1
|
Liu Z, Fu S, He X, Dai L, Liu X, Narisu, Shi C, Gu M, Wang Y, Manda, Guo L, Bao Y, Baiyinbatu, Chang C, Liu Y, Zhang W. Integrated Multi-Tissue Transcriptome Profiling Characterizes the Genetic Basis and Biomarkers Affecting Reproduction in Sheep ( Ovis aries). Genes (Basel) 2023; 14:1881. [PMID: 37895230 PMCID: PMC10606288 DOI: 10.3390/genes14101881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The heritability of litter size in sheep is low and controlled by multiple genes, but the research on its related genes is not sufficient. Here, to explore the expression pattern of multi-tissue genes in Chinese native sheep, we selected 10 tissues of the three adult ewes with the highest estimated breeding value in the early study of the prolific Xinggao sheep population. The global gene expression analysis showed that the ovary, uterus, and hypothalamus expressed the most genes. Using the Uniform Manifold Approximation and Projection (UMAP) cluster analysis, these samples were clustered into eight clusters. The functional enrichment analysis showed that the genes expressed in the spleen, uterus, and ovary were significantly enriched in the Ataxia Telangiectasia Mutated Protein (ATM) signaling pathway, and most genes in the liver, spleen, and ovary were enriched in the immune response pathway. Moreover, we focus on the expression genes of the hypothalamic-pituitary-ovarian axis (HPO) and found that 11,016 genes were co-expressed in the three tissues, and different tissues have different functions, but the oxytocin signaling pathway was widely enriched. To further explore the differences in the expression genes (DEGs) of HPO in different sheep breeds, we downloaded the transcriptome data in the public data, and the analysis of DEGs (Xinggao sheep vs. Sunite sheep in Hypothalamus, Xinggao sheep vs. Sunite sheep in Pituitary, and Xinggao sheep vs. Suffolk sheep in Ovary) revealed the neuroactive ligand-receptor interactions. In addition, the gene subsets of the transcription factors (TFs) of DEGs were identified. The results suggest that 51 TF genes and the homeobox TF may play an important role in transcriptional variation across the HPO. Altogether, our study provided the first fundamental resource to investigate the physiological functions and regulation mechanisms in sheep. This important data contributes to improving our understanding of the reproductive biology of sheep and isolating effecting molecular markers that can be used for genetic selection in sheep.
Collapse
Affiliation(s)
- Zaixia Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Shaoyin Fu
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (S.F.); (X.H.)
| | - Xiaolong He
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (S.F.); (X.H.)
| | - Lingli Dai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Xuewen Liu
- Animal Husbandry and Bioengineering, College of Agronomy, Xing’an Vocational and Technical College, Ulanhot 137400, China;
| | - Narisu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Caixia Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
| | - Mingjuan Gu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Yu Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Manda
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
| | - Lili Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
- School of Life Science, Inner Mongolia University, Hohhot 010021, China;
| | - Yanchun Bao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Baiyinbatu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Chencheng Chang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Yongbin Liu
- School of Life Science, Inner Mongolia University, Hohhot 010021, China;
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
2
|
Zhao J, Pan H, Liu Y, He Y, Shi H, Ge C. Interacting Networks of the Hypothalamic-Pituitary-Ovarian Axis Regulate Layer Hens Performance. Genes (Basel) 2023; 14:141. [PMID: 36672882 PMCID: PMC9859134 DOI: 10.3390/genes14010141] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Egg production is a vital biological and economic trait for poultry breeding. The 'hypothalamic-pituitary-ovarian (HPO) axis' determines the egg production, which affects the layer hens industry income. At the organism level, the HPO axis is influenced by the factors related to metabolic and nutritional status, environment, and genetics, whereas at the cellular and molecular levels, the HPO axis is influenced by the factors related to endocrine and metabolic regulation, cytokines, key genes, signaling pathways, post-transcriptional processing, and epigenetic modifications. MiRNAs and lncRNAs play a critical role in follicle selection and development, atresia, and ovulation in layer hens; in particular, miRNA is known to affect the development and atresia of follicles by regulating apoptosis and autophagy of granulosa cells. The current review elaborates on the regulation of the HPO axis and its role in the laying performance of hens at the organism, cellular, and molecular levels. In addition, this review provides an overview of the interactive network regulation mechanism of the HPO axis in layer hens, as well as comprehensive knowledge for successfully utilizing their genetic resources.
