1
|
Sun ZY, Yu TY, Jiang FX, Wang W. Functional maturation of immature β cells: A roadblock for stem cell therapy for type 1 diabetes. World J Stem Cells 2021; 13:193-207. [PMID: 33815669 PMCID: PMC8006013 DOI: 10.4252/wjsc.v13.i3.193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/19/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease caused by the specific destruction of pancreatic islet β cells and is characterized as the absolute insufficiency of insulin secretion. Current insulin replacement therapy supplies insulin in a non-physiological way and is associated with devastating complications. Experimental islet transplantation therapy has been proven to restore glucose homeostasis in people with severe T1DM. However, it is restricted by many factors such as severe shortage of donor sources, progressive loss of donor cells, high cost, etc. As pluripotent stem cells have the potential to give rise to all cells including islet β cells in the body, stem cell therapy for diabetes has attracted great attention in the academic community and the general public. Transplantation of islet β-like cells differentiated from human pluripotent stem cells (hPSCs) has the potential to be an excellent alternative to islet transplantation. In stem cell therapy, obtaining β cells with complete insulin secretion in vitro is crucial. However, after much research, it has been found that the β-like cells obtained by in vitro differentiation still have many defects, including lack of adult-type glucose stimulated insulin secretion, and multi-hormonal secretion, suggesting that in vitro culture does not allows for obtaining fully mature β-like cells for transplantation. A large number of studies have found that many transcription factors play important roles in the process of transforming immature to mature human islet β cells. Furthermore, PDX1, NKX6.1, SOX9, NGN3, PAX4, etc., are important in inducing hPSC differentiation in vitro. The absent or deficient expression of any of these key factors may lead to the islet development defect in vivo and the failure of stem cells to differentiate into genuine functional β-like cells in vitro. This article reviews β cell maturation in vivo and in vitro and the vital roles of key molecules in this process, in order to explore the current problems in stem cell therapy for diabetes.
Collapse
Affiliation(s)
- Zi-Yi Sun
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Ting-Yan Yu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Fang-Xu Jiang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China
| | - Wei Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, Fujian Province, China.
| |
Collapse
|
2
|
Kauffold J, Peltoniemi O, Wehrend A, Althouse GC. Principles and Clinical Uses of Real-Time Ultrasonography in Female Swine Reproduction. Animals (Basel) 2019; 9:ani9110950. [PMID: 31717951 PMCID: PMC6912286 DOI: 10.3390/ani9110950] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 01/30/2023] Open
Abstract
Simply Summary Real-time ultrasonography (RTU) has become an essential diagnostic value when assessing female swine reproduction in either individual or groups of animals. Diagnostic application of RTU is applied throughout most stages of production, including gilt development, breeding, gestation and farrowing. Along with its most common use in on-farm assessment of pregnancy status, RTU is also used to troubleshoot disruptions in reproductive performance such as delayed puberty, prolonged wean-to-estrus interval, absence of post-weaning estrus, decreased conception and farrowing rates, vulval discharge, peripartum and puerperal disorders. This review aims to provide an overview on principles and clinical uses of RTU in female reproduction on commercial swine farms. Abstract Within the past 30 years, through ongoing technology and portability developments, real-time (b-mode) ultrasonography (RTU) has increasingly become a valuable diagnostic tool in assessing the female reproductive tract in swine. Initially applied in swine production to visually determine pregnancy status, RTU use has expanded to include assessment of the peri-pubertal and mature non-pregnant females as well. Transabdominal and transrectal modalities to visualizing the reproductive tract in swine have been reported with the transabdominal approach more common due to the fact of its ease of accessibility, animal/personnel safety, and reduced time to perform. Adjustable frequency transducers are preferred as they allow optimization of image quality at various depths. If a single transducer frequency must be selected, a 5 MHz probe provides the best versatility for visualizing the reproductive tract in swine. Other basic requirements for ultrasound equipment which will be used on commercial swine farms include being light weight and easy to handle, readily cleanable and disinfectable, long battery-life, and good durability. When using RTU for pregnancy determination, diagnosis is based upon a combination of the animal’s breeding records, the presence of embryonic fluid, and, depending upon gestational stage, fetal structures. If RTU is used as a diagnostic tool in assessing reproductive problems in an individual or a group of animals, sonographic evaluation of both the uterus and ovaries is performed. Tissues are delineated and assessed based upon their echogenicity, echotexture, and size. Uses of RTU in clinical practice may include assessment of delayed puberty, prolonged wean-to-estrus interval, absence of post-weaning estrus, herd disruptions in conception and farrowing rates, vulval discharge, peripartum and puerperal disorders. This review aims to provide an overview on principles and clinical uses of RTU with respect to application to address female reproductive performance issues in commercial swine operations.
