1
|
Yang W, Lang X, Song D, Xu H, Zhang C, Guo L, Chen X. Comparative analysis of reproductive hormones, serum biochemical indexes and ovarian metabolites in Muscovy breeder duck at different laying stages. Poult Sci 2024; 103:104370. [PMID: 39413699 DOI: 10.1016/j.psj.2024.104370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/14/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
The hypothalamic-pituitary-gonadal (HPG) axis regulates egg laying through control hormones secretion in poultry. In this study, the serum hormones (12 samples per stage), serum biochemical indexes (12 samples per stage), and ovarian metabolites (8 samples per stage) of Muscovy breeder ducks were detected at prelaying stage (PT), start of laying stage (ST), high laying stage (HT), and the end of laying stage (ET). The serum hormones of Muscovy ducks were measured at 8:00, 13:00, 18:00, 23:00, and 4:00 within 1 d. The TG, TP, ALB, and GLB were significantly increased, while HDL-C was significantly decreased at ST as compared to PT (P < 0.05). Serum Na, Cl, Ca, P, and K showed significant rise at ST as compared to PT. Serum Na, Cl, Ca, and K were significantly declined, while P was significantly increased at ET as compared to HT (P < 0.05). Serum FSH, LH, PRL, E2, P4 levels peaked at ST (P < 0.05) with only FSH and LH fluctuated significantly within 1 ovulation cycle at ST (P < 0.05). Differential metabolites showed continued ovarian aging. The decline of nucleic acid metabolism occured in ST, the decline of sugar metabolism occurred in ET, and the decline of amino acid metabolism continued at all stages. Temporal expression patterns and correlation analyses indicated a high correlation between ovarian cAMP and serum reproductive hormone levels across different reproductive stages. In conclusion, this study revealed the changes in serum hormones, serum biochemical indicators, and ovarian metabolites, as well as the relationship between serum hormones and ovarian metabolites.
Collapse
Affiliation(s)
- Wanli Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xuqiao Lang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Danyu Song
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Hanqi Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Cheng Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Liping Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
2
|
He Z, Ouyang Q, Chen Q, Song Y, Hu J, Hu S, He H, Li L, Liu H, Wang J. Molecular mechanisms of hypothalamic-pituitary-ovarian/thyroid axis regulating age at first egg in geese. Poult Sci 2024; 103:103478. [PMID: 38295497 PMCID: PMC10844868 DOI: 10.1016/j.psj.2024.103478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Age at first egg (AFE) has consistently garnered interest as a crucial reproductive indicator within poultry production. Previous studies have elucidated the involvement of the hypothalamic-pituitary-ovarian (HPO) and hypothalamic-pituitary-thyroid (HPT) axes in regulating poultry sexual maturity. Concurrently, there was evidence suggesting a potential co-regulatory relationship between these 2 axes. However, as of now, no comprehensive exploration of the key pathways and genes responsible for the crosstalk between the HPO and HPT axes in the regulation of AFE has been reported. In this study, we conducted a comparative analysis of morphological differences and performed transcriptomic analysis on the hypothalamus, pituitary, thyroid, and ovarian stroma between normal laying group (NG) and abnormal laying group (AG). Morphological results showed that the thyroid index difference (D-) value (thyroid index D-value=right thyroid index-left thyroid index) was significantly (P < 0.05) lower in the NG than in the AG, while the ovarian index was significantly (P < 0.01) higher in the NG than in the AG. Furthermore, between NG and AG, we identified 99, 415, 167, and 1182 differentially expressed genes (DEGs) in the hypothalamus, pituitary, thyroid, and ovarian stroma, respectively. Gene ontology (GO) analysis highlighted that DEGs from 4 tissues were predominantly enriched in the "biological processes" category. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that 16, 14, 3, and 26 KEGG pathways were significantly enriched (P < 0.05) in the hypothalamus, pituitary, thyroid, and ovarian stroma. The MAPK signaling pathway emerged as the sole enriched pathway across all 4 tissues. Employing an integrated analysis of the protein-protein interaction (PPI) network and correlation analysis, we found GREB1 emerged as a pivotal component within the HPO axis to regulate estrogen-related signaling in the HPT axis, meanwhile, the HPT axis influenced ovarian development by regulating thyroid hormone-related signaling mainly through OPN5. Then, 10 potential candidate genes were identified, namely IGF1, JUN, ERBB4, KDR, PGF, FGFR1, GREB1, OPN5, DIO3, and THRB. These findings establish a foundation for elucidating the physiological and genetic mechanisms by which the HPO and HPT axes co-regulate goose AFE.
