 10.1007/978-3-031-45493-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
This chapter will focus on the role exercise appears to have on activation and modulating factors within the central nervous system related to endogenous like opioids and its possible contribution to exercise-induced hypoalgesia. The implications for the exercise-mediated alterations of CNS activation factors related to opioids, specifically endorphins and enkephalins, will be presented. In this update, we discuss utilization of new technology and methods to monitor mechanisms of opioid involvement to suggest their contribution with exercise mediated hypoalgesia as well as their relationships to alterations of perceptions of pain and mood. Several special populations were included to suggest that not all individuals will respond to the exercise by mediating hypoalgesia. Factors that may confound the current understanding and suggestions from the recent literature will be presented as well as suggestions for future investigations.
Collapse
Affiliation(s)
- Allan H Goldfarb
- University of North Carolina Greensboro, Department of Kinesiology, Greensboro, NC, USA.
| | - Robert R Kraemer
- Southeastern Louisiana University, Department of Kinesiology and Health Studies, Hammond, LA, USA
| | - Brandon A Baiamonte
- Southeastern Louisiana University, Department of Psychology, Hammond, LA, USA
| |
Collapse
|
9
|
Song JS, Kataoka R, Yamada Y, Wong V, Spitz RW, Bell ZW, Loenneke JP. The Hypoalgesic Effect of Low-Load Exercise to Failure Is Not Augmented by Blood Flow Restriction. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:1084-1093. [PMID: 36094881 DOI: 10.1080/02701367.2022.2115443] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Purpose: To 1) examine whether blood flow restriction would provide an additional exercise-induced hypoalgesic response at an upper and lower limb when it is incorporated with low-load resistance exercise until failure, and 2) examine if increases in blood pressure and discomfort, with blood flow restricted exercise, would mediate the exercise-induced hypoalgesia over exercise without blood flow restriction. Methods: Forty healthy young participants completed two trials: four sets of unilateral knee extension exercise to failure at 30% of one-repetition maximum, with and without blood flow restriction. Pressure pain thresholds were assessed before (twice) and 5-min post exercise at an upper and lower limb. Blood pressure and discomfort ratings were recorded to examine mediating effects on exercise-induced hypoalgesia with blood flow restricted exercise. Results: Pressure pain threshold increased following both exercise conditions compared to a control, without any differences between exercise conditions at the upper (exercise conditions vs. control: ~0.37 kg/cm2) and lower (exercise conditions vs. control: ~0.60 kg/cm2) limb. The total number of repetitions was lower for exercise with blood flow restriction compared to exercise alone [median difference (95% credible interval) of -27.0 (-29.8, -24.4) repetitions]. There were no mediating effects of changes in blood pressure, nor changes in discomfort, for the changes in pressure pain threshold at either the upper or lower limb. Conclusion: The addition of blood flow restriction to low-load exercise induces a similar hypoalgesic response to that of non-blood flow restricted exercise, with a fewer number of repetitions.
Collapse
|
10
|
Naugle KM, Naugle KE, Teegardin M, Kaleth AS. Physical Activity to Prevent the Age-Related Decline of Endogenous Pain Modulation. Exerc Sport Sci Rev 2023; 51:169-175. [PMID: 37462564 DOI: 10.1249/jes.0000000000000325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
As humans age, the capacity of the central nervous system to endogenously modulate pain significantly deteriorates, thereby increasing the risk for the development of chronic pain. Older adults are the least physically active cohort of all age groups. We hypothesize that a sedentary lifestyle and decreased physical activity may contribute to the decline of endogenous pain modulation associated with aging.
Collapse
Affiliation(s)
- Kelly M Naugle
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, IN
| | | | | | | |
Collapse
|
11
|
Bharadwaj VN, Sahbaie P, Shi X, Irvine KA, Yeomans DC, Clark JD. Effect of Voluntary Exercise on Endogenous Pain Control Systems and Post-traumatic Headache in Mice. THE JOURNAL OF PAIN 2023; 24:1859-1874. [PMID: 37271350 DOI: 10.1016/j.jpain.2023.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Traumatic brain injury (TBI) can cause acute and chronic pain along with motor, cognitive, and emotional problems. Although the mechanisms are poorly understood, previous studies suggest disruptions in endogenous pain modulation may be involved. Voluntary exercise after a TBI has been shown to reduce some consequences of injury including cognitive impairment. We hypothesized, therefore, that voluntary exercise could augment endogenous pain control systems in a rodent model of TBI. For these studies, we used a closed-head impact procedure in male mice modeling mild TBI. We investigated the effect of voluntary exercise on TBI-induced hindpaw nociceptive sensitization, diffuse noxious inhibitory control failure, and periorbital sensitization after bright light stress, a model of post-traumatic headache. Furthermore, we investigated the effects of exercise on memory, circulating markers of brain injury, neuroinflammation, and spinal cord gene expression. We observed that exercise significantly reduced TBI-induced hindpaw allodynia and periorbital allodynia in the first week following TBI. We also showed that exercise improved the deficits associated with diffuse noxious inhibitory control and reduced bright light stress-induced allodynia up to 2 months after TBI. In addition, exercise preserved memory and reduced TBI-induced increases in spinal BDNF, CXCL1, CXCL2, and prodynorphin expression, all genes previously linked to TBI-induced nociceptive sensitization. Taken together, our observations suggest that voluntary exercise may reduce pain after TBI by reducing TBI-induced changes in nociceptive signaling and preserving endogenous pain control systems. PERSPECTIVE: This article evaluates the effects of exercise on pain-related behaviors in a preclinical model of traumatic brain injury (TBI). The findings show that exercise reduces nociceptive sensitization, loss of diffuse noxious inhibitory control, memory deficits, and spinal nociception-related gene expression after TBI. Exercise may reduce or prevent pain after TBI.
Collapse
Affiliation(s)
- Vimala N Bharadwaj
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, California.
| | - Peyman Sahbaie
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, California; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Xiaoyou Shi
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, California; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Karen-Amanda Irvine
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, California; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - David C Yeomans
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, California
| | - J David Clark
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, California; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
12
|
Zi‐Han X, Nan A, Rui CJ, Yong‐Long Y. Modulation of pain perceptions following treadmill running with different intensities in females. Physiol Rep 2023; 11:e15831. [PMID: 37749050 PMCID: PMC10519819 DOI: 10.14814/phy2.15831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
We aimed to compare the effects of three intensities of treadmill running on exercise-induced hypoalgesia (EIH) in healthy individuals. We anticipated that the primary and secondary changes in pain perception and modulation may differ between running intensities. Sixty-six women were randomly assigned to one of three treadmill running intensities for 35 min: 40% reserved heart rate (HRR), 55% HRR, or 70% HRR. The effects of EIH were assessed using pressure pain thresholds (PPT) and tolerance thresholds (PPTol). We measured conditional pain modulation (CPM). Compared with baseline, PPT and PPTol significantly increased in all groups during running and at the 5-10-min follow-up. The PPT and PPTol changes in the moderate- and low-intensity groups were significantly higher than those in the high-intensity group during running and 24 h after running, while the CPM responses of the high-intensity group were significantly reduced at the 24-h follow-up. Moderate- and low-intensity running may elicit significant primary and secondary (persisting over 24 h) EIH effects and increase CPM responses in females. However, high-intensity running induced only limited analgesic effects and reduced CPM responses, which may be attributed to the activation of endogenous pain modulation.
Collapse
Affiliation(s)
- Xu Zi‐Han
- School of Sport Medicine and RehabilitationBeijing Sport UniversityBeijingChina
| | - An Nan
- School of Sport Medicine and RehabilitationBeijing Sport UniversityBeijingChina
| | - Chang Jeremy Rui
- Department of Rehabilitation SciencesThe Hong Kong Polytechnic UniversityHong KongChina
| | - Yang Yong‐Long
- School of Sport Medicine and RehabilitationBeijing Sport UniversityBeijingChina
| |
Collapse
|
13
|
Mohrsen A, Lund H, Rasmussen SZ, Vægter HB, Vela J, Hansen S, Christensen SWM. Acute exercise of painful muscles does not reduce the hypoalgesic response in young healthy women - a randomized crossover study. Scand J Pain 2023; 23:599-607. [PMID: 37137551 DOI: 10.1515/sjpain-2022-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/12/2023] [Indexed: 05/05/2023]
Abstract
OBJECTIVES Exercise-induced hypoalgesia (EIH) is characterized by an increase in pain threshold following acute exercise. EIH is reduced in some individuals with chronic musculoskeletal pain, although the mechanisms are unknown. It has been hypothesized that this may relate to whether exercises are performed in painful or non-painful body regions. The primary aim of this randomized experimental crossover study was to investigate whether the presence of pain per se in the exercising muscles reduced the local EIH response. The secondary aim was to investigate if EIH responses were also reduced in non-exercising remote muscles. METHODS Pain-free women (n=34) participated in three separate sessions. In session 1, the maximal voluntary contraction (MVC) for a single legged isometric knee extension exercise was determined. In sessions 2 and 3, pressure pain thresholds (PPT) were assessed at the thigh and shoulder muscles before and after a 3-min exercise at 30 % of MVC. Exercises were performed with or without thigh muscle pain, which was induced by either a painful injection (hypertonic saline, 5.8 %) or a non-painful injection (isotonic saline, 0.9 %) into the thigh muscle. Muscle pain intensity was assessed with an 11-point numerical rating scale (NRS) at baseline, after injections, during and after exercises. RESULTS PPTs increased at thigh and shoulder muscles after exercise with painful (14.0-24.9 %) and non-painful (14.3-19.5 %) injections and no significant between-injection EIH differences were observed (p>0.30). Muscle pain intensity was significantly higher following the painful injection compared to the non-painful injection (p<0.001). CONCLUSIONS Exercising painful muscles did not reduce the local or remote hypoalgesic responses, suggesting that the pain-relieving effects of isometric exercises are not reduced by exercising painful body regions. ETHICAL COMMITTEE NUMBER S-20210184. TRIAL REGISTRATION NUMBER NCT05299268.