Collapse
Affiliation(s)
- Jinbo Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University Kunming, Kunming 650201, China
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161005, China
| | - Hongbin Pan
- Faculty of Animal Science and Technology, Yunnan Agricultural University Kunming, Kunming 650201, China
| | - Yong Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University Kunming, Kunming 650201, China
| | - Yang He
- Faculty of Animal Science and Technology, Yunnan Agricultural University Kunming, Kunming 650201, China
| | - Hongmei Shi
- Faculty of Animal Science and Technology, Yunnan Agricultural University Kunming, Kunming 650201, China
| | - Changrong Ge
- Faculty of Animal Science and Technology, Yunnan Agricultural University Kunming, Kunming 650201, China
| |
Collapse
|
3
|
Al-Sagan AA, Al-Abdullatif A, Hussein EOS, Saadeldin IM, Al-Mufarrej SI, Qaid M, Albaadani HH, Swelum AAA, Alhotan R. Effects of Betaine Supplementation on Live Performance, Selected Blood Parameters, and Expression of Water Channel and Stress-Related mRNA Transcripts of Delayed Placement Broiler Chicks. Front Vet Sci 2021; 7:632101. [PMID: 33521096 PMCID: PMC7840959 DOI: 10.3389/fvets.2020.632101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 11/23/2022] Open
Abstract
This study examined the effect of supplemental betaine on live performance, selected blood parameters, and gene expression of water channel proteins (Aquaporins, AQP) of broiler chicks delayed in placement for 48 h post-hatch. In total, 540 newly-hatched male broiler chicks were obtained from a local hatchery and were randomly allotted to one of five treatments with nine replicates per treatment (12 chicks per replicate). Chicks were either placed immediately, control; held for 48 h post-hatch with no access to feed or water, Holdnull; held for 48 h with free access to drinking water only, HoldW; held for 48 h with free access to drinking water supplemented with 1 ml per L of betaine solution (40% betaine), HoldB1; or held for 48 h with free access to drinking water supplemented with 2 ml per L of betaine solution (40% betaine), HoldB2 group. The results showed that post-hatch holding for 48 h depressed feed intake and body weight gain during the entire 15 d study period with no beneficial effect of supplemental betaine. Chicks in the HoldB2 group had elevated serum glucose, triglycerides, and aspartate aminotransferase 48 h post-hatch. Early water deprivation directly affected the brain proopiomelanocortin (POMC) and hepatic glucocorticoid receptors (GR) expression and induced significant changes in various aquaporins (AQP1, AQP2, AQP4, and AQP9). In conclusion, betaine supplementation to chicks held for 48 h post-hatch resulted in some changes in blood biochemical indices with no effects on performance during the first 15 days of life. The results suggest that betaine supplementation could ameliorate the stressful effects of water deprivation on POMC and GR expression and maintain cellular osmosis through interactions with variable aquaporins expression, particularly the AQP1 and AQP2. Further investigations are required to investigate the molecular mechanisms underlying the selective regulatory expression of different aquaporins in relation to betaine supplementation.