Collapse
Affiliation(s)
- Zhiyu He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Qingliang Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Yang Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
| |
Collapse
|
3
|
Liu M, Chen R, Wang T, Ding Y, Zhang Y, Huang G, Huang J, Qu Q, Lv W, Guo S. Dietary Chinese herbal mixture supplementation improves production performance by regulating reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders. Poult Sci 2024; 103:103201. [PMID: 37980727 PMCID: PMC10692728 DOI: 10.1016/j.psj.2023.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023] Open
Abstract
Chinese herbs have been used as feed additives and are commonly utilized in domestic intensive livestock farming. However, their impact on the production performance and intestinal health of broiler breeders has yet to be thoroughly explored. This study aimed to evaluate the effects of a Chinese herbal mixture (CHM) on the production performance of broiler breeders in terms of reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders. A total of 336 thirty-wk-old hens were randomly allotted to 4 groups with 6 replicates of fourteen hens each, which fed a basal diet supplemented with 0 (CON), 500 (CHM500), 1,000 (CHM1000), and 1,500 (CHM1500) mg/kg CHM for 56 days, respectively. Our results showed that dietary supplementation with CHM1000 increased the laying rate and number of SYF and decreased the feed conversion ratio (P < 0.05). All CHM groups increased oviduct and ovarian indexes, serum E2 and T-AOC levels, and decreased serum TG and MDA levels compared with CON (P < 0.05). In comparison to the CON group, the CHM1000 and CHM1500 groups increased serum ALB, IgM, and IL-10 levels, whereas the CHM1000 group also increased serum TP and SOD levels, and the CHM1500 group increased serum P and decreased serum TNF-α (P < 0.05). The addition of CHM increased FSHR expressions in the ovary, Claudin-1 expressions in the jejunum, and SOD1 expressions in the liver and ovary, but decreased the mRNA expressions of INH in the ovary as well as IL-2 and IL-6 expressions in the jejunum (P < 0.05). Moreover, CHM500 and CHM1000 groups increased CAT, GPx, and HO-1 expression in the ovary, and SOD1 and GPx expression in the jejunum, while decreasing IL-17A expression in the jejunum (P < 0.05). In addition, CHM1000 and CHM1500 groups increased villus height, VCR, and the mRNA expressions of Nrf2, HO-1, Occludin, and MUC2 in the jejunum, and IL-10 expression in the ovary, while decreasing IL-2 and IL-17A expression in the ovary, in addition to increasing GPx, Nrf2, HO-1, NQO1, and IL-10 expression in the liver (P < 0.05). Supplementation with CHM1000 increased ESR-α, ESR-β, GnRH, Nrf2, and NQO1 expression in the ovary, but decreased IFN-γ expression in the ovary as well as crypt depth in the jejunum (P < 0.05). Supplementing CHM1500 increased NQO1 and ZO-1 expression in the jejunum and decreased IL-2 in the liver (P < 0.05). The high-throughput sequencing results showed that dietary CHM1000 supplementation altered the composition of the intestinal microbiota, as evidenced by the regulation of the genera Lactobacillus, Faecalibacterium, and Phascolarctobacterium. PICRUSt analysis revealed that metabolic pathways of bacterial chemotaxis, butanoate metabolism, and synthesis and degradation of ketone bodies were enriched in the CHM1000 group. Spearman's correlation analysis indicated that the differentiated genera were significantly associated with the production performance, serum hormone, and gut barrier-related genes. Taken together, supplementation of CHM, especially at 1,000 mg/kg, could improve production performance by regulating reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders, and maybe provide insights into its application as a potential feed additive to promote the performance of broiler breeders.
