1
|
Menon DV, Bhaskar S, Sheshadri P, Joshi CG, Patel D, Kumar A. Positioning canine induced pluripotent stem cells (iPSCs) in the reprogramming landscape of naïve or primed state in comparison to mouse and human iPSCs. Life Sci 2020; 264:118701. [PMID: 33130086 DOI: 10.1016/j.lfs.2020.118701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
AIMS Deriving canine-induced pluripotent stem cells (ciPSCs) have paved the way for developing novel cell-based disease models and transplantation therapies in the dog. Though ciPSCs have been derived in the presence of Leukemia inhibitory factor (LIF) as well in the presence of basic fibroblast growth factor (bFGF), the positioning of ciPSCs in the naïve or the primed state of pluripotency remains elusive. This study aims to understand whether canine iPSCs belong to naïve or prime state in comparison to mouse (m) iPSCs and human (h) iPSCs. MAIN METHODS In the present study, we derived ciPSCs in presence of LIF and compared their state of pluripotency with that of miPSCs and hiPSCs by culturing them in the presence of LIF, bFGF, and LIF + bFGF. Gene expression level at transcript level was performed by RT-PCR and qRT-PCR and at the protein level was analysed by immunofluorescence. We also attempted to understand the pluripotency state using lipid body analysis by bodipy staining and blue fluorescence emission. KEY FINDINGS In contrast to miPSCs, the naïve pluripotent stem cells, ciPSCs showed the expression of FGF5 similar to that of primed pluripotent stem cell, hiPSCs. Compared to miPSCs, ciPSCs cultured in presence of LIF showed enhanced expression of primed pluripotent marker FGF5, similar to hiPSCs cultured in presence of bFGF. Upon culturing in hiPSC culture condition, ciPSCs showed enhanced expression of core pluripotency genes compared to miPSCs cultured in similar condition. However, ciPSCs expressed naïve pluripotent marker SSEA1 similar to miPSCs and lacked the expression of primed state marker SSEA4 unlike hiPSCs. Interestingly, for the first time, we demonstrate the ciPSC pluripotency using lipid body analysis wherein ciPSCs showed enhanced bodipy staining and blue fluorescence emission, reflecting the primed state of pluripotency. ciPSCs expressed higher levels of fatty acid synthase (FASN), the enzyme involved in the synthesis of palmitate, similar to that of hiPSCs and higher than that of miPSCs. As ciPSCs exhibit characteristic properties of both naïve and primed pluripotent state, it probably represents a unique intermediary state of pluripotency that is distinct from that of mice and human pluripotent stem cells. SIGNIFICANCE Elucidating the pluripotent state of ciPSCs assists in better understanding of the reprogramming events and development in different species. The study would provide a footprint of species-specific differences involved in reprogramming and the potential implication of iPSCs as a tool to analyse evolution.
Collapse
Affiliation(s)
- Dhanya V Menon
- Manipal Institute of Regenerative Medicine (MIRM), Manipal Academy of Higher Education, Bangalore, India; P.D.Patel Institute of Applied Sciences, Charusat University, Changa, Gujarat, India
| | - Smitha Bhaskar
- Manipal Institute of Regenerative Medicine (MIRM), Manipal Academy of Higher Education, Bangalore, India
| | - Preethi Sheshadri
- Manipal Institute of Regenerative Medicine (MIRM), Manipal Academy of Higher Education, Bangalore, India
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre, Department of Science and Technology, Gandhinagar, Gujarat, India
| | - Darshan Patel
- P.D.Patel Institute of Applied Sciences, Charusat University, Changa, Gujarat, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine (MIRM), Manipal Academy of Higher Education, Bangalore, India.
| |
Collapse
|
2
|
Casals JB, Pieri NCG, Roballo KCS, Bressan FF, Favaron PO, Martins DDS, Ambrósio CE. Pluripotent stem cells proliferation is associated with placentation in dogs. Anim Reprod 2020; 17:e20200040. [PMID: 33029216 PMCID: PMC7534554 DOI: 10.1590/1984-3143-ar2020-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pluripotent stem cells have been studied as source of cells for regenerative medicine and acquire or genetic diseases, as an innovative therapy. Most tissues have stem cells populations, however in few quantities or impossible to be used during adult life, which lead to scientists look for new sources. Thus, this study aimed to analyze the presence of pluripotent cells in the uterus and placenta, following up non-pregnant, pregnant (begin, middle, and final), and postpartum periods in dogs. The uteri were obtained from social castration programs for population control in Pirassununga, Sao Paulo, Brazil. It was collected 20 uteri at different stages. The samples were fixed and processed for immunohistochemical analysis of NANOG, OCT4 and SOX2 expression, knowing as pluripotent stem cells makers. Our results showed positive expression for NANOG, OCT4 and SOX2 in all stages of gestation and nonpregnant uterus; however, we highlight some quantitative different between stages. OCT4 showed more expression in non-pregnant uterus than NANOG and SOX2, and its expression increased in pregnant uterus. In pregnant uterus there was more expression of NANOG than OCT4 and SOX2. Interesting, no difference was found between these markers in the other periods. In conclusion, it was possible to identify pluripotent stem cells in all periods in dog placenta and uterus, however during the early stage of pregnancy we observed more pluripotent stem cells than in all the others periods confirming the high plasticity and regeneration capacity of the uterine tissue.