Collapse
Affiliation(s)
- Anders Mohrsen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Henrik Lund
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Henrik Bjarke Vægter
- Pain Research Group, Pain Center, University Hospital Odense, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Jonathan Vela
- Department of Rheumatology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Simon Hansen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Steffan Wittrup McPhee Christensen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Physiotherapy, University College of Northern Denmark, Aalborg, Denmark
| |
Collapse
|
14
|
Does Exercise-Induced Hypoalgesia Depend on Exercise Duration? BIOLOGY 2023; 12:biology12020222. [PMID: 36829500 PMCID: PMC9953562 DOI: 10.3390/biology12020222] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Acute physical activity is assumed to lead to exercise-induced hypoalgesia (EIH). Yet, little research has been conducted dealing with the influence of exercise duration on EIH. The aim of this study was to investigate the effects of three different exercise durations using the same intensity compared to a control session on EIH. A total of 36 participants conducted three different exercise sessions on a bicycle ergometer for 30, 45, and 60 min, respectively, in addition to a passive control session. The intensity was set to 75% of the individual's VO2max. Pre and post exercise, pain sensitivity was measured employing pressure pain thresholds (PPT) at the elbow, knee, and ankle joints, as well as the sternum and forehead. In addition, the conditioned pain modulation (CPM) response was conducted pre and post exercise. The results reveal that the exercises neither led to any changes in PPT measured at any landmark nor induced any CPM response effects. These results do not confirm the hypoalgesic effects usually observed after exercise. The reasons explaining these results remain rather elusive but might be explained by the low intensities chosen leading to a milder release of pain inhibiting substances, the landmarks employed for PPT measurements, or potential non-responsiveness of participants.
Collapse
|
15
|
Tour J, Sandström A, Kadetoff D, Schalling M, Kosek E. The OPRM1 gene and interactions with the 5-HT1a gene regulate conditioned pain modulation in fibromyalgia patients and healthy controls. PLoS One 2022; 17:e0277427. [PMID: 36342939 PMCID: PMC9639841 DOI: 10.1371/journal.pone.0277427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
Fibromyalgia (FM) patients have dysfunctional endogenous pain modulation, where opioid and serotonergic signaling is implicated. The aim of this study was to investigate whether genetic variants in the genes coding for major structures in the opioid and serotonergic systems can affect pain modulation in FM patients and healthy controls (HC). Conditioned pain modulation (CPM), evaluating the effects of ischemic pain on pressure pain sensitivity, was performed in 82 FM patients and 43 HC. All subjects were genotyped for relevant functional polymorphisms in the genes coding for the μ-opioid receptor (OPRM1, rs1799971), the serotonin transporter (5-HTT, 5-HTTLPR/rs25531) and the serotonin 1a receptor (5-HT1a, rs6295). Results showed the OPRM1 G-allele was associated with decreased CPM. A significant gene-to-gene interaction was found between the OPRM1 and the 5-HT1a gene. Reduced CPM scores were seen particularly in individuals with the OPRM1 G*/5-HT1a CC genotype, indicating that the 5-HT1a CC genotype seems to have an inhibiting effect on CPM if an individual has the OPRM1 G-genotype. Thus, regardless of pain phenotype, the OPRM1 G-allele independently as well as with an interaction with the 5-HT1a gene influenced pain modulation. FM patients had lower CPM than HC but no group differences were found regarding the genetic effects on CPM, indicating that the results reflect more general mechanisms influencing pain modulatory processes rather than underlying the dysfunction of CPM in FM. In conclusion, a genetic variant known to alter the expression of, and binding to, the my-opioid receptor reduced a subject’s ability to activate descending pain inhibition. Also, the results suggest a genetically inferred gene-to-gene interaction between the main opioid receptor and a serotonergic structure essential for 5-HT transmission to modulate pain inhibition. The results in this study highlight the importance of studying joint synergistic and antagonistic effects of neurotransmittor systems in regard to pain modulation.
Collapse
Affiliation(s)
- Jeanette Tour
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology, Blekinge Hospital, Karlskrona, Sweden
- * E-mail:
| | - Angelica Sandström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Diana Kadetoff
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Spine Center, Löwenströmska Hospital, Upplands Väsby, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Exercise addiction, pain and injuries in amateur athletes. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-022-01004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Hansen S, Petersen KK, Sloth E, Manum LA, McDonald AK, Andersen PG, Vaegter HB. Hypoalgesia after exercises with painful vs. non-painful muscles in healthy subjects - a randomized cross-over study. Scand J Pain 2022; 22:614-621. [PMID: 34958721 DOI: 10.1515/sjpain-2021-0161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/12/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Exercise-induced hypoalgesia (EIH) is a decrease in the pain sensitivity after exercise. Individuals with chronic pain show less EIH after one exercise session compared with pain-free individuals possibly due to pain in exercising muscles. The primary aim of this randomized controlled cross-over study was to compare the EIH response at the exercising thigh muscle following exercises performed with painful vs. non-painful muscles. Secondary aims were to explore if a reduced EIH response was confined to the painful muscle, and whether the muscle pain intensity and the EIH responses were negatively associated. METHODS In two sessions, 34 pain-free participants received a painful (hypertonic saline, 5.8%) injection and a control (isotonic saline, 0.9%) injection in the right thigh muscle before performing a 3 min isometric wall squat exercise. Pressure pain thresholds (PPTs) were assessed at both thighs and the left neck/shoulder at baseline, after injections and after exercise. Pain intensities in the thighs were rated on numerical rating scales (NRS: 0-10). RESULTS Hypertonic saline induced moderate thigh pain at rest (NRS: 4.6 ± 2.1) compared to the control injection (NRS: 0.3 ± 0.4; p<0.001). EIH at the thighs and neck/shoulder were not different between sessions (Injected thigh: 0 kPa; 95% CI: -51 to 52; Contralateral thigh: -6 kPa; 95% CI: -42 to 30; neck/shoulder: 19 kPa; 95% CI: -6 to 44). No significant associations between pain intensity ratings immediately after the Painful injection and EIH responses at any assessment sites were found (right thigh: β=0.08, 95% CI: -12.95 to 20.64, p=0.64, left thigh: β=-0.33, 95% CI: -27.86 to 0.44, p=0.06; neck/shoulder: β=-0.18, 95% CI: -15.11 to 4.96, p=0.31). CONCLUSIONS Pain in the area of an exercising muscle did not reduce local or systemic EIH responses. TRIAL REGISTRATION NUMBER NCT04354948.
Collapse
Affiliation(s)
- Simon Hansen
- Department of Health Science and Technology, SMI, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Kristian Kjær Petersen
- Department of Health Science and Technology, SMI, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Department of Health Science and Technology, Center for Neuroplasticity and Pain, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Emilie Sloth
- School of Physiotherapy, University College Lillebaelt, Odense, Denmark
| | | | | | | | - Henrik Bjarke Vaegter
- Pain Research Group, Pain Center, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
18
|
Exercise-induced hypoalgesia (EIH) in response to different exercise intensities. Eur J Appl Physiol 2022; 122:2213-2222. [PMID: 35809091 PMCID: PMC9463310 DOI: 10.1007/s00421-022-04997-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022]
Abstract
Purpose Acute physical activity leads to exercise-induced hypoalgesia (EIH). The aim of this study was to investigate the effects of four different exercise intensities on EIH. Methods 25 male (age: 24.7 ± 3.0) subjects underwent four different exercise sessions on a bicycle ergometer for 30 min each at 60, 80, 100, and 110% of the individual anaerobic threshold on separate days in a randomized crossover design. Before, as well as 5- and 45-min post-exercise, pain sensitivity was measured employing pain pressure thresholds (PPT) at the elbow, knee, and ankle joints as well as the sternum and forehead. Besides, conditioned pain modulation (CPM) was conducted using thermal test- and conditioned stimuli before, 5-, and 45-min post-exercise. Results A main time effect was observed regarding PPT at all landmarks except for the forehead with higher values observed 5 and 45 min post-exercise compared to the pre-values. Yet, no interaction effects occurred. CPM did not change in response to any of the intensities used. Conclusion EIH occurs 5 and 45 min after exercise regardless of the intensity used at the joints and sternum which might be explained by local pain-inhibiting pathways and probably to a limited degree by central mechanisms, as no hypoalgesia was observed at the forehead and no changes in CPM occurred. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-022-04997-1.
Collapse
|
19
|
Peterson JA, Bemben MG, Larson RD, Pereira H, Crowson HM, Black CD. Symptomatic but not Asymptomatic COVID-19 Impairs Conditioned Pain Modulation in Young Adults. THE JOURNAL OF PAIN 2022; 23:1923-1932. [PMID: 35872293 PMCID: PMC9303070 DOI: 10.1016/j.jpain.2022.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 01/08/2023]
Abstract
Pain is a common symptom reported in COVID-19 patients. Impaired endogenous pain-modulatory mechanisms such as conditioned pain modulation (CPM), and exercise-induced hypoalgesia (EIH) have been found in chronic pain conditions but is often overlooked in acute conditions that evoke painful symptoms, such as COVID-19. The purpose was to compare pressure-pain sensitivity, CPM, and EIH function among individuals who previously had COVID-19, both symptomatically and asymptomatically, and a healthy control group. Pressure pain thresholds of 59 participants were assessed in the forearm and leg using a pressure algometer before and after 1) submersion of their dominant foot in cold water (2°C) for 1min; and 2) isometric knee extension performed to task-failure at 25% of their maximal contraction. The CPM response was attenuated in individuals who were infected with symptomatic COVID-19 (N = 26) compared to asymptomatic COVID-19 (N = 13) in arm (-1.0% ± 20.3 vs 33.3% ± 26.2; P < .001) and leg (12.8% ± 22.0 vs 33.8% ± 28.2; P = .014) and compared to controls (N = 20) in arm only (-1.0% ± 26.2 vs 23.4% ± 28.2; P = .004). The EIH response was not different between groups. CPM was impaired in individuals who had symptomatic COVID-19, which may have long-term implications on pain modulation. Perspective This study reveals that CPM was impaired in individuals who had symptomatic COVID-19 during the first wave of COVID-19, pre vaccine. These findings present a preliminary motive to study the long-term implications of COVID-19 and its effects on pain modulation.