Collapse
Affiliation(s)
- Johannes Kauffold
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-17632539255
| | - Olli Peltoniemi
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Paroninkuja 20, 04920 Saarentaus, Finland;
| | - Axel Wehrend
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals, Faculty of Veterinary Medicine, Justus-Liebig-University, Frankfurter Strasse 106, 35392 Giessen, Germany;
| | - Gary C. Althouse
- New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, 382 West Street Road, Kennett Square, PA 19348, USA;
| |
Collapse
|
3
|
Rempel LA, Vallet JL, Nonneman DJ. Characterization of plasma metabolites at late gestation and lactation in early parity sows on production and post-weaning reproductive performance. J Anim Sci 2018; 96:521-531. [PMID: 29385465 DOI: 10.1093/jas/skx066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/19/2017] [Indexed: 11/12/2022] Open
Abstract
Lactation is a very energy demanding period for sows. The current study provides a better understanding of the biochemical response of first- (n = 246) or second-parity (n = 127) sows during late gestation through lactation and assesses relationships with piglet production and dam reproductive performance. Plasma samples were collected from first- or second-parity dams at late gestation (110 d gestation [d110G]), d 1 post-farrowing (d1PF), and weaning (WN) then analyzed for various stress and protein metabolism compounds, including; creatine, creatine phosphokinase (CPK) activity, creatinine, urea nitrogen, albumin, and lactate. Litter performance was measured as number of piglets nursed and piglet ADG. Post-weaning reproductive performance was assessed by measuring weaning-to-estrus interval (WEI) and subsequent ovulation rate collected at time of harvest. Plasma creatine and CPK activity increased (P < 0.05) between d110G and d1PF. Plasma creatinine decreased (P < 0.05) from d110G through WN in first-parity dams, but remained similar between d110G and d1PF before declining (P < 0.05) at WN in second-parity dams. Plasma urea nitrogen increased (P < 0.05) over the course of the study and was negatively (P < 0.05) associated with piglet ADG at d110G and d1PF and with ovulation rate at d110G (P < 0.05). Similarly, plasma albumin increased (P < 0.05) in first-parity dams over the course of the study, whereas it plateaued (P < 0.05) at d1PF and remained similar (P > 0.10) through WN in second-parity dams. First-parity dams had less (P < 0.05) plasma lactate at d110G than at d1PF or WN. However, second-parity dams had increased (P < 0.05) plasma lactate at d110G and d1PF, then decreased (P < 0.05) levels at WN. Plasma lactate at WN was positively (P < 0.05) associated with WEI in first-parity dams, but negatively (P < 0.05) related to WEI at d1PF in second-parity dams. Plasma lactate levels at all time points were positively (P < 0.05) associated with ovulation rate in second-parity dams. The biochemical profile of these dams differed by parity and merits further investigations into these differences to identify methods to improve physiological response to lactation for improved animal welfare, production, and reproductive performance.
Collapse
Affiliation(s)
- Lea A Rempel
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE
| | | | - Dan J Nonneman
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE
| |
Collapse
|
4
|
Winkel SM, Trenhaile-Grannemann MD, Van Sambeek DM, Miller PS, Salcedo J, Barile D, Burkey TE. Effects of energy restriction during gilt development on milk nutrient profile, milk oligosaccharides, and progeny biomarkers. J Anim Sci 2018; 96:3077-3088. [PMID: 29860339 DOI: 10.1093/jas/sky212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/29/2018] [Indexed: 11/12/2022] Open
Abstract
An ongoing study at the University of Nebraska-Lincoln (which included 14 batches of gilts; n = 90 gilts/batch) demonstrated that energy restriction during the developmental period of a gilt increases longevity and may also have beneficial effects on progeny health and growth, particularly, parity 1 progeny. Therefore, we hypothesized that energy restriction during gilt development may affect milk nutrient profile, milk oligosaccharides (OS), and postnatal progeny biomarkers. During the development period, batch 14 gilts (n = 128, 8 gilts/pen) were fed 3 dietary treatments including the following: 1) Control diet formulated to NRC (2012) specifications (CTL); 2) Restricted (20% energy restriction via addition of 40% soy hulls; RESTR); and 3) CTL diet plus addition of crystalline amino acids equivalent to the SID Lys:ME of the RESTR diet (CTL+). All diets were fed ad libitum and applied in a 3-phase feeding regimen during gilt development (days 123 to 230 of age). Average daily feed intake was used to estimate daily metabolizable energy intake (Mcal/d) during each phase (Phase 1: 10.13, 6.97, 9.95; Phase 2: 11.25, 8.05, 10.94; and Phase 3: 9.47, 7.95,11.07) for CTL, RESTR, and CTL+, respectively. After 230 d of age, gilts were bred and fed a common diet. Milk samples were collected from batch 14 gilts (n = 7 per treatment) on days 0 and 14 postfarrowing for compositional analysis of N, CP, dry matter (DM), GE, insulin, and OS. Piglet blood samples (n = 6 piglets/gilt) were obtained on days 1 and 15 postfarrowing for quantification of glucagon-like peptide-2 (GLP-2) and insulin. No effects of developmental diet were observed for milk N, CP, DM, or GE; however, N, CP, DM, and insulin were increased (P < 0.05) on day 1 compared with day 14. A total of 61 different milk OS were identified. Milk OS profile was significantly different for neutral and acidic OS (P < 0.05) on day 0, but there were no significant differences on day 14. For piglet GLP-2, a treatment by day interaction was observed (P < 0.009); specifically, on day 1 GLP concentrations were greater (P < 0.001) in CTL+ compared with RESTR (6.73 vs. 1.21 ng/mL). For serum insulin, a treatment by day interaction was observed (P < 0.01); specifically, insulin in RESTR progeny was greater (P < 0.03) than CTL on day 1. In conclusion, nutritional management of the developing gilt may affect milk nutrient composition, milk OS profile, and piglet serum biomarkers.
Collapse
Affiliation(s)
- Shana M Winkel
- Department of Animal Science, University of Nebraska, Lincoln, NE
| | | | | | - Phillip S Miller
- Department of Animal Science, University of Nebraska, Lincoln, NE
| | - Jaime Salcedo
- Department of Food Science and Technology, University of California, Davis, CA
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, CA
| | - Thomas E Burkey
- Department of Animal Science, University of Nebraska, Lincoln, NE
| |
Collapse
|