Collapse
Affiliation(s)
- Mengjie Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Rong Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Tianze Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yiqing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yinwen Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Gengxiong Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Jieyi Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, Guangzhou, PR China; International Institute of Traditional Chinese Veterinary Medicine, Guangzhou, PR China.
| |
Collapse
|
4
|
Brown ME, Pukazhenthi B, Olsen GH, Crowe C, Lynch W, Wildt DE, Songsasen N. Low estradiol production of non-laying whooping cranes (Grus americana) is associated with the failure of small follicles to enter follicular hierarchy. Gen Comp Endocrinol 2023; 338:114280. [PMID: 37011766 DOI: 10.1016/j.ygcen.2023.114280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/26/2023] [Accepted: 03/30/2023] [Indexed: 04/04/2023]
Abstract
For endangered species managed ex situ, production of offspring is a key factor to ensure healthy and self-sustaining populations. However, current breeding goals for the whooping crane (Grus americana) are impeded by poor reproduction. Our study sought to better understand mechanisms regulating ovarian function in ex situ managed whooping cranes and the regulatory function of the hypothalamic-pituitary-gonadal (HPG) axis in relation to follicle formation and egg laying. To characterize hormonal regulation of follicular development and ovulation, we collected weekly blood samples from six female whooping cranes during two breeding seasons, for a total of 11 reproductive cycles. The plasma samples were assessed for follicle stimulating hormone, luteinizing hormone, estradiol, and progesterone and the yolk precursors vitellogenin and very low-density lipoprotein. Ultrasonographic examination of the ovary was conducted at the time of blood collection. Preovulatory follicles (>12 mm) were present in laying cycles (n = 6) but absent in non-laying cycles (n = 5). The patterns of plasma hormone and yolk precursor concentrations corresponded to the stage of follicle development. Specifically, gonadotropin and yolk precursors concentrations increased as follicles transitioned from the non-yolky to yolky stage but did not increase further as the follicle advanced to preovulatory and ovulatory stages. Estrogen and progesterone concentrations increased as follicle size increased and reached peak concentrations (P < 0.05) when follicles developed to ovulatory and preovulatory stages, respectively. While overall mean circulating gonadotropin, progesterone, and yolk precursor concentrations did not differ for laying versus non-laying cycles, mean plasma estradiol in laying cycles was significantly higher than that in non-laying cycles. In summary, the findings suggested that disruption of mechanisms regulating follicle recruitment is likely responsible for the oviposition failure of the captive female whooping crane.
Collapse
|
5
|
Zhang S, Zhang Y, Mo W, Yang M, Huang W, Gao H, Lv Y, Wang Z, Wang W, Huang Y, Peng J. Metabolomics analysis of the effects of different litter size on reproductive metabolism and oxidative stress in breeding pigeon (Columba livia). Heliyon 2023; 9:e14491. [PMID: 37020945 PMCID: PMC10068127 DOI: 10.1016/j.heliyon.2023.e14491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
The pigeon breeding industry employs a high-rearing pattern to achieve economic benefits. However, too many squabs consume more energy of the breeding pigeons causing adverse effects on their breeding performance. To determine the optimal rearing patterns and the effects of different numbers of squabs on reproductive performance, oxidative stress, and glucolipid metabolism of lactating breeding pigeons in winter, three rearing patterns consisting of "2 + 2″, "2 + 3″ and "2 + 4" (a pair of breeding pigeons feeding two, three and four squabs, respectively) were adopted using European Mimas white pigeons breed. The feed intake, bodyweight loss, feed-to-meat ratio, and squab mortality were linearly increased with the number of squabs during lactation, while the bodyweight recovery rate and squab growth performance were significantly slowed down after lactation. Similarly, the laying rate was linearly decreased on days 16, 17, and 18 of lactation, with a similar pattern on the re-laying rate on days 11, 12, and 13 after first laying. In addition, the number of non-laying pigeons in the second batch was significantly increased, implying that the number of squabs significantly affected the reproductive performance of female pigeons. The eggshell weight and thickness in the "2 + 3″ group were significantly increased. However, the number of squabs in the "2 + 3″ group had no significant effect on plasma calcium (Ca) and phosphorus (P) levels. Analysis of the glucolipid metabolism index and oxidative stress level of pigeons further revealed that the contents of triglyceride (TG), total cholesterol (T-CHO), and low-density lipoprotein cholesterol (LDL-C) in the plasma of male pigeons were significantly decreased with the increase in the number of squabs, but there was no obvious oxidative stress. On the contrary, glucose (GLU), TG, malondialdehyde (MDA) in the plasma of female pigeons were significantly increased, total antioxidant capacity (T-AOC) were significantly decreased, implying that the female pigeons suffered more oxidative stress and more dramatic changes in glucolipid metabolism. Metabolomics revealed that the differential metabolites in the plasma of female pigeons in "2 + 2″, "2 + 3″, and "2 + 4″ groups were significantly enriched in the fatty acid, phospholipid, sphingolipid metabolism, and the Krebs cycle pathways, especially under "2 + 4″ rearing pattern. Overall, in female pigeons, the available lipids were reduced; hence, their body turned to sugar dysplasia and protein utilization mode, increasing the oxidative stress level and decreasing their reproductive performance. Therefore, an increased number of squabs significantly affects the body condition and reproductive performance of breeding pigeons. The "2 + 3″ rearing pattern is the most suitable for winter breeding pigeon production under the current nutrition level.
