1
|
Hassan S, Bhadwal SS, Khan M, Sabreena, Nissa KU, Shah RA, Bhat HM, Bhat SA, Lone IM, Ganai BA. Revitalizing contaminated lands: A state-of-the-art review on the remediation of mine-tailings using phytoremediation and genomic approaches. CHEMOSPHERE 2024; 356:141889. [PMID: 38583533 DOI: 10.1016/j.chemosphere.2024.141889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
The mining industry has historically served as a critical reservoir of essential raw materials driving global economic progress. Nevertheless, the consequential by-product known as mine tailings has consistently produced a substantial footprint of environmental contamination. With annual discharges of mine tailings surpassing 10 billion tons globally, the need for effective remediation strategies is more pressing than ever as traditional physical and chemical remediation techniques are hindered by their high costs and limited efficacy. Phytoremediation utilizing plants for remediation of polluted soil has developed as a promising and eco-friendly approach to addressing mine tailings contamination. Furthermore, sequencing of genomic DNA and transcribed RNA extracted from mine tailings presents a pivotal opportunity to provide critical supporting insights for activities directed towards the reconstruction of ecosystem functions on contaminated lands. This review explores the growing prominence of phytoremediation and metagenomics as an ecologically sustainable techniques for rehabilitating mine-tailings. The present study envisages that plant species such as Solidago chilensis, Festuca arundinacea, Lolium perenne, Polygonum capitatum, Pennisetum purpureum, Maireana brevifolia, Prosopis tamarugo etc. could be utilized for the remediation of mine-tailings. Furthermore, a critical evaluation of the organic and inorganic ammendments that optimize conditions for the remediation of mine tailings is also provided. The focus of this review extends to the exploration of environmental genomics to characterize microbial communities in mining sites. By delving into the multifaceted dimensions of phytoremediation and genomics for mine tailings, this study contributes to the ongoing efforts to revitalize contaminated lands for a sustainable and environmentally friendly future.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Siloni Singh Bhadwal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Misba Khan
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Sabreena
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Khair-Ul Nissa
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Rameez Ahmad Shah
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Haneef Mohammad Bhat
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Shabir Ahmad Bhat
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Ishfaq Maqbool Lone
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
2
|
Singh JP, Bottos EM, Van Hamme JD, Fraser LH. Microbial composition and function in reclaimed mine sites along a reclamation chronosequence become increasingly similar to undisturbed reference sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170996. [PMID: 38369136 DOI: 10.1016/j.scitotenv.2024.170996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Mine reclamation historically focuses on enhancing plant coverage to improve below and aboveground ecology. However, there is a great need to study the role of soil microorganisms in mine reclamation, particularly long-term studies that track the succession of microbial communities. Here, we investigate the trajectory of microbial communities of mining sites reclaimed between three and 26 years. We used high-throughput amplicon sequencing to characterize the bacterial and fungal communities. We quantified how similar the reclaimed sites were to unmined, undisturbed reference sites and explored the trajectory of microbial communities along the reclamation chronosequence. We also examined the ecological processes that shape the assembly of bacterial communities. Finally, we investigated the functional potential of the microbial communities through metagenomic sequencing. Our results reveal that the reclamation age significantly impacted the community compositions of bacterial and fungal communities. As the reclamation age increases, bacterial and fungal communities become similar to the unmined, undisturbed reference site, suggesting a favorable succession in microbial communities. The bacterial community assembly was also significantly impacted by reclamation age and was primarily driven by stochastic processes, indicating a lesser influence of environmental properties on the bacterial community. Furthermore, our read-based metagenomic analysis showed that the microbial communities' functional potential increasingly became similar to the reference sites. Additionally, we found that the plant richness increased with the reclamation age. Overall, our study shows that both above- and belowground ecological properties of reclaimed mine sites trend towards undisturbed sites with increasing reclamation age. Further, it demonstrates the importance of microbial genomics in tracking the trajectory of ecosystem reclamation.