Collapse
|
20
|
Ray LN, O'Connor PJ. Session of yoga, with and without slow (Ujjayi) breathing, reduces anxiety; no change on acute pain sensitivity and endogenous pain modulation. Explore (NY) 2022; 19:362-370. [PMID: 35915040 DOI: 10.1016/j.explore.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Yoga is an increasingly popular mode of exercise that boasts health promoting effects including pain relief. A single bout of exercise induces a reduced sensitivity to noxious heat, but the mechanism for this effect and whether it occurs after a single session of yoga is unexplored. The primary aim of this study was to test, using a post-test only between-subjects design, main and interactive effects of yoga and slow breathing on both sensitivity to heat pain and endogenous pain modulation processing in healthy young women DESIGN: Fifty-four women were block randomized into one of four conditions: yoga with slow breathing instructions (Vinyasa), yoga with no breathing instructions, seated rest with slow breathing instructions and seated rest with no breathing instructions. The conditions were completed alone is a small room in which participant followed video-based instructions and models. The yoga was perceived as low-to-moderate intensity. RESULTS Two factor ANOVA demonstrated no significant association between yoga postures and slow breathing, and there was no significant interaction observed for sensitivity to heat pain or endogenous pain modulation. These findings were unchanged in ANCOVAs that controlled for four potential confounding variables: post-condition reduction in systolic blood pressure or state anxiety, pain induced by the conditions and expectations. Compared to the non-yoga conditions, participant in yoga conditions resulted in a significant reduction in state anxiety scores. CONCLUSIONS It is concluded that a single session of low-to-moderate intensity yoga with, or without slow breathing, reduces state anxiety but has no effect on heat pain sensitivity or endogenous pain modulation.
Collapse
Affiliation(s)
- Lashawnna N Ray
- Military Performance Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA, 01760, USA; Department of Kinesiology, University of Georgia, Athens, GA, 30602, USA.
| | - Patrick J O'Connor
- Department of Kinesiology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
21
|
Kuithan P, Rushton A, Heneghan NR. [Pain modulation through exercise : Exercise-induced hypoalgesia in physiotherapy]. Schmerz 2022; 36:237-241. [PMID: 35166902 DOI: 10.1007/s00482-022-00623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/05/2021] [Accepted: 01/02/2022] [Indexed: 10/19/2022]
Abstract
Exercise prescription is a central tenet of physiotherapy. One of the numerous benefits of exercise is its influence on endogenous pain modulation. Exercise-induced hypoalgesia (EIH) refers to a short-term change in pain sensitivity following an acute bout of exercise. Interest in this phenomenon has grown considerably with over 150 articles published, including four systematic reviews in 2020 alone.This narrative review provides an overview of EIH including a definition and summary of the underlying mechanisms and mediating factors. Recent systematic reviews assessing EIH in people with and without musculoskeletal complaints were evaluated using AMSTAR2. Review findings confirm the presence of EIH. For asymptomatic people, confidence in the evidence was low to very low due to high heterogeneity of included studies, risk of bias, and study eligibility. For people with pain, there is very low confidence, at best, that subgroups or isometric exercise show altered EIH. Despite the growing body of evidence, challenges within the available evidence due to its complex nature are highlighted. Recommendations regarding outcome measures and exercise parameters are required, and further understanding of reliability and validity of EIH is needed. There is a demand to further elucidate these parameters and contextual factors to advance our understanding of EIH. Additional clinical research, especially in patient populations, is required to then provide implications for rehabilitation.
Collapse
Affiliation(s)
- Pauline Kuithan
- Centre of Precision Rehabilitation for Spinal Pain, School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, B15 2TT, Edgbaston, Birmingham, Großbritannien. .,School of Nursing, Midwifery and Health, Faculty of Health and Life Sciences, Coventry University, Jordan Well, CV1 5RW, Coventry, Großbritannien.
| | - Alison Rushton
- Centre of Precision Rehabilitation for Spinal Pain, School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, B15 2TT, Edgbaston, Birmingham, Großbritannien.,School of Physical Therapy, Faculty of Health Science, Western University, Richmond Street, N6A 3K7, London, Ontario, Kanada
| | - Nicola R Heneghan
- Centre of Precision Rehabilitation for Spinal Pain, School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, B15 2TT, Edgbaston, Birmingham, Großbritannien
| |
Collapse
|
22
|
Song JS, Yamada Y, Wong V, Bell ZW, Spitz RW, Abe T, Loenneke JP. Hypoalgesia following isometric handgrip exercise with and without blood flow restriction is not mediated by discomfort nor changes in systolic blood pressure. J Sports Sci 2021; 40:518-526. [PMID: 34823439 DOI: 10.1080/02640414.2021.2003569] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The purpose was to examine the effect of isometric handgrip exercise with and without blood flow restriction on exercise-induced hypoalgesia at a local and non-local site, and its underlying mechanisms. Sixty participants (21 males & 39 females, 18-35 years old) completed 3 trials: four sets of 2-minute isometric handgrip exercise at 30% of maximum handgrip strength; isometric handgrip exercise with blood flow restriction at 50% of arterial occlusion pressure; and a non-exercise time-matched control. Pain thresholds increased similarly in both exercise conditions at a local (exercise conditions: ~0.45 kg/cm2, control: ~-0.04 kg/cm2) and non-local site (exercise conditions: ~0.37 kg/cm2, control: ~-0.16 kg/cm2). Blood flow restriction induced greater feelings of discomfort compared to exercise alone [median difference (95% credible interval) of 4.5 (0.5, 8.6) arbitrary units]. Blood pressure increased immediately after exercise (systolic: 10.3 mmHg, diastolic: 7.7 mmHg) and decreased in recovery. There was no within participant correlation between changes in discomfort and pressure pain threshold. A bout of isometric handgrip exercise with or without blood flow restriction can provide exercise-induced hypoalgesia at a local and non-local site. However, discomfort and changes in systolic blood pressure do not explain this response.
Collapse
Affiliation(s)
- Jun Seob Song
- Department of Health Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Yujiro Yamada
- Department of Health Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Vickie Wong
- Department of Health Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Zachary W Bell
- Department of Health Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Robert W Spitz
- Department of Health Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Takashi Abe
- Department of Health Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Jeremy P Loenneke
- Department of Health Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| |
Collapse
|
23
|
Abstract
BACKGROUND Pain is a complex and highly subjective phenomenon that can be modulated by several factors. On the basis of results from experimental and clinical studies, the existence of endogenous pain modulatory mechanisms that can increase or diminish the experience of pain is now accepted. METHODS In this narrative review, the pain modulatory effects of exercise, stress, and cognitions in humans are assessed. RESULTS Experimental studies on the effect of exercise have revealed that pain-free participants show a hypoalgesic response after exercise. However, in some patients with chronic pain, this response is reduced or even hyperalgesic in nature. These findings will be discussed from a mechanistic point of view. Stress is another modulator of the pain experience. Although acute stress may induce hypoalgesia, ongoing clinical stress has detrimental effects on pain in many patients with chronic pain conditions, which have implications for the understanding, assessment, and treatment of stress in patients with pain. Finally, cognitive strategies play differing roles in pain inhibition. Two intuitive strategies, thought suppression and focused distraction, will be reviewed as regards experimental, acute, and chronic pain. CONCLUSION On the basis of current knowledge on the role of exercise, stress, and cognitive pain control strategies on the modulation of pain, implications for treatment will be discussed.
Collapse
|
24
|
Varela-Rodríguez S, Sánchez-González JL, Sánchez-Sánchez JL, Delicado-Miralles M, Velasco E, Fernández-de-las-Peñas C, Calderón-Díez L. Effects of Percutaneous Electrolysis on Endogenous Pain Modulation: A Randomized Controlled Trial Study Protocol. Brain Sci 2021; 11:brainsci11060801. [PMID: 34204415 PMCID: PMC8235332 DOI: 10.3390/brainsci11060801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 01/02/2023] Open
Abstract
Percutaneous electrolysis consists of the application of a galvanic electrical current throughout an acupuncture needle. It has been previously hypothesized that needling procedures' neurophysiological effects may be related to endogenous pain modulation (EPM). This protocol study describes the design of a double-blind (participant, assessor) randomized controlled trial with the aim to investigate whether percutaneous electrolysis is able to enhance EPM and whether the effect is different between two applications depending on the dosage of the galvanic electrical current. Seventy-two asymptomatic subjects not reporting the presence of pain symptoms the previous 6 months before the study, aged 18-40 years, are randomized into one of four groups: a control group who does not receive any intervention, a needling group who receives a needling intervention without electrical current, a low-intensity percutaneous electrolysis group (0.3 mA × 90 s), and a high-intensity percutaneous electrolysis group (three bouts of 3 mA × 3 s). Needling intervention consists of ultrasound-guided insertion of the needle on the common extensor tendon of the lateral epicondyle. The primary outcome is conditioned pain modulation (CPM), and secondary outcomes include widespread pressure pain sensitivity (pressure pain thresholds (PPT) over the lateral epicondyle, the cervical spine, and the tibialis anterior muscle) and temporal summation (TS). We expected that percutaneous electrolysis would have a greater influence on CPM than an isolated needling procedure and no intervention. In addition, we also postulated that there might be differences in outcome measures depending on the intensity of the electrical current during the percutaneous electrolysis application. This study makes a new contribution to the field of neurophysiological effects of percutaneous electrolysis and needling interventions.
Collapse
Affiliation(s)
- Sergio Varela-Rodríguez
- Department of Nursery and Physiotherapy, Faculty of Nursery and Physiotherapy, University of Salamanca, 37007 Salamanca, Spain; (S.V.-R.); (J.L.S.-G.); (J.L.S.-S.); (L.C.-D.)
| | - Juan Luis Sánchez-González
- Department of Nursery and Physiotherapy, Faculty of Nursery and Physiotherapy, University of Salamanca, 37007 Salamanca, Spain; (S.V.-R.); (J.L.S.-G.); (J.L.S.-S.); (L.C.-D.)
| | - José Luis Sánchez-Sánchez
- Department of Nursery and Physiotherapy, Faculty of Nursery and Physiotherapy, University of Salamanca, 37007 Salamanca, Spain; (S.V.-R.); (J.L.S.-G.); (J.L.S.-S.); (L.C.-D.)
| | | | - Enrique Velasco
- Instituto de Neurociencias de Alicante (CSIC-UMH), 03550 Alicante, Spain; (M.D.-M.); (E.V.)
| | - César Fernández-de-las-Peñas
- Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Universidad Rey Juan Carlos (URJC), 28922 Madrid, Spain
- Cátedra Institucional en Docencia, Clínica e Investigación en Fisioterapia: Terapia Manual, Punción Seca y Ejercicio Terapéutico, Universidad Rey Juan Carlos, 28922 Madrid, Spain
- Correspondence: or ; Tel.: +34-91-488-88-84
| | - Laura Calderón-Díez
- Department of Nursery and Physiotherapy, Faculty of Nursery and Physiotherapy, University of Salamanca, 37007 Salamanca, Spain; (S.V.-R.); (J.L.S.-G.); (J.L.S.-S.); (L.C.-D.)
