1
|
Buchberger ES, Joechner AK, Ngo CT, Lindenberger U, Werkle-Bergner M. Age differences in generalization, memory specificity, and their overnight fate in childhood. Child Dev 2024; 95:e270-e286. [PMID: 38516813 DOI: 10.1111/cdev.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Memory enables generalization to new situations, and memory specificity that preserves individual episodes. This study investigated generalization, memory specificity, and their overnight fate in 141 4- to 8-year-olds (computerized memory game; 71 females, tested 2020-2021 in Germany). The results replicated age effects in generalization and memory specificity, and a contingency of generalization on object conceptual properties and interobject semantic proximity. Age effects were stronger in generalization than in memory specificity, and generalization was more closely linked to the explicit regularity knowledge in older than in younger children. After an overnight delay, older children retained more generalized and specific memories and showed greater gains but only in generalization. These findings reveal distinct age differences in generalization and memory specificity across childhood.
Collapse
Affiliation(s)
- Elisa S Buchberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ann-Kathrin Joechner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Chi T Ngo
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
2
|
Joechner AK, Hahn MA, Gruber G, Hoedlmoser K, Werkle-Bergner M. Sleep spindle maturity promotes slow oscillation-spindle coupling across child and adolescent development. eLife 2023; 12:e83565. [PMID: 37999945 PMCID: PMC10672804 DOI: 10.7554/elife.83565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/18/2023] [Indexed: 11/25/2023] Open
Abstract
The synchronization of canonical fast sleep spindle activity (12.5-16 Hz, adult-like) precisely during the slow oscillation (0.5-1 Hz) up peak is considered an essential feature of adult non-rapid eye movement sleep. However, there is little knowledge on how this well-known coalescence between slow oscillations and sleep spindles develops. Leveraging individualized detection of single events, we first provide a detailed cross-sectional characterization of age-specific patterns of slow and fast sleep spindles, slow oscillations, and their coupling in children and adolescents aged 5-6, 8-11, and 14-18 years, and an adult sample of 20- to 26-year-olds. Critically, based on this, we then investigated how spindle and slow oscillation maturity substantiate age-related differences in their precise orchestration. While the predominant type of fast spindles was development-specific in that it was still nested in a frequency range below the canonical fast spindle range for the majority of children, the well-known slow oscillation-spindle coupling pattern was evident for sleep spindles in the adult-like canonical fast spindle range in all four age groups-but notably less precise in children. To corroborate these findings, we linked personalized measures of fast spindle maturity, which indicate the similarity between the prevailing development-specific and adult-like canonical fast spindles, and slow oscillation maturity, which reflects the extent to which slow oscillations show frontal dominance, with individual slow oscillation-spindle coupling patterns. Importantly, we found that fast spindle maturity was uniquely associated with enhanced slow oscillation-spindle coupling strength and temporal precision across the four age groups. Taken together, our results suggest that the increasing ability to generate adult-like canonical fast sleep spindles actuates precise slow oscillation-spindle coupling patterns from childhood through adolescence and into young adulthood.
Collapse
Affiliation(s)
- Ann-Kathrin Joechner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Michael A Hahn
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of Salzburg, Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, Salzburg, Austria
- Hertie-Institute for Clinical Brain Research, University Medical Center Tuebingen, Tuebingen, Germany
| | - Georg Gruber
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- The Siesta Group, Vienna, Austria
| | - Kerstin Hoedlmoser
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of Salzburg, Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, Salzburg, Austria
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
3
|
Gagnon K, Rey AE, Guignard-Perret A, Guyon A, Reynaud E, Herbillon V, Lina JM, Carrier J, Franco P, Mazza S. Sleep Stage Transitions and Sleep-Dependent Memory Consolidation in Children with Narcolepsy-Cataplexy. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1702. [PMID: 37892365 PMCID: PMC10605014 DOI: 10.3390/children10101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
Electroencephalographic sleep stage transitions and altered first REM sleep period transitions have been identified as biomarkers of type 1 narcolepsy in adults, but not in children. Studies on memory complaints in narcolepsy have not yet investigated sleep-dependent memory consolidation. We aimed to explore stage transitions; more specifically altered REM sleep transition and its relationship with sleep-dependent memory consolidation in children with narcolepsy. Twenty-one children with narcolepsy-cataplexy and twenty-three healthy control children completed overnight polysomnography and sleep-dependent memory consolidation tests. Overnight transition rates (number of transitions per hour), global relative transition frequencies (number of transitions between a stage and all other stages/total number of transitions × 100), overnight transitions to REM sleep (transition from a given stage to REM/total REM transitions × 100), and altered first REM sleep period transitions (transitions from wake or N1 to the first REM period) were computed. Narcoleptic children had a significantly higher overnight transition rate with a higher global relative transition frequencies to wake. A lower sleep-dependent memory consolidation score found in children with narcolepsy was associated with a higher overnight transition frequency. As observed in narcoleptic adults, 90.48% of narcoleptic children exhibited an altered first REM sleep transition. As in adults, the altered sleep stage transition is also present in children with narcolepsy-cataplexy, and a higher transition rate could have an impact on sleep-dependent memory consolidation. These potential biomarkers could help diagnose type 1 narcolepsy in children more quickly; however, further studies with larger cohorts, including of those with type 2 narcolepsy and hypersomnia, are needed.