Collapse
Affiliation(s)
- Jay Prakash Singh
- Department of Natural Resource Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada.
| | - Eric M Bottos
- Department of Biological Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| | - Jonathan D Van Hamme
- Department of Biological Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| | - Lauchlan H Fraser
- Department of Natural Resource Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| |
Collapse
|
3
|
Ossanna LQR, Serrano K, Jennings LL, Dillon J, Maier RM, Neilson JW. Progressive belowground soil development associated with sustainable plant establishment during copper mine waste revegetation. APPLIED SOIL ECOLOGY : A SECTION OF AGRICULTURE, ECOSYSTEMS & ENVIRONMENT 2023; 186:104813. [PMID: 36844191 PMCID: PMC9956965 DOI: 10.1016/j.apsoil.2023.104813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Critical to the environmental sustainability of hard rock mining is the reclamation of disturbed lands following mine closure through revegetation. Improved understanding of associations between above- and belowground processes that characterize successful plant establishment is critical to the implementation of more efficient revegetation strategies for nutrient-poor mine waste materials. The specific objective of this five-year temporal study was to identify progressive biotic and abiotic indicators of primary soil development on mine waste rock (WR) on a slope hydroseeded with native plant species and to quantify comparative effects of plant lifeform on soil development. Aboveground plant diversity and belowground substrate properties were measured annually at 67 m intervals along transects following the slope contour. Seeded WR was compared to unseeded WR and the adjacent native ecosystem. A temporal increase in WR microbial biomass was observed in seeded WR relative to unseeded areas. Microbial community analysis found the unseeded WR to be defined by oligotrophic microbes, whereas targeted grass and shrub root zones samples demonstrated significant increases in specific cellulose and lignin degrading and N-cycling phylotypes. More extensive chemical and biological fertility development was observed in shrub root zones relative to grass. Ten chemical and biological indicators increased significantly in shrub WR relative to unseeded WR, whereas grass WR was only enriched in bacterial 16S rRNA gene copy number/g substrate and bacterial/archaeal and fungal diversity. In addition, the shrub root zone had significantly higher nitrogen-cycling potential than grass root zones or unseeded WR. Thus, both grasses and shrubs improve belowground WR development; however, shrub establishment had greater fertility outcomes. Concurrent belowground fertility development is critical to sustainable plant establishment. Coupled evaluation of above- and belowground metrics provides an improved quantitative assessment of revegetation progress and a valuable tool to guide management decisions.
Collapse
Affiliation(s)
- Lia Q. R. Ossanna
- Environmental Science Department, University of Arizona, Tucson, AZ, 85721, USA
| | - Karen Serrano
- Environmental Science Department, University of Arizona, Tucson, AZ, 85721, USA
| | - Lydia L. Jennings
- Environmental Science Department, University of Arizona, Tucson, AZ, 85721, USA
| | - Jesse Dillon
- Cedar Creek Associates, Inc., Fort Collins, CO, 80527, USA
| | - Raina M. Maier
- Environmental Science Department, University of Arizona, Tucson, AZ, 85721, USA
| | - Julia W. Neilson
- Environmental Science Department, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
4
|
Bacterial, Archaeal, and Eukaryote Diversity in Planktonic and Sessile Communities Inside an Abandoned and Flooded Iron Mine (Quebec, Canada). Appl Microbiol 2023. [DOI: 10.3390/applmicrobiol3010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abandoned and flooded ore mines are examples of hostile environments (cold, dark, oligotrophic, trace metal) with a potential vast diversity of microbial communities rarely characterized. This study aimed to understand the effects of depth, the source of water (surface or groundwater), and abiotic factors on the communities present in the old Forsyth iron mine in Quebec (Canada). Water and biofilm samples from the mine were sampled by a team of technical divers who followed a depth gradient (0 to 183 m deep) to study the planktonic and sessile communities’ diversity and structure. We used 16S/18S rRNA amplicon to characterize the taxonomic diversity of Bacteria, Archaea, and Eukaryotes. Our results show that depth was not a significant factor explaining the difference in community composition observed, but lifestyle (planktonic/sessile) was. We discovered a vast diversity of microbial taxa, with taxa involved in carbon- and sulfur-cycling. Sessile communities seem to be centered on C1-cycling with fungi and heterotrophs likely adapted to heavy-metal stress. Planktonic communities were dominated by ultra-small archaeal and bacterial taxa, highlighting harsh conditions in the mine waters. Microbial source tracking indicated sources of communities from surface to deeper layers and vice versa, suggesting the dispersion of organisms in the mine, although water connectivity remains unknown.