| |
Collapse
|
25
|
Poli-Neto OB, Oliveira AMZ, Salata MC, Cesar Rosa-E-Silva J, Machado DRL, Candido-Dos-Reis FJ, Nogueira AA. Strength Exercise Has Different Effects on Pressure Pain Thresholds in Women with Endometriosis-Related Symptoms and Healthy Controls: A Quasi-experimental Study. PAIN MEDICINE 2021; 21:2280-2287. [PMID: 31800061 DOI: 10.1093/pm/pnz310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To evaluate the influence of strength exercises on remote pain sensitivity in women with endometriosis-related symptoms. DESIGN A quasi-experimental study. SETTING University Hospital, a tertiary health unit. SUBJECTS Twenty-one women with endometriosis-related symptoms and 21 healthy women provided written informed consent. METHODS The participants performed weekly exercise sessions on an extensor chair for four consecutive weeks. An electronic algometer was used to measure the pressure pain thresholds on the nondominant forearm. Heart rate and blood pressure were measured using a digital device. All measurements were taken before, immediately after, and 10 and 20 minutes after the exercise series. RESULTS Women with endometriosis-related symptoms had lower pain thresholds. Pressure pain thresholds increased immediately after exercise in healthy women, returning to baseline level 20 minutes after exercise. Women with endometriosis-related symptoms did not present significant pressure pain threshold alterations after exercise. However, they had a higher heart rate and systolic, diastolic, and average blood pressure than healthy women at all the timepoints. There were no consistent correlations between pressure pain thresholds and heart rate or blood pressure. CONCLUSIONS The strength exercise regimen used in this study increased pain thresholds in healthy women but not in women with endometriosis-related painful symptoms. The maintenance or even worsening of pain perception after exercise in women with persistent pain, such as those with endometriosis, may limit their adherence to a physical training program, which in turn could prevent them from experiencing the long-term beneficial effects of exercise.
Collapse
Affiliation(s)
- Omero Benedicto Poli-Neto
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Arthur Marques Zecchin Oliveira
- Sport Science, School of Physical Education and Sport, Ribeirão Preto Medical School, University of the São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mariana Cecchi Salata
- Physiotherapy, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Julio Cesar Rosa-E-Silva
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dalmo Roberto Lopes Machado
- Sport Science, School of Physical Education and Sport, Ribeirão Preto Medical School, University of the São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Francisco Jose Candido-Dos-Reis
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antonio Alberto Nogueira
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
26
|
Song JS, Spitz RW, Yamada Y, Bell ZW, Wong V, Abe T, Loenneke JP. Exercise-induced hypoalgesia and pain reduction following blood flow restriction: A brief review. Phys Ther Sport 2021; 50:89-96. [PMID: 33940556 DOI: 10.1016/j.ptsp.2021.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To review past literature regarding exercise-induced hypoalgesia and pain reduction following blood flow restriction interventions, and to discuss potential mechanisms as well as future considerations towards the efficacy of blood flow restriction in pain reduction following exercise. METHODS To be eligible for inclusion, studies had to include acute exercise, or long-term training interventions, with blood flow restriction, along with including pre and post intervention pain measurements. RESULTS A total of 13 studies met the inclusion criteria. Among these 13 studies, 3 studies examined exercise-induced hypoalgesia after an acute bout of resistance exercise with blood flow restriction, and 10 studies investigated pain reduction following long-term blood flow restriction training. CONCLUSIONS Existing literature suggests that low load resistance exercise with blood flow restriction may serve as an effective pain management method for those who are unable or unwilling to train with high loads. Several potential mechanisms have been suggested, however, the roles of these mechanisms are still unclear and require further clarification. Future research should consider implementing different methods of blood flow restriction application, and research study design to clarify the utility and efficacy of blood flow restriction as a pain management tool, by itself or in combination with exercise.
Collapse
Affiliation(s)
- Jun Seob Song
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, United States
| | - Robert W Spitz
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, United States
| | - Yujiro Yamada
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, United States
| | - Zachary W Bell
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, United States
| | - Vickie Wong
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, United States
| | - Takashi Abe
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, United States
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, United States.
| |
Collapse
|
27
|
Morrill MI, Mace RA, Greenberg J, Lin A, Choi KW, Vranceanu AM. An Exploratory Analysis of Accelerometer-Measured Physical Activity and Emotional Functioning in Patients With Chronic Pain. J Acad Consult Liaison Psychiatry 2021; 62:234-242. [PMID: 33198963 PMCID: PMC8052383 DOI: 10.1016/j.psym.2020.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Physical activity (PA) can benefit pain and emotional functioning for patients with chronic pain. However, associations between different intensities of PA (moderate-to-vigorous PA, light PA, and sedentary behavior), pain, and emotional functioning are not well understood in patients with chronic pain. OBJECTIVE The goals of this study were to (1) describe PA patterns of adult patients with chronic pain using accelerometers and (2) explore preliminary associations between PA intensities, pain, and emotional functioning. METHODS Thirteen patients with chronic pain completed self-report measures of pain, cognitive and emotional reactions to pain, depression and anxiety, and wore ActiGraph accelerometers for 1 week before participating in a pilot mind-body PA intervention. RESULTS Sedentary behavior and light activity were strongly inversely correlated (r = -0.93, P < 0.01). Greater sedentary behavior was associated with lower pain during activity (r = -0.55, P = 0.05), and greater light activity was correlated with higher pain during activity (r = 0.63, P = 0.02) and pain at rest (r = 0.54, P = 0.06). However, greater moderate-to-vigorous PA was correlated with lower pain at rest (r = -0.66, P = 0.01), pain catastrophizing (r = -0.53, P = 0.06), depression (r = -0.44, P = 0.14), and anxiety (r = -0.57, P = 0.04). CONCLUSIONS Objective accelerometer-measured PA has the potential to reveal differential associations between PA intensities, pain, and emotional functioning. Findings here suggest preliminary recommendations to focus on interconnections between moderate-to-vigorous PA, pain at rest, pain catastrophizing, anxiety, and depression for patients with chronic pain.
Collapse
Affiliation(s)
- Melinda I Morrill
- Integrated Brain Health Clinical and Research Program, Massachusetts General Hospital, Boston, MA; Department of Psychiatry, Harvard Medical School, Boston, MA; Institut für Psychologie, Universität Klagenfurt, Klagenfurt, Carinthia.
| | - Ryan A Mace
- Integrated Brain Health Clinical and Research Program, Massachusetts General Hospital, Boston, MA; Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Jonathan Greenberg
- Integrated Brain Health Clinical and Research Program, Massachusetts General Hospital, Boston, MA; Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Ann Lin
- Integrated Brain Health Clinical and Research Program, Massachusetts General Hospital, Boston, MA; Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Karmel W Choi
- Integrated Brain Health Clinical and Research Program, Massachusetts General Hospital, Boston, MA; Department of Psychiatry, Harvard Medical School, Boston, MA; T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Ana-Maria Vranceanu
- Integrated Brain Health Clinical and Research Program, Massachusetts General Hospital, Boston, MA; Department of Psychiatry, Harvard Medical School, Boston, MA
| |
Collapse
|
28
|
Bonello C, Girdwood M, De Souza K, Trinder NK, Lewis J, Lazarczuk SL, Gaida JE, Docking SI, Rio EK. Does isometric exercise result in exercise induced hypoalgesia in people with local musculoskeletal pain? A systematic review. Phys Ther Sport 2021; 49:51-61. [PMID: 33601254 DOI: 10.1016/j.ptsp.2020.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this review was to investigate if exercise induced hypoalgesia (EIH) occurs following isometric muscle contraction in people with local musculoskeletal symptoms. DESIGN Systematic review. DATA SOURCES MEDLINE, EMBASE, CINAHL & SportDiscus electronic databases were searched (inception to April 2020). ELIGIBILITY CRITERIA Two authors independently evaluated eligibility. Randomised controlled and crossover (repeated measures) trials that measured the effects of isometric exercise in participants with localised musculoskeletal pain during, and up to 2 hours after isometric exercise were included. Other inclusion criteria included comparison to another intervention, or comparison to healthy controls. Primary outcomes were experimentally induced pain thresholds and secondary outcomes included measures of pain sensitivity from clinical testing. RESULTS 13 studies with data from 346 participants were included for narrative synthesis. EIH was reported in some upper and lower limb studies but there were no consistent data to show isometric exercises were superior to comparison interventions. CONCLUSION There was no consistent evidence for EIH following isometric exercise in people with musculoskeletal pain. These findings are different to those reported in asymptomatic populations (where EIH is consistently demonstrated) as well as conditions associated with widespread symptoms such as fibromyalgia (where isometric exercise may induce hyperalgesia). Although well tolerated when prescribed, isometric exercise did not induce EIH consistently for people seeking care for local musculoskeletal symptoms. The variance in the dose, location of contraction and intensity of protocols included in this review may explain the inconsistent findings. Further work is required to better understand endogenous analgesia in musculoskeletal pain conditions.
Collapse
Affiliation(s)
- Christian Bonello
- La Trobe Sports and Exercise Medicine Research Centre, La Trobe University, Bundoora, Victoria, Australia
| | - Michael Girdwood
- La Trobe Sports and Exercise Medicine Research Centre, La Trobe University, Bundoora, Victoria, Australia
| | - Keith De Souza
- La Trobe Sports and Exercise Medicine Research Centre, La Trobe University, Bundoora, Victoria, Australia
| | - Nicola K Trinder
- School of Health and Social Work, University of Hertfordshire, Hatfield, United Kingdom
| | - Jeremy Lewis
- School of Health and Social Work, University of Hertfordshire, Hatfield, United Kingdom; Therapy Department, Central London Community Healthcare National Health Service Trust, London, United Kingdom; Department of Physical Therapy & Rehabilitation Science, College of Health Sciences, Qatar University, Doha, Qatar
| | - Stephanie L Lazarczuk
- School of Allied Health Sciences, Griffith University, Gold Coast Campus, Queensland, Australia
| | - Jamie E Gaida
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Australian Capital Territory, Australia
| | - Sean I Docking
- La Trobe Sports and Exercise Medicine Research Centre, La Trobe University, Bundoora, Victoria, Australia
| | - Ebonie K Rio
- La Trobe Sports and Exercise Medicine Research Centre, La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|
29
|
Vaegter HB, Petersen KK, Sjodsholm LV, Schou P, Andersen MB, Graven-Nielsen T. Impaired exercise-induced hypoalgesia in individuals reporting an increase in low back pain during acute exercise. Eur J Pain 2021; 25:1053-1063. [PMID: 33400333 DOI: 10.1002/ejp.1726] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/15/2020] [Accepted: 12/28/2020] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Exercise therapy is recommended for low back pain (LBP) although the immediate effects on pain are highly variable. In 96 individuals with LBP this cross-sectional study explored (a) the magnitude of exercise-induced hypoalgesia (EIH) and (b) measures of pain sensitivity and clinical pain manifestations in individuals reporting a clinical relevant increase in back pain during physical activity compared with individuals reporting low or no increase in back pain during physical activity. METHODS Cuff algometry was performed at baseline on the leg to assess pressure pain threshold (cPPT), tolerance (cPTT) and temporal summation of pain (cTSP). Manual PPTs were assessed on the back and leg before and after a 6-min walk test (6MWT). Back pain was scored on a numerical rating scale (NRS) after each minute of walking. The EIH-effect was estimated as the increase in PPTs after the walk exercise. RESULTS Twenty-seven individuals reported an increase of ≥2/10 in pain NRS scores during walking and compared with the individuals with <2/10 NRS scores: cPPT and EIH-effects were lower whereas cTSP, pain intensity and disability were increased (p < 0.03). Baseline NRS scores, EIH and pain thresholds were associated with the likelihood of an increase of ≥2/10 in back pain intensity during walking (p < 0.05). CONCLUSIONS Pain flares in response to physical activity in individuals with LBP seem to be linked with baseline pain sensitivity and pain intensity, and impair the beneficial EIH. Such information may better inform when individuals with LBP will have a beneficial effect of physical activity. SIGNIFICANCE Pain flares in response to physical activity in individuals with LBP seem to be linked with baseline pain sensitivity and pain intensity, and impair the beneficial exercise-induced hypoalgesia. Such information may better inform when individuals with LBP will have a beneficial effect of physical activity.