Collapse
|
6
|
Du X, Lai S, Zhao W, Xu X, Xu W, Zeng T, Tian Y, Lu L. Single-cell RNA sequencing revealed the liver heterogeneity between egg-laying duck and ceased-laying duck. BMC Genomics 2022; 23:857. [PMID: 36577943 PMCID: PMC9798604 DOI: 10.1186/s12864-022-09089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND In the late phase of production, ducks untimely cease laying, leading to a lower feed conversion. Liver plays a vital role in the synthesis and transport of yolk materials during egg formation in birds. However, the molecular mechanism of liver in ceased-laying duck is far from clear, higher resolution and deeper analysis is needed. Sing-cell RNA-sequencing of 10 × Genomics platform can help to map the liver single cell gene expression atlas of Shaoxing duck and provide new insights into the liver between egg-laying and ceased-laying ducks. RESULTS About 20,000 single cells were profiled and 22 clusters were identified. All the clusters were identified as 6 cell types. The dominant cell type is hepatocyte, accounted for about 60% of all the cells. Of note, the heterogeneity of cells between egg-laying duck and ceased-laying duck mainly occurred in hepatocytes. Cells of cluster 3 and 12 were the unique hepatocyte states of egg-laying ducks, while cells of cluster 0 and 15 were the unique hepatocyte states of ceased-laying ducks. The expression mode of yolk precursor transporters, lipid metabolizing enzymes and fibrinogens were different in hepatocytes between egg-laying duck and ceased-laying duck. APOV1, VTG2, VTG1, APOB, RBP, VTDB and SCD might be activated in egg-laying ducks, while APOA1, APOA4, APOC3, FGB and FGG might be activated in ceased-laying ducks. CONCLUSIONS Our study further proofs that APOV1 and APOB play key roles in egg production, rather than APOA1 and APOA4. It is also the first to detect a correlation between the higher expression of APOC3, FGB, FGG and ceased-laying in duck.
Collapse
Affiliation(s)
- Xue Du
- grid.410744.20000 0000 9883 3553State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang China ,grid.443483.c0000 0000 9152 7385College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Shujing Lai
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanqiu Zhao
- grid.410744.20000 0000 9883 3553Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310022 Zhejiang China
| | - Xiaoqin Xu
- grid.411527.40000 0004 0610 111XInstitute of Ecology, China West Normal University, Nanchong, 637002 Sichuan China
| | - Wenwu Xu
- grid.410744.20000 0000 9883 3553State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang China
| | - Tao Zeng
- grid.410744.20000 0000 9883 3553State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang China
| | - Yong Tian
- grid.410744.20000 0000 9883 3553State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang China
| | - Lizhi Lu
- grid.410744.20000 0000 9883 3553State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang China
| |
Collapse
|
7
|
Li L, Xu P, Liu Z, Liu C, Dong X, Zhang Z, Guo S, Ding B. Effects of salpingitis simulation on the morphology and expression of inflammatory-related genes of oviduct in laying hens. Poult Sci 2022; 102:102246. [PMID: 36335735 PMCID: PMC9640312 DOI: 10.1016/j.psj.2022.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022] Open
Abstract