Collapse
|
5
|
Bizuti DTG, Robin A, Soares TM, Moreno¹ VS, Almeida DRA, Andreote FD, Casagrande JC, Guillemot J, Herrmann L, Melis J, Perim JEL, Medeiros SDS, Sorrini TB, Brancalion PHS. Multifunctional soil recovery during the restoration of Brazil's Atlantic Forest after bauxite mining. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Denise T. G. Bizuti
- Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| | - Agnès Robin
- CIRADUMR Eco&Sols Piracicaba Brazil
- Eco&SolsUniversité de MontpellierCIRADINRAIRD Montpellier SupAgro, Montpellier France
- Department of Soil Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| | - Thaís M. Soares
- Center for Nuclear Energy in Agriculture University of São Paulo Piracicaba Brazil
| | | | - Danilo R. A. Almeida
- Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| | - Fernando D. Andreote
- Department of Soil Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| | - José Carlos Casagrande
- Department of Natural Resources and Environmental Protection Federal University of São Carlos Araras Brazil
| | - Joannès Guillemot
- Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
- CIRADUMR Eco&Sols Piracicaba Brazil
- Eco&SolsUniversité de MontpellierCIRADINRAIRD Montpellier SupAgro, Montpellier France
| | - Laetitia Herrmann
- Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT‐Asia)Common Microbial Biotechnology Platform (CMBP) Hanoi Vietnam
| | - Juliano Melis
- Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| | - Júlia E. L. Perim
- Department of Soil Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| | - Simone D. S. Medeiros
- Department of Informatics and Statistics Federal University of Santa Catarina Florianópolis Brazil
| | - Taísi B. Sorrini
- Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| | - Pedro H. S. Brancalion
- Department of Forest Sciences, “Luiz de Queiroz” College of Agriculture University of São Paulo Piracicaba Brazil
| |
Collapse
|
6
|
Aavik T, Träger S, Zobel M, Honnay O, Van Geel M, Bueno CG, Koorem K. The joint effect of host plant genetic diversity and arbuscular mycorrhizal fungal communities on restoration success. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tsipe Aavik
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Sabrina Träger
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
- Institute of Biology/Geobotany and Botanical Garden Martin‐Luther‐University Halle‐Wittenberg Halle (Saale) Germany
| | - Martin Zobel
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Olivier Honnay
- Plant Conservation and Population Biology Biology Department University of Leuven Heverlee Belgium
| | - Maarten Van Geel
- Plant Conservation and Population Biology Biology Department University of Leuven Heverlee Belgium
| | - C. Guillermo Bueno
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Kadri Koorem
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| |
Collapse
|
7
|
Abstract
Opencast mining drastically alters the landscape due to complete vegetation suppression and removal of topsoil layers. Precise indicators able to address incremental changes in soil quality are necessary to monitor and evaluate mineland rehabilitation projects. For this purpose, metaproteomics may be a useful tool due to its capacity to shed light on both taxonomic and functional overviews of soil biodiversity, allowing the linkage between proteins found in soil and ecosystem functioning. We investigated bacterial proteins and peptide abundance of three different mineland rehabilitation stages and compared it with a non-rehabilitated site and a native area (evergreen dense forest) in the eastern Amazon. The total amount of identified soil proteins was significantly higher in the rehabilitating and native soils than in the non-rehabilitated site. Regarding soil bacterial composition, the intermediate and advanced sites were shown to be most similar to native soil. Cyanobacteria and Firmicutes phyla are abundant in the early stages of environmental rehabilitation, while Proteobacteria population dominates the later stages. Enzyme abundances and function in the three rehabilitation stages were more similar to those found in the native soil, and the higher accumulation of many hydrolases and oxidoreductases reflects the improvement of soil biological activity in the rehabilitating sites when compared to the non-rehabilitated areas. Moreover, critical ecological processes, such as carbon and nitrogen cycling, seem to return to the soil in short periods after the start of rehabilitation activities (i.e., 4 years). Metaproteomics revealed that the biochemical processes that occur belowground can be followed throughout rehabilitation stages, and the enzymes shown here can be used as targets for environmental monitoring of mineland rehabilitation projects.