Collapse
Affiliation(s)
- Henrik B Vaegter
- Pain Research Group, Department of Anesthesiology and Intensive Care Medicine, Pain Center, University Hospital Odense, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Kristian K Petersen
- SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.,Center for Neuroplasticity and Pain, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Line V Sjodsholm
- Rehabilitation Center Hollufgaard, Odense Municipality, Odense, Denmark
| | - Pia Schou
- Rehabilitation Center Hollufgaard, Odense Municipality, Odense, Denmark
| | | | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
30
|
Wippert PM, Niederer D, Drießlein D, Beck H, Banzer W, Schneider C, Schiltenwolf M, Mayer F. Psychosocial Moderators and Mediators of Sensorimotor Exercise in Low Back Pain: A Randomized Multicenter Controlled Trial. Front Psychiatry 2021; 12:629474. [PMID: 34393840 PMCID: PMC8358182 DOI: 10.3389/fpsyt.2021.629474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
The effects of exercise interventions on unspecific chronic low back pain (CLBP) have been investigated in many studies, but the results are inconclusive regarding exercise types, efficiency, and sustainability. This may be because the influence of psychosocial factors on exercise induced adaptation regarding CLBP is neglected. Therefore, this study assessed psychosocial characteristics, which moderate and mediate the effects of sensorimotor exercise on LBP. A single-blind 3-arm multicenter randomized controlled trial was conducted for 12-weeks. Three exercise groups, sensorimotor exercise (SMT), sensorimotor and behavioral training (SMT-BT), and regular routines (CG) were randomly assigned to 662 volunteers. Primary outcomes (pain intensity and disability) and psychosocial characteristics were assessed at baseline (M1) and follow-up (3/6/12/24 weeks, M2-M5). Multiple regression models were used to analyze whether psychosocial characteristics are moderators of the relationship between exercise and pain, meaning that psychosocial factors and exercise interact. Causal mediation analysis were conducted to analyze, whether psychosocial characteristics mediate the exercise effect on pain. A total of 453 participants with intermittent pain (mean age = 39.5 ± 12.2 years, f = 62%) completed the training. It was shown, that depressive symptomatology (at M4, M5), vital exhaustion (at M4), and perceived social support (at M5) are significant moderators of the relationship between exercise and the reduction of pain intensity. Further depressive mood (at M4), social-satisfaction (at M4), and anxiety (at M5 SMT) significantly moderate the exercise effect on pain disability. The amount of moderation was of clinical relevance. In contrast, there were no psychosocial variables which mediated exercise effects on pain. In conclusion it was shown, that psychosocial variables can be moderators in the relationship between sensorimotor exercise induced adaptation on CLBP which may explain conflicting results in the past regarding the merit of exercise interventions in CLBP. Results suggest further an early identification of psychosocial risk factors by diagnostic tools, which may essential support the planning of personalized exercise therapy. Level of Evidence: Level I. Clinical Trial Registration: DRKS00004977, LOE: I, MiSpEx: grant-number: 080102A/11-14. https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00004977.
Collapse
Affiliation(s)
- Pia-Maria Wippert
- Sociology of Medicine and Psychobiology, Department of Physical Activity and Health, University of Potsdam, Potsdam, Germany.,Faculty of Health Sciences Brandenburg, University of Potsdam, the Brandenburg Medical School Theodor Fontane and the Brandenburg University of Technology Cottbus, Senftenberg, Germany
| | - Daniel Niederer
- Department of Sports Medicine and Exercise Physiology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - David Drießlein
- Statistical Consulting Unit StaBLab, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heidrun Beck
- University Hospital Carl Gustav Carus at Technical University Dresden, Dresden, Germany
| | - Winfried Banzer
- Department of Preventive and Sports Medicine, Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Marcus Schiltenwolf
- Pain Management, Centre of Orthopaedics and Trauma Surgery, Conservative Orthopaedics and Pain Management, Heidelberg University Hospital, Heidelberg, Germany
| | - Frank Mayer
- Faculty of Health Sciences Brandenburg, University of Potsdam, the Brandenburg Medical School Theodor Fontane and the Brandenburg University of Technology Cottbus, Senftenberg, Germany.,Centre of Sports Medicine, University Outpatient Clinic, University of Potsdam, Potsdam, Germany
| |
Collapse
|
31
|
Exercise-induced hypoalgesia after acute and regular exercise: experimental and clinical manifestations and possible mechanisms in individuals with and without pain. Pain Rep 2020; 5:e823. [PMID: 33062901 PMCID: PMC7523781 DOI: 10.1097/pr9.0000000000000823] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/02/2020] [Accepted: 04/21/2020] [Indexed: 01/07/2023] Open
Abstract
This review describes methodology used in the assessment of the manifestations of exercise-induced hypoalgesia in humans and previous findings in individuals with and without pain. Possible mechanisms and future directions are discussed. Exercise and physical activity is recommended treatment for a wide range of chronic pain conditions. In addition to several well-documented effects on physical and mental health, 8 to 12 weeks of exercise therapy can induce clinically relevant reductions in pain. However, exercise can also induce hypoalgesia after as little as 1 session, which is commonly referred to as exercise-induced hypoalgesia (EIH). In this review, we give a brief introduction to the methodology used in the assessment of EIH in humans followed by an overview of the findings from previous experimental studies investigating the pain response after acute and regular exercise in pain-free individuals and in individuals with different chronic pain conditions. Finally, we discuss potential mechanisms underlying the change in pain after exercise in pain-free individuals and in individuals with different chronic pain conditions, and how this may have implications for clinical exercise prescription as well as for future studies on EIH.
Collapse
|
32
|
Exercise-induced pain threshold modulation in healthy subjects: a systematic review and meta-analysis. ACTA ACUST UNITED AC 2020; 6:11-28. [PMID: 33409362 DOI: 10.21801/ppcrj.2020.63.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Background The use of exercise is a potential treatment option to modulate pain (exercise-induced hypoalgesia). The pain threshold (PT) response is a measure of pain sensitivity that may be a useful marker to assess the effect of physical exercise on pain modulation. Aim The aim of this systematic review and meta-analysis is to evaluate the PT response to exercise in healthy subjects. Methods We searched in MEDLINE, EMBASE, Web of Science, Lilacs, and Scopus using a search strategy with the following search terms: "exercise" OR "physical activity" AND "Pain Threshold" from inception to December 2nd, 2019. As criteria for inclusion of appropriate studies: randomized controlled trials or quasi-experimental studies that enrolled healthy subjects; performed an exercise intervention; assessed PT. Hedge's effect sizes of PT response and their 95% confidence intervals were calculated, and random-effects meta-analyses were performed. Results For the final analysis, thirty-six studies were included (n=1326). From this we found a significant and homogenous increase in PT in healthy subjects (ES=0.19, 95% CI= 0.11 to 0.27, I2=7.5%). According to subgroup analysis the effect was higher in studies: with women (ES=0.36); performing strength exercise (ES=0.34), and with moderate intensity (ES=0.27), and no differences by age were found. Confirmed by the meta-regression analysis. Conclusion This meta-analysis provides evidence of small to moderate effects of exercise on PT in healthy subjects, being even higher for moderate strength exercise and in women. These results support the idea of modulation of the endogenous pain system due to exercise and highlight the need of clinical translation to chronic pain population.
Collapse
|
33
|
Yamamotová A. Endogenous antinociceptive system and potential ways to influence It. Physiol Res 2020; 68:S195-S205. [PMID: 31928038 DOI: 10.33549/physiolres.934351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The biological significance of pain is to protect the organism from possible injury. However, there exists a situation, where, in the interest of survival, it is more important not to perceive pain. Spontaneous suppression of pain or weakening of nociception is mediated by an endogenous antinociceptive (analgesic) system. Its anatomical substrate ranges from the periaqueductal gray matter of the midbrain, through the noradrenergic and serotonergic nuclei of the brain stem to the spinal neurons, which receive "pain" information from nociceptors. Moreover, the activity of this system is under significant control of emotional and cognitive circuits. Pain can be moderated primarily through stimulation of positive emotions, while negative emotions increase pain. Paradoxically, one pain can also suppress another pain. Analgesia can be induced by stress, physical exercise, orosensory stimulation via a sweet taste, listening to music, and after placebo, i.e. when relief from pain is expected. Since pain has sensory, affective, and cognitive components, it turns out that activation of these entire systems can, in specific ways, contribute to pain suppression.
