1
|
Cerdeira Lozano J, Castaño C, Sánchez-Calabuig MJ, Santiago-Moreno J. Epididymal Spermatozoa Show Higher Cryoresistance to Vitrification Process Than Ejaculated Spermatozoa in Dogs. Biopreserv Biobank 2023; 21:527-532. [PMID: 36374957 PMCID: PMC10616935 DOI: 10.1089/bio.2022.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate differences in the sperm response to a vitrification-warming process between ejaculated and epididymal dog spermatozoa, and to evaluate the efficacy of an animal protein-free extender for vitrification of both types of sperm cells. Vitrified-warmed spermatozoa from the epididymis showed greater (p < 0.001) progressive motility and total motility values than ejaculated spermatozoa, regardless of the diluent. The vitrification procedure returned better results for viability and intact acrosome when human tubal fluid (HTF®) was used (25.10 ± 7.90 and 56.50 ± 6.7, respectively) compared with Tris-Citric acid-Glucose (TCG) (15.20 ± 4.70 and 43.70 ± 7.9, respectively) in ejaculated samples. Similarly, higher total motility (34.5 ± 4.5) was observed in HTF postwarmed samples compared with TCG-treated samples (19.52 ± 5.1). The interaction source (epididymis, ejaculated) × extender had a significant effect (p < 0.001) on the values of total motile spermatozoa after warming. HTF-based extender improved (p < 0.001) total motility values in epididymal samples, but not in ejaculated samples. In conclusion, epididymal spermatozoa show higher cryoresistance to the vitrification process than ejaculated spermatozoa in dogs. The use of HTF is adequate for both ejaculated and epididymal canine sperm vitrification.
Collapse
|
2
|
Barbosa BB, Evangelista ITA, Soares ARB, Leão DL, Pereira RJG, Domingues SFS. Kinetic vitrification: concepts and perspectives in animal sperm cryopreservation. Anim Reprod 2023; 20:e20220096. [PMID: 37228692 PMCID: PMC10205064 DOI: 10.1590/1984-3143-ar2022-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/04/2023] [Indexed: 05/27/2023] Open
Abstract
Sperm cryopreservation is an important tool for genetic diversity management programs and the conservation of endangered breeds and species. The most widely used method of sperm conservation is slow freezing, however, during the process, sperm cells suffer from cryoinjury, which reduces their viability and fertility rates. One of the alternatives to slow freezing is vitrification, that consist on rapid freezing, in which viable cells undergo glass-like solidification. This technology requires large concentrations of permeable cryoprotectants (P- CPA's) which increase the viscosity of the medium to prevent intracellular ice formation during cooling and warming, obtaining successful results in vitrification of oocytes and embryos. Unfortunately, this technology failed when applied to vitrification of sperm due to its higher sensitivity to increasing concentrations of P-CPAs. Alternatively, a technique termed 'kinetic sperm vitrification' has been used and consists in a technique of permeant cryoprotectant-free cryopreservation by direct plunging of a sperm suspension into liquid nitrogen. Some of the advantages of kinetic vitrification are the speed of execution and no rate-controlled equipment required. This technique has been used successfully and with better results for motility in human (50-70% motility recovery), dog (42%), fish (82%) and donkey (21.7%). However, more studies are required to improve sperm viability after devitrification, especially when it comes to motility recovery. The objective of this review is to present the principles of kinetic vitrification, the main findings in the literature, and the perspectives for the utilization of this technique as a cryopreservation method.
Collapse
Affiliation(s)
- Bianca Barreto Barbosa
- Laboratório de Biotecnologia e Medicina de Animais da Amazônia, Universidade Federal do Pará, Castanhal, PA, Brasil.
- Programa de Pós-graduação em Saúde e Produção Animal na Amazônia, Universidade Federal Rural da Amazônia, Belém, PA, Brasil.
| | - Inara Tayná Alves Evangelista
- Laboratório de Biotecnologia e Medicina de Animais da Amazônia, Universidade Federal do Pará, Castanhal, PA, Brasil.
| | - Airton Renan Bastos Soares
- Laboratório de Biotecnologia e Medicina de Animais da Amazônia, Universidade Federal do Pará, Castanhal, PA, Brasil.
| | - Danuza Leite Leão
- Laboratório de Biotecnologia e Medicina de Animais da Amazônia, Universidade Federal do Pará, Castanhal, PA, Brasil.
- Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, AM, Brasil.
| | - Ricardo José Garcia Pereira
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil.
| | - Sheyla Farhayldes Souza Domingues
- Laboratório de Biotecnologia e Medicina de Animais da Amazônia, Universidade Federal do Pará, Castanhal, PA, Brasil.
- Programa de Pós-graduação em Saúde e Produção Animal na Amazônia, Universidade Federal Rural da Amazônia, Belém, PA, Brasil.
| |
Collapse
|
3
|
Carracedo S, Briand-Amirat L, Dordas-Perpinyà M, Ramos Escuredo Y, Delcombel R, Sergeant N, Delehedde M. ProAKAP4 protein marker: Towards a functional approach to male fertility. Anim Reprod Sci 2022; 247:107074. [DOI: 10.1016/j.anireprosci.2022.107074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/01/2022]
|
4
|
Colombo M, Morselli MG, Zahmel J, Luvoni GC. Ultra-Rapid Freezing Preserves Morphofunctional Integrity and Fertilizing Ability of Epididymal Cat Spermatozoa. Front Vet Sci 2022; 9:866953. [PMID: 35774984 PMCID: PMC9237782 DOI: 10.3389/fvets.2022.866953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022] Open
Abstract
Vitrification and ultra-rapid freezing, which are more commonly used for oocytes and embryos, have recently been applied to spermatozoa in an attempt to make semen cryopreservation in field conditions easier compared to conventional freezing. It is well-known that in case of unexpected death of rare and wild animals, preserving epididymal spermatozoa from isolated testicles represents a great chance of salvaging male germplasm for future use in assisted reproductive technologies. The aim of this study was to evaluate the morphofunctional integrity of cat epididymal spermatozoa ultra-rapid frozen in pellets or straws with two different extenders [E1 (Tris buffer with 20% egg yolk and 0.25 M sucrose) or E2 (Ham's F10 with 1% bovine serum albumin and 0.4 M sucrose)] and to test whether spermatozoa preserved by the best combination were able to fertilize oocytes and produce embryos in vitro by intracytoplasmic sperm injection (ICSI) of in vitro matured cat oocytes. The results showed that E1 and E2 in straw or pellet were comparable (at warming, about 30% normal morphology, 45% intact membranes, and 20% intact acrosomes), except for post-warming motility that was better maintained along time by E1 pellet (21.7 ± 7.4% at warming and 3.6 ± 2.9% after 6 h). Such spermatozoa could fertilize conspecific oocytes and support embryonic development (cleavage 35.5%) as well as frozen control spermatozoa (cleavage 54.29%, p = 0.22). In conclusion, cat epididymal spermatozoa better maintained their morphofunctional features after ultra-rapid freezing with E1 and could successfully produce embryos in vitro after ICSI. This underscores their usefulness as cryobanked material for fertility and biodiversity preservation purposes.
Collapse
Affiliation(s)
- Martina Colombo
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, Milan, Italy
- *Correspondence: Martina Colombo
| | - Maria Giorgia Morselli
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, Milan, Italy
| | - Jennifer Zahmel
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Gaia Cecilia Luvoni
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|