Collapse
|
8
|
Rodríguez-Berbel N, Ortega R, Lucas-Borja ME, Solé-Benet A, Miralles I. Long-term effects of two organic amendments on bacterial communities of calcareous mediterranean soils degraded by mining. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:110920. [PMID: 32579515 DOI: 10.1016/j.jenvman.2020.110920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
The application of organic amendments to improve the chemical and biological properties of degraded soils from calcareous quarries is necessary to accelerate restoration processes. The aim of this study is to assess the success of different restoration treatments in the long-term using two organic amendments (sewage sludge from urban waste water (SS) and compost from domestic solid waste (CW)). The chemical properties and bacterial communities of restored soils were compared with unamended soils (NA) and surrounding natural soils (NS) from a limestone quarry in a semi-arid ecosystem. After 10 years of the addition of organic amendments, the abundance of soil bacteria, diversity, and taxonomic composition at the phylum and genus level in each soil type was analysed by rRNA 16 S amplification (PCR), sequencing using Illumina, and comparison with the SILVA database using QIIME2 software. The relationships between soil bacterial taxa and chemical soil properties (pH, electrical conductivity (EC), total organic carbon (TOC), and total nitrogen content (TN)) were also studied, as well as the interrelations between soil bacterial taxa at the genus level or the next upper taxonomic level identified. The organic amendments changed the chemical properties of the restored soils, influencing the microbial communities of the restored soils. CW treatment was the organic amendment that most resembled NS, favouring in the long-term a greater diversity and proliferation of bacteria. Several bacterial communities, more abundant in NA and CW soils, were strongly correlated with each other (Craurococcus, Phaselicystis, Crossiella, etc.), forming a bacterial co-occurrence pattern (Co-occurrence pattern 1). Those bacteria showed high significant positive correlations with TOC, TN, and EC and negative correlations with the soil pH. In contrast, NA soils presented other groups of bacterial communities (Co-occurrence pattern 2) represented by Sphingomonas, Rubellimicrobium, Noviherbaspirillum, Psychroglaciecola and Caenimonas, which showed high significant positive correlations with soil pH and negative correlations with TOC, TN, and EC. The distance-based redundancy analysis indicated that SS soils remained in an intermediate stage of chemical and biological quality between NS and NA soils. Our results demonstrate that soil chemical properties and soil bacterial communities significantly changed with organic amendments in calcareous Mediterranean soils degraded by mining.
Collapse
Affiliation(s)
- N Rodríguez-Berbel
- Department of Agronomy & Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, E-04120, Almería, Spain
| | - R Ortega
- Department of Agronomy & Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, E-04120, Almería, Spain
| | - M E Lucas-Borja
- Escuela Técnica Superior Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071, Albacete, Spain
| | - A Solé-Benet
- EEZA-CSIC, Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, Carretera de Sacramento S/n, 04120, La Cañada de San Urbano, Almería, Spain
| | - I Miralles
- Department of Agronomy & Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, E-04120, Almería, Spain.
| |
Collapse
|
9
|
Carvalho CS, Forester BR, Mitre SK, Alves R, Imperatriz-Fonseca VL, Ramos SJ, Resende-Moreira LC, Siqueira JO, Trevelin LC, Caldeira CF, Gastauer M, Jaffé R. Combining genotype, phenotype, and environmental data to delineate site-adjusted provenance strategies for ecological restoration. Mol Ecol Resour 2020; 21:44-58. [PMID: 32419278 DOI: 10.1111/1755-0998.13191] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/23/2020] [Accepted: 05/11/2020] [Indexed: 12/29/2022]
Abstract
Despite the importance of climate-adjusted provenancing to mitigate the effects of environmental change, climatic considerations alone are insufficient when restoring highly degraded sites. Here we propose a comprehensive landscape genomic approach to assist the restoration of moderately disturbed and highly degraded sites. To illustrate it we employ genomic data sets comprising thousands of single nucleotide polymorphisms from two plant species suitable for the restoration of iron-rich Amazonian Savannas. We first use a subset of neutral loci to assess genetic structure and determine the genetic neighbourhood size. We then identify genotype-phenotype-environment associations, map adaptive genetic variation, and predict adaptive genotypes for restoration sites. Whereas local provenances were found optimal to restore a moderately disturbed site, a mixture of genotypes seemed the most promising strategy to recover a highly degraded mining site. We discuss how our results can help define site-adjusted provenancing strategies, and argue that our methods can be more broadly applied to assist other restoration initiatives.