Collapse
Affiliation(s)
- A Yamamotová
- Charles University, Third Faculty of Medicine, Department of Physiology, Ke Karlovu 4, 120 00 Prague 2, Czech Republic.
| |
Collapse
|
34
|
Vaegter HB, Thinggaard P, Madsen CH, Hasenbring M, Thorlund JB. Power of Words: Influence of Preexercise Information on Hypoalgesia after Exercise-Randomized Controlled Trial. Med Sci Sports Exerc 2020; 52:2373-2379. [PMID: 32366799 DOI: 10.1249/mss.0000000000002396] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE Exercise increases pressure pain thresholds (PPT) in pain-free individuals, known as exercise-induced hypoalgesia (EIH). Positive preexercise information can elicit higher EIH responses, but the effect of positive versus negative preexercise information on EIH is unknown. The primary aim of this randomized controlled trial was to compare EIH at the exercising thigh muscle after an isometric squat exercise between individuals receiving positive versus negative preexercise information about the effect of exercise on pain. Secondary aims were to compare EIH at nonexercising muscles between groups, and to investigate the relationship between participants' expectations and EIH. METHODS Eighty-three participants were randomly assigned to brief positive (n = 28), neutral (n = 28) or negative (n = 27) verbal information. The neutral information group was included in the study as a reference group. Pressure pain thresholds at the thigh and trapezius muscles were assessed before and after the intervention (i.e., preexercise information+squat exercise). Expectations of pain relief were assessed using a numerical rating scale (-10 [most negative] to 10 [most positive]). RESULTS Change in quadriceps and trapezius PPT after the squat exercise showed a large difference between the positive and negative information groups (quadriceps, 102 kPa; 95% confidence interval, 55-150; effect size, 1.2; trapezius, 41 kPa; 95% confidence interval, 16-65; effect size:, 0.9). The positive information group had a 22% increase in quadriceps PPT whereas the negative information group had a 4% decrease. A positive correlation was found between expectations and increase in PPT. CONCLUSIONS Negative preexercise information caused hyperalgesia after the wall squat exercise, whereas positive or neutral preexercise information caused hypoalgesia. Positive preexercise information did not change the magnitude of EIH compared with neutral information.
Collapse
Affiliation(s)
| | - Peter Thinggaard
- Research Unit for Musculoskeletal Function and Physiotherapy, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, DENMARK
| | - Casper Høj Madsen
- Research Unit for Musculoskeletal Function and Physiotherapy, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, DENMARK
| | - Monika Hasenbring
- Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Bochum, GERMANY
| | | |
Collapse
|
35
|
Hughes L, Patterson SD. The effect of blood flow restriction exercise on exercise-induced hypoalgesia and endogenous opioid and endocannabinoid mechanisms of pain modulation. J Appl Physiol (1985) 2020; 128:914-924. [DOI: 10.1152/japplphysiol.00768.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study aimed to investigate and compare the magnitude of exercise-induced hypoalgesia (EIH) with low-intensity blood flow restriction (BFR) resistance exercise (RE) at varying pressures to other intensities of resistance exercise and examine endogenous mechanisms of pain reduction. Twelve individuals performed four experimental trials involving unilateral leg press exercise in a randomized crossover design: low-load RE at 30% of one repetition maximum (1RM), high-load RE (70% 1RM), and BFR-RE (30% 1RM) at a low and high pressure. BFR pressure was prescribed relative to limb occlusion pressure at 40% and 80% for the low- and high-pressure trials. Pressure pain thresholds (PPT) were assessed before and 5 min and 24 h following exercise in exercising and nonexercising muscles. Venous blood samples were collected at the same timepoints to determine plasma concentrations of beta-endorphin and 2-arachidonoylglycerol. High-pressure BFR-RE increased PPTs in the exercising limb to a greater extent than all other trials. Comparable systemic EIH effects were observed with HLRE and both BFR-RE trials. PPTs in the exercising limb remained elevated above baseline at 24 h postexercise following both BFR-RE trials. Postexercise plasma beta-endorphin concentration was elevated during the BFR-RE trials. No changes to 2-arachidonoylglycerol concentration were observed. High pressure BFR-RE causes a greater EIH response in the exercising limb that persists for up to 24 h following exercise. The reduction in pain sensitivity with BFR-RE is partly driven by endogenous opioid production of beta-endorphin. BFR-RE should be investigated as a possible pain-modulation tool in individuals with acute and chronic pain. NEW & NOTEWORTHY High-pressure blood flow restriction (BFR) causes a greater hypoalgesia response in the exercising limb (48%) compared with light and heavy load resistance exercise (10–34%). Performing light load resistance exercise with BFR causes systemic hypoalgesia comparable with heavy load resistance exercise (10–18%). BFR resistance exercise prolonged the exercise-induced hypoalgesia response for 24 h in the exercising limb (15% and 24%, respectively). Activation of endogenous opioid production and a conditioned pain modulation effect partly mediate the relationship between exercise and hypoalgesia.
Collapse
Affiliation(s)
- Luke Hughes
- Faculty of Sport, Health and Applied Science, St Mary’s University, London, United Kingdom
| | | |
Collapse
|
36
|
Nieto-García J, Suso-Martí L, La Touche R, Grande-Alonso M. Somatosensory and Motor Differences between Physically Active Patients with Chronic Low Back Pain and Asymptomatic Individuals. ACTA ACUST UNITED AC 2019; 55:medicina55090524. [PMID: 31450752 PMCID: PMC6780835 DOI: 10.3390/medicina55090524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022]
Abstract
Background and Objectives: Chronic low back pain (CLBP) is the most common occupational disorder due to its associated disability and high risk of recurrence and chronicity. However, the mechanisms underlying physical and psychological variables in patients with CLBP remain unclear. The main objective of this study was to assess whether there were differences between physically active patients with nonspecific CLBP compared with asymptomatic individuals in sensorimotor and psychological variables. Materials and Methods: This was an observational cross-sectional design with a nonprobabilistic sample. The sample was divided into two groups: individuals with nonspecific CLBP (n = 30) and asymptomatic individuals as a control (n = 30). The psychological variables assessed were low back disability, fear of movement, pain catastrophizing, and self-efficacy. The sensorimotor variables assessed were two-point discrimination, pressure pain threshold, lumbopelvic stability, lumbar flexion active range of motion, and isometric leg and back strength. Results: Statistically significant differences between the groups in terms of catastrophizing levels (p = 0.026) and fear of movement (p = 0.001) were found, but no statistically significant differences between groups were found in self-efficacy (p > 0.05). No statistically significant differences between the groups in any of the sensorimotor variables were found (p > 0.05). Conclusion: No sensorimotor differences were found between patients with asymptomatic and chronic low back pain, but differences were found in the psychological variables of catastrophizing and fear of movement.
Collapse
Affiliation(s)
- Juan Nieto-García
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain
| | - Luis Suso-Martí
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain
- Department of Physiotherapy, Universidad CEU Cardenal Herrera, CEU Universities, 46115 Valencia, Spain
| | - Roy La Touche
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain.
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain.
- Instituto de Neurociencia y Dolor Craneofacial (INDCRAN), 28023 Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), 28046 Madrid, Spain.
| | - Mónica Grande-Alonso
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain
| |
Collapse
|
37
|
Alsouhibani A, Vaegter HB, Hoeger Bement M. Systemic Exercise-Induced Hypoalgesia Following Isometric Exercise Reduces Conditioned Pain Modulation. PAIN MEDICINE 2019; 20:180-190. [PMID: 29618132 DOI: 10.1093/pm/pny057] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Objective Physically active individuals show greater conditioned pain modulation (CPM) compared with less active individuals. Understanding the effects of acute exercise on CPM may allow for a more targeted use of exercise in the management of pain. This study investigated the effects of acute isometric exercise on CPM. In addition, the between-session and within-session reliability of CPM was investigated. Design Experimental, randomized crossover study. Setting Laboratory at Marquette University. Subjects Thirty healthy adults (19.3±1.5 years, 15 males). Methods Subjects underwent CPM testing before and after isometric exercise (knee extension, 30% maximum voluntary contraction for three minutes) and quiet rest in two separate experimental sessions. Pressure pain thresholds (PPTs) at the quadriceps and upper trapezius muscles were assessed before, during, and after ice water immersions. Results PPTs increased during ice water immersion (i.e., CPM), and quadriceps PPT increased after exercise (P < 0.05). CPM decreased similarly following exercise and quiet rest (P > 0.05). CPM within-session reliability was fair to good (intraclass correlation coefficient [ICC] = 0.43-0.70), and the between-session reliability was poor (ICC = 0.20-0.35). Due to the variability in the systemic exercise-induced hypoalgesia (EIH) response, participants were divided into systemic EIH responders (N = 9) and nonresponders (N = 21). EIH responders experienced attenuated CPM following exercise (P = 0.03), whereas the nonresponders showed no significant change (P > 0.05). Conclusions Isometric exercise decreased CPM in individuals who reported systemic EIH, suggesting activation of shared mechanisms between CPM and systemic EIH responses. These results may improve the understanding of increased pain after exercise in patients with chronic pain and potentially attenuated CPM.
Collapse
Affiliation(s)
- Ali Alsouhibani
- Clinical and Translational Rehabilitation Health Sciences Program, Department of Physical Therapy, College of Health Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Henrik Bjarke Vaegter
- Pain Research Group, Pain Center South, Department of Anesthesiology and Intensive Care Medicine, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Marie Hoeger Bement
- Clinical and Translational Rehabilitation Health Sciences Program, Department of Physical Therapy, College of Health Sciences, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
38
|
Hughes L, Patterson SD. Low intensity blood flow restriction exercise: Rationale for a hypoalgesia effect. Med Hypotheses 2019; 132:109370. [PMID: 31442920 DOI: 10.1016/j.mehy.2019.109370] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022]
Abstract
Exercise-induced hypoalgesia is characterised by a reduction in pain sensitivity following exercise. Recently, low intensity exercise performed with blood flow restriction has been shown to induce hypoalgesia. The purpose of this manuscript is to discuss the mechanisms of exercise-induced hypoalgesia and provide rationale as to why low intensity exercise performed with blood flow restriction may induce hypoalgesia. Research into exercise-induced hypoalgesia has identified several potential mechanisms, including opioid and endocannabinoid-mediated pain inhibition, conditioned pain modulation, recruitment of high threshold motor units, exercise-induced metabolite production and an interaction between cardiovascular and pain regulatory systems. We hypothesise that several mechanisms consistent with prolonged high intensity exercise may drive the hypoalgesia effect observed with blood flow restriction exercise. These are likely triggered by the high level of intramuscular stress in the exercising muscle generated by blood flow restriction including hypoxia, accumulation of metabolites, accelerated fatigue onset and ischemic pain. Therefore, blood flow restriction exercise may induce hypoalgesia through similar mechanisms to prolonged higher intensity exercise, but at lower intensities, by changing local tissue physiology, highlighting the importance of the blood flow restriction stimulus. The potential to use blood flow restriction exercise as a pain modulation tool has important implications following acute injury and surgery, and for several load compromised populations with chronic pain.