Collapse
Affiliation(s)
- Juliana Barbosa Casals
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Naira Caroline Godoy Pieri
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Kelly Cristine Santos Roballo
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil.,School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | - Fabiana Fernandes Bressan
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil.,Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Phelipe Oliveira Favaron
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Daniele Dos Santos Martins
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil.,Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Carlos Eduardo Ambrósio
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil.,Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| |
Collapse
|
3
|
Menon DV, Patel D, Joshi CG, Kumar A. The road less travelled: The efficacy of canine pluripotent stem cells. Exp Cell Res 2019; 377:94-102. [DOI: 10.1016/j.yexcr.2019.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 12/28/2022]
|
4
|
Nishimura T, Hatoya S, Kanegi R, Wijesekera DPH, Sanno K, Tanaka E, Sugiura K, Hiromitsu Tamada NK, Imai H, Inaba T. Feeder-independent canine induced pluripotent stem cells maintained under serum-free conditions. Mol Reprod Dev 2017; 84:329-339. [PMID: 28240438 DOI: 10.1002/mrd.22789] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 02/09/2017] [Indexed: 12/29/2022]
Abstract
Canine induced pluripotent stem cells (ciPSCs) are an attractive source for regenerative veterinary medicine, and may also serve as a disease model for human regenerative medicine. Extending the application of ciPSCs from bench to bedside, however, requires resolving many issues. We generated ciPSCs expressing doxycycline-inducible murine Oct3/4 (Pou5f1), Sox2, Klf4, and c-Myc, which were introduced using lentiviral vectors. The resultant ciPSCs required doxycycline to proliferate in the undifferentiated state. Those ciPSC colonies exhibiting basic fibroblast growth factor (bFGF)-dependent proliferation were dissociated into single cells for passaging, and were maintained on a Matrigel-coated dish without feeder cells in a serum-free medium. The established ciPSCs had the ability to differentiate into three germ layers, via formation of embryoid bodies, as well as into cells expressing the same markers as mesenchymal stem cells. These ciPSCs may thus serve as a suitable source of pluripotent stem cell lines for regenerative veterinary medicine, with fewer concerns of contamination from unknown animal components.
Collapse
Affiliation(s)
- Toshiya Nishimura
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Shingo Hatoya
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Ryoji Kanegi
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | | | - Kousuke Sanno
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Erina Tanaka
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Kikuya Sugiura
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | | | - Hiroshi Imai
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Toshio Inaba
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
5
|
Generation of LIF-independent induced pluripotent stem cells from canine fetal fibroblasts. Theriogenology 2017; 92:75-82. [PMID: 28237347 DOI: 10.1016/j.theriogenology.2017.01.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 11/18/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022]
Abstract
Takahashi and Yamanaka established the first technique in which transcription factors related to pluripotency are incorporated into the genome of somatic cells to enable reprogramming of these cells. The expression of these transcription factors enables a differentiated somatic cell to reverse its phenotype to an embryonic state, generating induced pluripotent stem cells (iPSCs). iPSCs from canine fetal fibroblasts were produced through lentiviral polycistronic human and mouse vectors (hOSKM/mOSKM), aiming to obtain pluripotent stem cells with similar features to embryonic stem cells (ESC) in this animal model. The cell lines obtained in this study were independent of LIF or any other supplemental inhibitors, resistant to enzymatic procedure (TrypLE Express Enzyme), and dependent on bFGF. Clonal lines were obtained from slightly different protocols with maximum reprogramming efficiency of 0.001%. All colonies were positive for alkaline phosphatase, embryoid body formation, and spontaneous differentiation and expressed high levels of endogenous OCT4 and SOX2. Canine iPSCs developed tumors at 120 days post-injection in vivo. Preliminary chromosomal evaluations were performed by FISH hybridization, revealing no chromosomal abnormality. To the best of our knowledge, this report is the first to describe the ability to reprogram canine somatic cells via lentiviral vectors without supplementation and with resistance to enzymatic action, thereby demonstrating the pluripotency of these cell lines.
Collapse
|
6
|
Vargas T, Pulz L, Barra C, Kleeb S, Xavier J, Catão-Dias J, Fukumasu H, Nishiya A, Strefezzi R. Immunohistochemical Expression of the Pluripotency Factor OCT4 in Canine Mast Cell Tumours. J Comp Pathol 2015; 153:251-5. [DOI: 10.1016/j.jcpa.2015.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
|
7
|
Zomer HD, Vidane AS, Gonçalves NN, Ambrósio CE. Mesenchymal and induced pluripotent stem cells: general insights and clinical perspectives. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2015; 8:125-34. [PMID: 26451119 PMCID: PMC4592031 DOI: 10.2147/sccaa.s88036] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells have awakened a great deal of interest in regenerative medicine due to their plasticity, and immunomodulatory and anti-inflammatory properties. They are high-yield and can be acquired through noninvasive methods from adult tissues. Moreover, they are nontumorigenic and are the most widely studied. On the other hand, induced pluripotent stem (iPS) cells can be derived directly from adult cells through gene reprogramming. The new iPS technology avoids the embryo destruction or manipulation to generate pluripotent cells, therefore, are exempt from ethical implication surrounding embryonic stem cell use. The pre-differentiation of iPS cells ensures the safety of future approaches. Both mesenchymal stem cells and iPS cells can be used for autologous cell transplantations without the risk of immune rejection and represent a great opportunity for future alternative therapies. In this review we discussed the therapeutic perspectives using mesenchymal and iPS cells.
Collapse
Affiliation(s)
- Helena D Zomer
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Atanásio S Vidane
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Natalia N Gonçalves
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Carlos E Ambrósio
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|