Collapse
Affiliation(s)
| | | | | | - Islam M Saadeldin
- Department of Animal Production, King Saud University, Riyadh, Saudi Arabia
| | - Saud I Al-Mufarrej
- Department of Animal Production, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Qaid
- Department of Animal Production, King Saud University, Riyadh, Saudi Arabia
| | - Hani H Albaadani
- Department of Animal Production, King Saud University, Riyadh, Saudi Arabia
| | | | - Rashed Alhotan
- Department of Animal Production, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Aquaporin 4 expression is downregulated in large bovine ovarian follicles. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2020. [DOI: 10.12750/jarb.35.4.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
5
|
Li J, Li C, Li Q, Li G, Li W, Li H, Kang X, Tian Y. Novel Regulatory Factors in the Hypothalamic-Pituitary-Ovarian Axis of Hens at Four Developmental Stages. Front Genet 2020; 11:591672. [PMID: 33329737 PMCID: PMC7672196 DOI: 10.3389/fgene.2020.591672] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022] Open
Abstract
Ovarian follicular development is an extremely complex and precise process in which the hypothalamic-pituitary-ovarian (HPO) axis plays a crucial role. However, research on the regulatory factors of the HPO axis is sparse. In this study, transcriptomes of the tissues in the entire HPO axis at 15, 20, 30, and 68 w of age were analyzed. In total, 381, 622, and 1090 differentially expressed genes (DEGs) were found among the hypothalamus, pituitary, and ovary, respectively. In particular, the greatest number of DEGs (867) was identified from the comparison of ovary at 30 and 15 w, which might be related to ovarian development and function at high ovulation capacity. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that most of these DEGs in the significantly enriched biological process (BP) terms and pathways were primarily involved in tissue development and the regulation of reproductive hormone biosynthesis and secretion. The latter is highly related to the HPO axis. Therefore, a number of hub candidate genes strongly associated with the HPO axis in each tissue were filtered by analyzing the Protein-protein interaction (PPI) network and seven known reproductive hormone-associated key genes were obtained: PGR, HSD3B2, CYP17A1, CYP11A1, CYP21A2, STS, and CYP19A1, and 12 novel genes: ROCK2, TBP, GTF2H2, GTF2B, DHCR24, DHCR7, FDFT1, LSS, SQLE, MSMO1, CYP51A1, and PANK3. These will be utilized for further research into the function of the HPO axis. This study has highlighted the major role of the HPO axis in the reproduction of hens at the four developmental stages and explored the novel factors that might regulate reproduction, thus providing new insights into the function of the HPO axis on the reproductive system.
Collapse
Affiliation(s)
- Jing Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Wenting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
6
|
Zhang T, Chen L, Han K, Zhang X, Zhang G, Dai G, Wang J, Xie K. Transcriptome analysis of ovary in relatively greater and lesser egg producing Jinghai Yellow Chicken. Anim Reprod Sci 2019; 208:106114. [PMID: 31405454 DOI: 10.1016/j.anireprosci.2019.106114] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 12/11/2022]
Abstract
Egg production is determined by the function of ovary and is regulated by the hypothalamic-pituitary-ovary axis. The mechanism by which the ovary regulates egg production, however, is still poorly understood. The purpose of this study is to compare the transcriptome difference in ovary of relatively greater and lesser egg producing chickens, and to screen candidate genes related to egg production. A RNA sequencing was performed to analyze and compare the mRNA in ovarian tissues of relatively greater and lesser egg producing chickens. A total of 4 431 new genes expressed in the chicken ovary were mined. There were 305 differentially expressed genes (DEGs) identified between the relatively greater and lesser egg producing hens. Gene ontology analysis identified five candidate genes related to egg production, including ZP2, WNT4, AMH, IGF1, and CYP17A1 genes. Tissue expression profiles indicated these five candidate genes were highly expressed in chicken ovarian tissues, indicating a potential role in regulating chicken ovarian function and egg production. The KEGG analysis indicated the neuroactive ligand-receptor interaction pathway might have an important function in regulation of egg production. In addition, four known pathways related to reproduction were detected, including the calcium signaling, wnt signaling pathway, focal adhesion, and cytokine-cytokine receptor interaction pathways. Results of the present study indicate gene expression differences in the ovarian tissues of relatively greater and lesser egg producing chickens, and identified five important candidate genes related to egg production, which provided a theoretical basis for improving egg production of Jinghai Yellow Chickens.