Collapse
Affiliation(s)
- Luke Hughes
- Faculty of Sport, Health and Applied Science, St Mary's University, London TW1 4SX, UK.
| | | |
Collapse
|
39
|
Jones MD, Nuzzo JL, Taylor JL, Barry BK. Aerobic Exercise Reduces Pressure More Than Heat Pain Sensitivity in Healthy Adults. PAIN MEDICINE 2019; 20:1534-1546. [PMID: 30649457 DOI: 10.1093/pm/pny289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The hypoalgesic effects of exercise are well described, but there are conflicting findings for different modalities of pain; in particular for mechanical vs thermal noxious stimuli, which are the most commonly used in studies of exercise-induced hypoalgesia. The aims of this study were 1) to investigate the effect of aerobic exercise on pressure and heat pain thresholds that were well equated with regard to their temporal and spatial profile and 2) to identify whether changes in the excitability of nociceptive pathways-measured using laser-evoked potentials-accompany exercise-induced hypoalgesia. SUBJECTS Sixteen healthy adults recruited from the University of New South Wales. METHODS Pressure and heat pain thresholds and pain ratings to laser stimulation and laser-evoked potentials were measured before and after aerobic cycling exercise and an equivalent period of light activity. RESULTS Pressure pain thresholds increased substantially after exercise (rectus femoris: 29.6%, d = 0.82, P < 0.001; tibialis anterior: 26.9%, d = 0.61, P < 0.001), whereas heat pain thresholds did not (tibialis anterior: 4.2%, d = 0.30, P = 0.27; foot: 0.44%, d = 0.02, P = 1). Laser-evoked potentials and laser heat pain ratings also changed minimally after exercise (d = -0.59 to 0.3, P > 0.06). CONCLUSIONS This is the first investigation to compare the effects of exercise on pressure and heat pain using the same stimulation site and pattern. The results show that aerobic exercise reduces mechanical pain sensitivity more than thermal pain sensitivity.
Collapse
Affiliation(s)
- Matthew D Jones
- School of Medical Sciences, University of New South Wales, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia
| | - James L Nuzzo
- School of Medical Sciences, University of New South Wales, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia
| | - Janet L Taylor
- School of Medical Sciences, University of New South Wales, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia.,School of Medical Sciences, Edith Cowan University, Perth, Australia
| | - Benjamin K Barry
- School of Medical Sciences, University of New South Wales, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia.,School of Clinical Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
40
|
Walking increases pain tolerance in humans: an experimental cross-over study. Scand J Pain 2019; 19:813-822. [DOI: 10.1515/sjpain-2019-0070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/06/2019] [Indexed: 01/27/2023]
Abstract
Abstract
Background and aims
Exercise is commonly used as treatment for chronic pain with positive long-term effects on pain and pain-related disability. In pain-free subjects, hypoalgesia following an acute bout of exercise compared with a control condition has consistently been demonstrated also known as exercise-induced hypoalgesia (EIH). Walking exercise, a low intensity aerobic exercise, is frequently used in clinical practice as an easily applicable intervention for patients with chronic pain. Walking exercise is furthermore recommended as an effective treatment for patients with chronic musculoskeletal pain conditions to alleviate pain and reduce disability, however, the effect of walking on pain sensitivity is currently unknown. The aims of the present study were to investigate (1) the acute effect of walking on pain sensitivity, and (2) the relative (between-subjects) and absolute (within-subject) test-retest reliability of the hypoalgesic response across two sessions separated by 1 week.
Methods
In this randomised experimental cross-over study including two identical sessions, 35 pain-free subjects performed a standardized 6 min walking test and a duration-matched quiet rest condition in a randomized and counterbalanced order in each session. Before and after both conditions, handheld pressure pain thresholds (PPTs) were assessed at the thigh and shoulder, and pressure pain thresholds (cPPT) and pain tolerance (cPTT) were assessed with computer-controlled cuff algometry at the lower leg. Change in the pain sensitivity measures were analysed with repeated-measures ANOVAs, and test-retest reliability with intraclass correlation coefficients (ICC) and agreements in classification of EIH responders/non-responders between the two sessions.
Results
All subjects completed the walking conditions in both session 1 and session 2. The perceived intensity of walking assessed with rating of perceived exertion (RPE) and walking distance did not differ significantly between session 1 (distance: 632.5 ± 75.2 meters, RPE: 10.9 ± 1.9) and session 2 (distance: 642.1 ± 80.2 meters, RPE: 11.0 ± 2.4) (p > 0.11). Moreover, RPE showed excellent relative reliability with an ICC value of 0.95 [95%CI: 0.90–0.97]. Walking increased pain tolerance (mean difference: 2.6 kPa [95%CI: 0.5–4.9 kPa; p = 0.02]), but not pain thresholds compared with rest in both sessions. Hypoalgesia after walking demonstrated fair to good relative reliability (ICC = 0.61), however the agreement in classification of EIH responders/non-responders (absolute reliability) across sessions was low and not significant (κ = 0.19, p = 0.30).
Conclusions
Walking consistently increased pain tolerance but not pain thresholds compared with a duration-matched control condition with fair to good relative reliability between sessions. Based on classification of EIH responders/non-responders the absolute reliability between the two sessions was low indicating individual variance in the EIH response. Future studies should investigate the hypoalgesic effect of a walking exercise in a clinical pain population.
Collapse
|
41
|
Potential Nervous System Sensitization in Patients With Persistent Lower Extremity Tendinopathies: 3 Case Reports. J Orthop Sports Phys Ther 2019; 49:272-279. [PMID: 30759356 DOI: 10.2519/jospt.2019.8600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tendinopathy is a condition often associated with pain and functional and sport performance limitations. While targeted exercise prescriptions are often effective, many patients with tendinopathy develop persistent symptoms. Emerging evidence suggests a possible link between nervous system sensitization and tendinopathy. If so, identifying and treating specific pain mechanisms may improve outcomes. CASE DESCRIPTION Three patients were seen in physical therapy for complaints of ongoing chronic tendon pain and self-reported disability, despite being treated previously and receiving evidence-informed care. Upon examination, each patient demonstrated signs consistent with possible dysfunction of central pain mechanisms. Joint mobilization, pain neuroscience education, and aerobic exercise were primary interventions in each case to decrease pain and improve function. OUTCOMES The 3 patients were treated for 5 sessions over the course of 8 weeks. Clinically significant improvement was noted in measures of pain, self-reported function, and pressure pain thresholds. At discharge, all patients were able to run without symptoms, and improvement was maintained at 1-year follow-up. DISCUSSION Tendinopathy, while often described as local pain and dysfunction, may be associated with dysfunction of the nervous system. Identifying and treating pain mechanisms in addition to relevant impairments may be an appropriate intervention approach for individuals with tendinopathy. LEVEL OF EVIDENCE Therapy, level 4. J Orthop Sports Phys Ther 2019;49(4):272-279. Epub 13 Feb 2019. doi:10.2519/jospt.2019.8600.
Collapse
|
42
|
Rice D, Nijs J, Kosek E, Wideman T, Hasenbring MI, Koltyn K, Graven-Nielsen T, Polli A. Exercise-Induced Hypoalgesia in Pain-Free and Chronic Pain Populations: State of the Art and Future Directions. THE JOURNAL OF PAIN 2019; 20:1249-1266. [PMID: 30904519 DOI: 10.1016/j.jpain.2019.03.005] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/24/2019] [Accepted: 03/15/2019] [Indexed: 12/11/2022]
Abstract
Exercise is considered an important component of effective chronic pain management and it is well-established that long-term exercise training provides pain relief. In healthy, pain-free populations, a single bout of aerobic or resistance exercise typically leads to exercise-induced hypoalgesia (EIH), a generalized reduction in pain and pain sensitivity that occurs during exercise and for some time afterward. In contrast, EIH is more variable in chronic pain populations and is more frequently impaired; with pain and pain sensitivity decreasing, remaining unchanged or, in some cases, even increasing in response to exercise. Pain exacerbation with exercise may be a major barrier to adherence, precipitating a cycle of physical inactivity that can lead to long-term worsening of both pain and disability. To optimize the therapeutic benefits of exercise, it is important to understand how EIH works, why it may be impaired in some people with chronic pain, and how this should be addressed in clinical practice. In this article, we provide an overview of EIH across different chronic pain conditions. We discuss possible biological mechanisms of EIH and the potential influence of sex and psychosocial factors, both in pain-free adults and, where possible, in individuals with chronic pain. The clinical implications of impaired EIH are discussed and recommendations are made for future research, including further exploration of individual differences in EIH, the relationship between exercise dose and EIH, the efficacy of combined treatments and the use of alternative measures to quantify EIH. PERSPECTIVE: This article provides a contemporary review of the acute effects of exercise on pain and pain sensitivity, including in people with chronic pain conditions. Existing findings are critically reviewed, clinical implications are discussed, and recommendations are offered for future research.
Collapse
Affiliation(s)
- David Rice
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand; Waitemata Pain Services, Department of Anaesthesiology and Perioperative Medicine, Waitemata District Health Board, Auckland, New Zealand.
| | - Jo Nijs
- Pain in Motion International Research Group(#); Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium; Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stockholm Spine Center, Löwenströmska Hospital, Upplands Väsby, Sweden
| | - Timothy Wideman
- School of Physical and Occupational Therapy, McGill University, Montreal, Canada
| | - Monika I Hasenbring
- Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr-University of Bochum, Bochum, Germany
| | - Kelli Koltyn
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Andrea Polli
- Pain in Motion International Research Group(#); Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium; Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium; Research Foundation - Flanders (FWO), Brussels, Belgium
| |
Collapse
|
43
|
Peterson JA, Schubert DJ, Campbell J, Bemben MG, Black CD. Endogenous Pain Inhibitory Function: Endurance-Trained Athletes vs Active Controls. PAIN MEDICINE 2019; 20:1822-1830. [DOI: 10.1093/pm/pnz014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abstract
Objective
Athletes are at risk for developing chronic pain conditions, but the role of exercise in the modulation of pain in athletes has not been well established. The aim of this study was to investigate conditioned pain modulation (CPM) and exercise-induced hypoalgesia (EIH) responses between 13 endurance-trained athletes and 13 normally active controls.
Methods
In a cross-sectional, nonrandomized study with two independent groups of college-aged males and females, pressure pain thresholds (PPTs) were assessed in the vastus lateralis (VL) and brachioradialis (BR) using a pressure algometer before and after a conditioning stimulus, an isometric hand grip exercise to failure, and a 30-minute run.