Collapse
Affiliation(s)
- Katia Gagnon
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, FORGETTING, F-69500 Bron, France; (K.G.); (A.E.R.); (E.R.)
| | - Amandine E. Rey
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, FORGETTING, F-69500 Bron, France; (K.G.); (A.E.R.); (E.R.)
| | - Anne Guignard-Perret
- National Reference Center for Narcolepsy in the Service of Epilepsy, Sleep and Neuropediatric Functional Explorations of the Woman Mother Child Hospital of Bron, 59, bd Pinel, F-69677 Bron, France; (A.G.-P.); (A.G.); (V.H.); (P.F.)
| | - Aurore Guyon
- National Reference Center for Narcolepsy in the Service of Epilepsy, Sleep and Neuropediatric Functional Explorations of the Woman Mother Child Hospital of Bron, 59, bd Pinel, F-69677 Bron, France; (A.G.-P.); (A.G.); (V.H.); (P.F.)
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, WAKING, F-69500 Bron, France
| | - Eve Reynaud
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, FORGETTING, F-69500 Bron, France; (K.G.); (A.E.R.); (E.R.)
| | - Vania Herbillon
- National Reference Center for Narcolepsy in the Service of Epilepsy, Sleep and Neuropediatric Functional Explorations of the Woman Mother Child Hospital of Bron, 59, bd Pinel, F-69677 Bron, France; (A.G.-P.); (A.G.); (V.H.); (P.F.)
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, EDUWELL, F-69500 Bron, France
| | - Jean-Marc Lina
- Department of Electrical Engineering, École de Technologie Supérieure, Montréal, QC H3C 1K3, Canada;
| | - Julie Carrier
- Department of Psychology, Université de Montréal, Montréal, QC H3C 3J7, Canada;
| | - Patricia Franco
- National Reference Center for Narcolepsy in the Service of Epilepsy, Sleep and Neuropediatric Functional Explorations of the Woman Mother Child Hospital of Bron, 59, bd Pinel, F-69677 Bron, France; (A.G.-P.); (A.G.); (V.H.); (P.F.)
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, WAKING, F-69500 Bron, France
| | - Stéphanie Mazza
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, FORGETTING, F-69500 Bron, France; (K.G.); (A.E.R.); (E.R.)
| |
Collapse
|
4
|
Hoedlmoser K, Peigneux P, Rauchs G. Recent advances in memory consolidation and information processing during sleep. J Sleep Res 2022; 31:e13607. [DOI: 10.1111/jsr.13607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Kerstin Hoedlmoser
- Department of Psychology, Centre for Cognitive Neuroscience (CCNS), Laboratory for “Sleep, Cognition and Consciousness Research” University of Salzburg Salzburg Austria
| | - Philippe Peigneux
- UR2NF – Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN – Centre for Research in Cognition and Neurosciences and UNI – ULB Neuroscience Institute Bruxelles Belgium
| | - Géraldine Rauchs
- UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, Institut Blood and Brain @ Caen‐Normandie Normandie Univ Caen France
| |
Collapse
|
5
|
Hahn MA, Bothe K, Heib D, Schabus M, Helfrich RF, Hoedlmoser K. Slow oscillation-spindle coupling strength predicts real-life gross-motor learning in adolescents and adults. eLife 2022; 11:e66761. [PMID: 35188457 PMCID: PMC8860438 DOI: 10.7554/elife.66761] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 02/04/2022] [Indexed: 12/05/2022] Open
Abstract
Previously, we demonstrated that precise temporal coordination between slow oscillations (SOs) and sleep spindles indexes declarative memory network development (Hahn et al., 2020). However, it is unclear whether these findings in the declarative memory domain also apply in the motor memory domain. Here, we compared adolescents and adults learning juggling, a real-life gross-motor task. Juggling performance was impacted by sleep and time of day effects. Critically, we found that improved task proficiency after sleep lead to an attenuation of the learning curve, suggesting a dynamic juggling learning process. We employed individualized cross-frequency coupling analyses to reduce inter- and intragroup variability of oscillatory features. Advancing our previous findings, we identified a more precise SO-spindle coupling in adults compared to adolescents. Importantly, coupling precision over motor areas predicted overnight changes in task proficiency and learning curve, indicating that SO-spindle coupling relates to the dynamic motor learning process. Our results provide first evidence that regionally specific, precisely coupled sleep oscillations support gross-motor learning.