This study was conducted to simulate salpingitis of laying hens by observing the morphology and expression of inflammatory genes in the oviduct. A total of one hundred twenty 81-wk-old Roman Pink laying hens in good physical condition without the oviduct disease with an average egg production rate of 76% were fed a basal diet for 2 wks and then randomly allocated into 4 groups (6 replicates/group, 5 birds/replicate). The experimental treatments were as follows: 1) Control group (treated with PBS); 2) Organic chemical reagent (OCR) group; 3) Lipopolysaccharide (LPS) group; 4) LPS + OCR group. First, the chickens were kept upside down to make ectropion and exposure of the apertura uterinae; then prepared reagents were poured into the uterine part of the fallopian tube by using the chicken vas deferens (1 mL/layer); finally, the chickens were kept in the inverted position for 5 to 10 min. The fallopian tube samples (the magnum, isthmus, and uterus) were collected after 48 h of treatment. Compared with the control, treatment with LPS+OCR decreased (P < 0.05) the secondary villus length and primary villus area in magnum and villus length in isthmus (P < 0.05). An increase (P < 0.05) of the intervillous space of uterus was observed in LPS + OCR group compared with the control. The expressions of interleukin-6 mRNA of magnum and interferon-γ (IFN-γ) of isthmus in the LPS and LPS+OCR treatments were higher (P < 0.05) than that in control. Compared with the control, treatment with LPS+OCR increased (P < 0.05) the expressions of IFN-γ mRNA of magnum and IFN-γ, tumor necrosis factor-α and inducible nitric oxide synthase mRNA of uterus in laying hens. In conclusion, the results of morphological damage of fallopian tube tissue and increased expression of inflammatory factors in LPS + OCR treatment group suggested that LPS+OCR treatment can provide data basis to establish salpingitis model in laying hens for studying the pathogenesis of it.
Collapse
Affiliation(s)
- L.L. Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - P.T. Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Z.P. Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - C.A. Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - X.Y. Dong
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Z.F. Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - S.S. Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - B.Y. Ding
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China,Corresponding author.
| |
Collapse
|
8
|
Expression of Oocyte Vitellogenesis Receptor Was Regulated by C/EBPα in Developing Follicle of Wanxi White Goose. Animals (Basel) 2022; 12:ani12070874. [PMID: 35405862 PMCID: PMC8997188 DOI: 10.3390/ani12070874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/29/2022] Open
Abstract
Yolk precursor was synthesized under regulation of hormone secretion, while the mechanism of its incorporation into follicle is still unknown. The reproductive hormones, oocyte vitellogenesis receptor (OVR) expression at pre-, early-, peak- and ceased-laying period, and localization of Wanxi White goose were determined in this study. The results showed that the concentration of LH was lowest in serum at peak laying period compared to the other periods (p < 0.01). Moreover, the concentration of E2 was highest (p < 0.01) in serum at early laying period than that of other periods. Moreover, the gene expression level of OVR was highest at ceased laying period compared to other periods (p = 0.014) and was higher in developing follicles than other follicles (p < 0.01). The OVR was distributed in the granular cell layer and decreased with the maturation of follicles. Five transcription factors were predicted in the promoter of OVR, then were screened and verified by overexpression in granulosa cells. C/EBPα and MF3 significantly stimulated the expression of OVR. The combined overexpression of C/EBPα and OVR significantly stimulated the transportation of lipid from culture medium to cytoplasm. In conclusion, C/EBPα is the key transcription factor promoting OVR expression in goose follicle granulosa cells.