Results
PPTs increased following the conditioning stimulus, indicating a CPM response, to a similar degree in the BR (19.3% ± 26.5% vs 18.6% ± 16.2%, P = 0.93) and VL (18.9% ± 25.9% vs 28.7% ± 27.4%, P = 0.73) in the athletes and controls. PPTs increased following isometric exercise to a similar extent in athletes and controls in the BR (23.9% ± 22.8% vs 28.2% ± 24.0%, P = 0.75) and VL (15.8% ± 14.8% vs 15.5% ± 11.6%, P = 0.94). Following 30 minutes of running, EIH was similar between athletes and controls in the VL (21.2% ± 17.2% vs 13.8% ± 13.3%, P = 0.23) but was attenuated in the BR of the athletes (6.1% ± 16.9% vs 20.9% ± 20%, P = 0.047).
Conclusions
Athletes and controls exhibited similar endogenous pain inhibitory function both locally and systemically following CPM and isometric, upper body exercise. After the 30-minute run, BR EIH was reduced in the athletes compared with controls, suggesting a reduced systemic response following familiar exercise—perhaps due to the exercise being perceived as less painful and/or effortful.
Collapse
Affiliation(s)
- Jessica A Peterson
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, USA
| | - Daniel J Schubert
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, USA
| | - Jason Campbell
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, USA
| | - Michael G Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, USA
| | - Christopher D Black
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
44
|
Rogers ML, Duffy ME, Buchman-Schmitt JM, Datoc AE, Joiner TE. Exercise dependence: Associations with capability for suicide and past suicidal behavior. J Clin Psychol 2018; 75:165-177. [PMID: 30368806 DOI: 10.1002/jclp.22696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/11/2018] [Accepted: 07/21/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Exercise dependence has been linked to capability for suicide and suicidal behavior; however, less understood are which facets of exercise dependence confer risk for suicidal behavior and the potential mechanisms of this association. This study examined relationships between exercise dependence, capability for suicide, and past suicidal behavior. METHODS A sample of 540 individuals recruited via MTurk completed online measures of their exercise dependence, capability for suicide, and history of suicidal behavior. RESULTS Suicide attempters reported higher levels of continuance in exercise despite physical or psychological consequences, lack of control over exercise, and reductions in other activities due to exercise than nonattempters. Capability for suicide accounted for the relationship between continuance in exercise despite adverse consequences and lifetime number of suicide attempts. CONCLUSIONS When exercise becomes pathological in the form of exercise dependence, steps should be taken to reduce such engagement due to its observed association with suicidal behavior.
Collapse
Affiliation(s)
- Megan L Rogers
- Department of Psychology, Florida State University, Tallahassee, Florida
| | - Mary E Duffy
- Department of Psychology, Florida State University, Tallahassee, Florida
| | | | - Alison E Datoc
- Department of Psychology, Nova Southeastern University, Fort Lauderdale, Florida
| | - Thomas E Joiner
- Department of Psychology, Florida State University, Tallahassee, Florida
| |
Collapse
|
45
|
Vaegter HB, Bjerregaard LK, Redin MM, Rasmussen SH, Graven-Nielsen T. Hypoalgesia after bicycling at lactate threshold is reliable between sessions. Eur J Appl Physiol 2018; 119:91-102. [DOI: 10.1007/s00421-018-4002-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022]
|
46
|
The interplay of exercise, placebo and nocebo effects on experimental pain. Sci Rep 2018; 8:14758. [PMID: 30283022 PMCID: PMC6170492 DOI: 10.1038/s41598-018-32974-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/13/2018] [Indexed: 11/08/2022] Open
Abstract
Over the last few decades, placebo, and nocebo effects in general, have been investigated at rest. This proposed study explores whether they could work even when the experience of pain occurs during a movement. Exercise itself can have a hypoalgesic effect, suggesting that placebo- and exercise-induced hypoalgesia could foster pain reduction. In the present study, we investigated the interplay of exercise, placebo and nocebo effects on pain. To this aim, we developed a machine-controlled isotonic motor task to standardize the exercise across participants and used a well-validated model of placebo and nocebo manipulations with reinforced expectations via a conditioning procedure including visual cues paired with heat painful stimulations. Participants reported expectations and pain on a trial-by-trial basis. We found that the standardized isotonic exercise elicited a reduction of pain intensity. Moreover, both exercise and placebo induced comparable hypoalgesic effects. When the exercise was added, placebo and nocebo effects were influenced by expectations but were not affected by fatigue or sex differences. Exercise-, placebo- and nocebo-induced pain modulation are likely to work through distinct mechanisms and neurophysiological research is needed to fully exploit the implications for sport, rehabilitation and pain management.
Collapse
|
47
|
OHLMAN THOMAS, MILLER LEAH, NAUGLE KEITHE, NAUGLE KELLYM. Physical Activity Levels Predict Exercise-induced Hypoalgesia in Older Adults. Med Sci Sports Exerc 2018; 50:2101-2109. [DOI: 10.1249/mss.0000000000001661] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
48
|
Giannakopoulos NN, Rauer AK, Hellmann D, Hugger S, Schmitter M, Hugger A. Comparison of device-supported sensorimotor training and splint intervention for myofascial temporomandibular disorder pain patients. J Oral Rehabil 2018; 45:669-676. [DOI: 10.1111/joor.12662] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2018] [Indexed: 11/30/2022]
Affiliation(s)
| | - A.-K. Rauer
- Department of Prosthodontics; University of Düsseldorf; Düsseldorf Germany
| | - D. Hellmann
- Department of Prosthodontics; University of Würzburg; Würzburg Germany
| | - S. Hugger
- Department of Prosthodontics; University of Cologne; Cologne Germany
| | - M. Schmitter
- Department of Prosthodontics; University of Würzburg; Würzburg Germany
| | - A. Hugger
- Department of Prosthodontics; University of Düsseldorf; Düsseldorf Germany
| |
Collapse
|
49
|
Tour J, Löfgren M, Mannerkorpi K, Gerdle B, Larsson A, Palstam A, Bileviciute-Ljungar I, Bjersing J, Martin I, Ernberg M, Schalling M, Kosek E. Gene-to-gene interactions regulate endogenous pain modulation in fibromyalgia patients and healthy controls-antagonistic effects between opioid and serotonin-related genes. Pain 2018; 158:1194-1203. [PMID: 28282362 PMCID: PMC5472004 DOI: 10.1097/j.pain.0000000000000896] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chronic pain is associated with dysfunctional endogenous pain modulation, involving both central opioid and serotonergic (5-HT) signaling. Fibromyalgia (FM) is a chronic pain syndrome, characterized by widespread musculoskeletal pain and reduced exercise-induced hypoalgesia (EIH). In this study, we assessed the effects of 3 functional genetic polymorphisms on EIH in 130 patients with FM and 132 healthy controls. Subjects were genotyped regarding the mu-opioid receptor (OPRM1) gene (rs1799971), the serotonin transporter (5-HTT) gene (5-HTTLPR/rs25531), and the serotonin-1a receptor (5-HT1a) gene (rs6296). The patients with FM had increased pain sensitivity and reduced EIH compared with healthy controls. None of the polymorphisms had an effect on EIH on their own. We found significant gene-to-gene interactions between OPRM1 x 5-HTT and OPRM1 x 5-HT1a regarding activation of EIH, with no statistically significant difference between groups. Better EIH was found in individuals with genetically inferred strong endogenous opioid signaling (OPRM1 G) in combination with weak 5-HT tone (5-HTT low/5-HT1a G), compared with strong 5-HT tone (5-HTT high/5-HT1a CC). Based on the proposed mechanisms of these genetic variants, the findings indicate antagonistic interactions between opioid and serotonergic mechanisms during EIH. Moreover, despite different baseline pain level, similar results were detected in FM and controls, not supporting an altered interaction between opioid and 5-HT mechanisms as the basis for dysfunction of EIH in patients with FM. In summary, our results suggest that, by genetic association, the mu-opioid receptor interacts with 2 major serotonergic structures involved in 5-HT reuptake and release, to modulate EIH.
Collapse
Affiliation(s)
- Jeanette Tour
- Department of Clinical Neuroscience, Osher Center, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Monika Löfgren
- Department of Clinical Sciences, Karolinska Institutet, Stockholm, Sweden.,Department of Rehabilitation Medicine, Danderyd Hospital, Stockholm, Sweden
| | - Kaisa Mannerkorpi
- Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Björn Gerdle
- Pain and Rehabilitation Centre, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Anette Larsson
- Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Person Centered Care (GPCC), University of Gothenburg, Gothenburg, Sweden
| | - Annie Palstam
- Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Indre Bileviciute-Ljungar
- Department of Clinical Sciences, Karolinska Institutet, Stockholm, Sweden.,Pain and Rehabilitation Centre, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Jan Bjersing
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingvar Martin
- Department of Clinical Neuroscience, Osher Center, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Ernberg
- Department of Dental Medicine, Karolinska Institutet, Scandinavian Center for Orofacial Neurosciences (SCON), Huddinge, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden
| | - Eva Kosek
- Department of Clinical Neuroscience, Osher Center, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,Stockholm Spine Center, Lowenstromska Hospital, Upplands Vasby, Sweden
| |
Collapse
|
50
|
Ferioli M, Zauli G, Martelli AM, Vitale M, McCubrey JA, Ultimo S, Capitani S, Neri LM. Impact of physical exercise in cancer survivors during and after antineoplastic treatments. Oncotarget 2018; 9:14005-14034. [PMID: 29568412 PMCID: PMC5862633 DOI: 10.18632/oncotarget.24456] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer patients experience symptoms and adverse effects of treatments that may last even after the end of treatments. Exercise is a safe, non-pharmacological and cost-effective therapy that can provide several health benefits in cancer patient and survivors, reducing cancer symptoms and cancer treatment side effects. The purpose of this review is to describe how the physical exercise is capable to reduce cancer symptoms and cancer treatment side effects. We realized a pragmatic classification of symptoms, dividing them into physical, psychological and psycho-physical aspects. For each symptom we discuss causes, therapies, we analyse the effects of physical exercise and we summarize the most effective type of exercise to reduce the symptoms. This review also points out what are the difficulties that patients and survivors face during the practice of physical activity and provides some solutions to overcome these barriers. Related to each specific cancer, it emerges that type, frequency and intensity of physical exercise could be prescribed and supervised as a therapeutic program, like it occurs for the type, dose and duration of a drug treatment.
Collapse
Affiliation(s)
- Martina Ferioli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Simona Ultimo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|