Collapse
Affiliation(s)
- Michael A Hahn
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
- Hertie-Institute for Clinical Brain Research, University Medical Center TübingenTübingenGermany
| | - Kathrin Bothe
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Dominik Heib
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Manuel Schabus
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Randolph F Helfrich
- Hertie-Institute for Clinical Brain Research, University Medical Center TübingenTübingenGermany
| | - Kerstin Hoedlmoser
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| |
Collapse
|
6
|
Page J, Wakschlag LS, Norton ES. Nonrapid eye movement sleep characteristics and relations with motor, memory, and cognitive ability from infancy to preadolescence. Dev Psychobiol 2021; 63:e22202. [PMID: 34813099 PMCID: PMC8898567 DOI: 10.1002/dev.22202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/31/2021] [Accepted: 09/13/2021] [Indexed: 01/25/2023]
Abstract
Sleep plays a critical role in neural neurodevelopment. Hallmarks of sleep reflected in the electroencephalogram during nonrapid eye movement (NREM) sleep are associated with learning processes, cognitive ability, memory, and motor functioning. Research in adults is well-established; however, the role of NREM sleep in childhood is less clear. Growing evidence suggests the importance of two NREM sleep features: slow-wave activity and sleep spindles. These features may be critical for understanding maturational change and the functional role of sleep during development. Here, we review the literature on NREM sleep from infancy to preadolescence to provide insight into the network dynamics of the developing brain. The reviewed findings show distinct relations between topographical and maturational aspects of slow waves and sleep spindles; however, the direction and consistency of these relationships vary, and associations with cognitive ability remain unclear. Future research investigating the role of NREM sleep and development would benefit from longitudinal approaches, increased control for circadian and homeostatic influences, and in early childhood, studies recording daytime naps and overnight sleep to yield increased precision for detecting age-related change. Such evidence could help explicate the role of NREM sleep and provide putative physiological markers of neurodevelopment.
Collapse
Affiliation(s)
- Jessica Page
- Roxelyn and Richard Pepper Department of Communication
Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
- Northwestern University Institute for Innovations in
Developmental Sciences, Chicago, Illinois, USA
| | - Lauren S. Wakschlag
- Northwestern University Institute for Innovations in
Developmental Sciences, Chicago, Illinois, USA
- Department of Medical Social Sciences, Feinberg School of
Medicine, Northwestern, University, Chicago, Illinois, USA
| | - Elizabeth S. Norton
- Roxelyn and Richard Pepper Department of Communication
Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
- Northwestern University Institute for Innovations in
Developmental Sciences, Chicago, Illinois, USA
- Department of Medical Social Sciences, Feinberg School of
Medicine, Northwestern, University, Chicago, Illinois, USA
| |
Collapse
|
7
|
Helfrich RF, Lendner JD, Knight RT. Aperiodic sleep networks promote memory consolidation. Trends Cogn Sci 2021; 25:648-659. [PMID: 34127388 PMCID: PMC9017392 DOI: 10.1016/j.tics.2021.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
Hierarchical synchronization of sleep oscillations establishes communication pathways to support memory reactivation, transfer, and consolidation. From an information-theoretical perspective, oscillations constitute highly structured network states that provide limited information-coding capacity. Recent findings indicate that sleep oscillations occur in transient bursts that are interleaved with aperiodic network states, which were previously considered to be random noise. We argue that aperiodic activity exhibits unique and variable spatiotemporal patterns, providing an ideal information-rich neurophysiological substrate for imprinting new mnemonic patterns onto existing circuits. We discuss novel avenues in conceptualizing and quantifying aperiodic network states during sleep to further understand their relevance and interplay with sleep oscillations in support of memory consolidation.
Collapse
Affiliation(s)
- Randolph F Helfrich
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany.
| | - Janna D Lendner
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tübingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California Berkeley, 132 Barker Hall, Berkeley, CA 94720, USA; Department of Psychology, University of California Berkeley, Tolman Hall, Berkeley, CA 94720, USA
| |
Collapse
|