Collapse
|
9
|
Rafieian-Naeini HR, Zhandi M, Sadeghi M, Yousefi AR, Benson AP. Effects of coenzyme Q10 on reproductive performance of laying Japanese quail (Coturnix japonica) under cadmium challenge. Poult Sci 2021; 100:101418. [PMID: 34600273 PMCID: PMC8531857 DOI: 10.1016/j.psj.2021.101418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/02/2022] Open
Abstract
Japanese quail is an increasingly important bird of economic importance for commercial egg and meat production, particularly in developing countries. There is a need for research aimed at improving efficiency of these birds during stressful challenges, such as oxidative stress. Coenzyme Q10 (CoQ10), a highly functional antioxidant, protects cells against oxidative stress. This study was conducted to determine the effects of CoQ10 on reproductive performance of Japanese quail under cadmium (Cd) challenge. A total of 216 six-wk-old Japanese quail were randomly allocated into 3 groups for an 8 wk experimental trial. The treatments include a negative control (NC): feeding basal diet; a positive control (PC): feeding basal diet and cadmium administration (1 mg/100 g BW, at 10 and 11 wk of age), and (CdQ10): feeding CoQ10 supplemented (900 mg/kg diet) basal diet and Cd administration. At 11 and 13 wk of age, egg production, body weight, mortality, oviduct, and ovarian biometry, were recorded. Histology and histopathology of isthmus and magnum, fertility, hatchability, hatchling quality, and HSP70 mRNA transcript abundance in the utero-vaginal junction (UVJ) were evaluated. Positive control and CdQ10 group had no significant effect on live body weight, stroma weight, follicle size, hatchability, and fertility; however, Cd administration increased (P < 0.01) mortality rate in the PC group compared to the NC and CdQ10 groups. CdQ10 quail produced more eggs and had a higher hatchling quality compared to the PC group (P < 0.01). The thickness and height of isthmus and magnum folds in the CdQ10 group was increased compared to the PC group (P < 0.01) and overall oviduct weight was increased with CoQ10 supplementation (P < 0.01). Compared to PC, the CdQ10 group had a reduction in infiltration of inflammatory cells. Relative abundance of HSP70 mRNA in UVJ was influenced by interactive effect of treatment × time (P < 0.05). In conclusion, dietary supplementation of CoQ10 showed beneficial effects on some reproduction characteristics of female Japanese quail under Cd-induced oxidative stress.
Collapse
Affiliation(s)
- Hamid Reza Rafieian-Naeini
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Alborz, Karaj, Iran
| | - Mahdi Zhandi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Alborz, Karaj, Iran.
| | - Mostafa Sadeghi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Alborz, Karaj, Iran
| | - Ali Reza Yousefi
- Department of Pathology and Experimental Animals, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Andrew Parks Benson
- Department of Poultry Science, University of Georgia, Athens, GA 30602-2772, USA
| |
Collapse
|
10
|
Abdalkarim Salih S, Daghigh-Kia H, Mehdipour M, Najafi A. Does ergothioneine and thawing temperatures improve rooster semen post-thawed quality? Poult Sci 2021; 100:101405. [PMID: 34464932 PMCID: PMC8406156 DOI: 10.1016/j.psj.2021.101405] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
The present study focuses on the effect of different levels of ergothioneine and thawing temperature on rooster semen cryopreservation. Semen was diluted in Lake extender containing ergothioneine at 5, 10, 15, and 20 µM and cryopreserved. Two thawing temperatures (37°C for 30 s and 60°C for 5 s) were consequently examined. Sperm motility parameter, membrane integrity, abnormal morphology, viability, apoptotic status, mitochondria activity, and lipid peroxidation were determined after freeze-thaw process. Ergothioneine levels of 5 and 10 µM led to higher (P < 0.05) total motility (66.58 ± 1.44 and 72.11±1.44, respectively) and average path velocity (VAP) (34.54 ± 0.89, 37.28 ± 0.89, respectively). Higher (P < 0.05) significant membrane integrity and mitochondria activity after freeze-thawing were observed in the groups supplemented with 10 µM ergothioneine (68.62 ± 1.24 and 69.12 ± 1.26, respectively). Also, 5 and 10 µM of ergothioneine led to the lowest significant percentage of apoptotic and dead sperm. The total motility and progressive motility resulted in significantly (P < 0.05) higher amount when sperm were thawed with 60°C (60.58 ± 0.91 and 24.76 ± 0.53, respectively) compared to thawed sperm in 37°C. The membrane integrity, viability and mitochondria activity led to significantly (P < 0.05) higher when sperm were thawed with 60°C (58.2 ± 0.78, 63.21 ± 0.80 and 56.85 ± 0.79, respectively). It could be concluded the addition of 5 and 10 µM ergothioneine in the semen extender and thawing temperature at 60˚C in 5 s can be an efficient strategy to preserve rooster cryopreserved semen quality.
Collapse
Affiliation(s)
- Sahar Abdalkarim Salih
- Department of Animal Science, College of Agriculture, University of Tabriz, Tabriz, Iran
| | - Hossein Daghigh-Kia
- Department of Animal Science, College of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Mahdieh Mehdipour
- Department of Animal Science, College of Agriculture, University of Tabriz, Tabriz, Iran
| | - Abouzar Najafi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| |
Collapse
|