Collapse
Affiliation(s)
- Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, Yangzhou 225009, China; Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Jiangsu, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Eduction of China, Yangzhou University, China.
| | - Lan Chen
- College of Animal Science and Technology, Yangzhou University, Jiangsu, Yangzhou 225009, China; Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Jiangsu, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Eduction of China, Yangzhou University, China.
| | - Kunpeng Han
- College of Animal Science and Technology, Yangzhou University, Jiangsu, Yangzhou 225009, China; Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Jiangsu, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Eduction of China, Yangzhou University, China.
| | - Xiangqian Zhang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, Yangzhou 225009, China; Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Jiangsu, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Eduction of China, Yangzhou University, China.
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, Yangzhou 225009, China; Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Jiangsu, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Eduction of China, Yangzhou University, China.
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Jiangsu, Yangzhou 225009, China; Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Jiangsu, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Eduction of China, Yangzhou University, China.
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, Yangzhou 225009, China; Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Jiangsu, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Eduction of China, Yangzhou University, China.
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Jiangsu, Yangzhou 225009, China; Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Jiangsu, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Eduction of China, Yangzhou University, China.
| |
Collapse
|
7
|
Socha JK, Saito N, Wolak D, Sechman A, Hrabia A. Expression of aquaporin 4 in the chicken oviduct following tamoxifen treatment. Reprod Domest Anim 2018; 53:1339-1346. [PMID: 30028042 DOI: 10.1111/rda.13248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/10/2018] [Indexed: 12/26/2022]
Abstract
This study was designed to examine whether aquaporin 4 (AQP4) is present in the chicken oviduct, and if so, whether its expression changes during pause in laying induced by tamoxifen (TMX; oestrogen receptor modulator) treatment. The control chickens were injected with a vehicle (ethanol) and the experimental ones with TMX at a dose of 6 mg/kg of body weight. Birds were treated daily until complete cessation of egg laying. The oviductal parts, that is the infundibulum, magnum, isthmus, shell gland and vagina were isolated from hens on day 8 of the experiment, and subsequently, the gene and protein expressions of AQP4 in tissues were examined by real-time PCR and Western blot, respectively. Immunohistochemical localization of AQP4 in the wall of the chicken oviduct was also investigated. Both mRNA and protein of AQP4 were found in all segments of the chicken oviduct. The relative expression [RQ] of AQP4 was the highest in the infundibulum and the vagina and the lowest, less detectable, in the magnum and isthmus. The pattern of AQP4 protein expression was similar to that of mRNA. Treatment of hens with TMX decreased the mRNA and protein levels of AQP4 in the oviduct. Immunohistochemistry demonstrated tissue and cell-dependent localization of AQP4 protein in the oviductal wall. The intensity of the immunopositive reaction was as follows: the infundibulum > vagina > shell gland ≥ isthmus >˃ magnum. In the control chickens, the immunoreactivity for AQP4 in all oviductal segments was stronger compared with the TMX-treated hens. The results obtained indicate that AQP4 takes part in the regulation of water transport required for the formation of egg in the chicken oviduct. Moreover, a relationship between oestrogen action and AQP4 gene and protein expression is suggested.
Collapse
Affiliation(s)
- Joanna K Socha
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| | - Noboru Saito
- Laboratory of Animal Physiology, Graduate School of Environmental and Life Sciences, Okayama University, Okayama, Japan
| | - Dominika Wolak
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| | - Andrzej Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| | - Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
8
|
Sun Y, Liu R, Zhao G, Zheng M, Li P, Liu L, Wen J. Genome-Wide Linkage Analysis Identifies Loci for Testicle and Ovary Traits in Chickens. Anim Biotechnol 2018; 29:309-315. [DOI: 10.1080/10495398.2017.1397004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yanfa Sun
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- College of Life Science, Longyan University, Longyan, Fujian, P. R. China
| | - Ranran Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Peng Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Li Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|