Collapse
Affiliation(s)
- Carolina S Carvalho
- Instituto Tecnológico Vale, Belém, Pará, Brazil.,Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | - José O Siqueira
- Instituto Tecnológico Vale, Belém, Pará, Brazil.,Departamento de Ciência do Solo, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | | | | | | | - Rodolfo Jaffé
- Instituto Tecnológico Vale, Belém, Pará, Brazil.,Departamento de Ecologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Brooks JP, Adeli A, Smith RK, McGrew R, Lang DJ, Read JJ. Bacterial Community Structure Recovery in Reclaimed Coal Mined Soil under Two Vegetative Regimes. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:1029-1037. [PMID: 31589664 DOI: 10.2134/jeq2018.09.0349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Coal mining can be deleterious to the soil physical and chemical makeup, but also to the soil microbial community. Effectively, the removal of nearly all organic matter from the upper soil horizons reduces the effectiveness of any soil to support vegetation, and up until recently, microbial community parameters were not considered in the successful reclamation of overburden. Thus, our study proposes to measure the uncultivated bacterial community using 16S ribosomal RNA (rRNA) high-throughput sequencing in a chronosequence of reclaimed overburden in Mississippi. The study sites comprised samplings of pasture and wooded reclamation sites consisting of 1 to 13 yr post reclamation time, as well as reference sites. Overall, the primary driver of bacterial community dynamics was vegetative cover, although time also influenced dynamics. Richness estimations for operational taxonomic units (OTUs) showed that recently reclaimed (∼1 yr) and Pasture sites were more OTU rich with levels of >1400 compared with reference site levels of ∼1000. Diversity levels also followed a similar trend. Community structure typically differed between time points and vegetative cover; however, membership was similar between sites and reference, indicating that new communities still shared some membership from the previous community. Overall, physicochemical properties trended toward more positive for soil health as time progressed, but bacterial community recovery was still not structurally recovered, although richness and diversity values exceeded reference. Overall, this study demonstrated that mine reclamation using pasture and/or wood restoration can reestablish the bacterial community to approximate reference conditions, but vegetation is still the dominating environmental factor dictating microbial community.
Collapse
|
11
|
A metagenomic survey of soil microbial communities along a rehabilitation chronosequence after iron ore mining. Sci Data 2019; 6:190008. [PMID: 30747914 PMCID: PMC6371960 DOI: 10.1038/sdata.2019.8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/11/2018] [Indexed: 12/25/2022] Open
Abstract
Microorganisms are useful environmental indicators, able to deliver essential insights to processes regarding mine land rehabilitation. To compare microbial communities from a chronosequence of mine land rehabilitation to pre-disturbance levels from references sites covered by native vegetation, we sampled non-rehabilitated, rehabilitating and reference study sites from the Urucum Massif, Southwestern Brazil. From each study site, three composed soil samples were collected for chemical, physical, and metagenomics analysis. We used a paired-end library sequencing technology (NextSeq 500 Illumina); the reads were assembled using MEGAHIT. Coding DNA sequences (CDS) were identified using Kaiju in combination with non-redundant NCBI BLAST reference sequences containing archaea, bacteria, and viruses. Additionally, a functional classification was performed by EMG v2.3.2. Here, we provide the raw data and assembly (reads and contigs), followed by initial functional and taxonomic analysis, as a base-line for further studies of this kind. Further investigation is needed to fully understand the mechanisms of environmental rehabilitation in tropical regions, inspiring further researchers to explore this collection for hypothesis testing.
Collapse
|
12
|
Marques CR. Extremophilic Microfactories: Applications in Metal and Radionuclide Bioremediation. Front Microbiol 2018; 9:1191. [PMID: 29910794 PMCID: PMC5992296 DOI: 10.3389/fmicb.2018.01191] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022] Open
Abstract
Metals and radionuclides (M&Rs) are a worldwide concern claiming for resilient, efficient, and sustainable clean-up measures aligned with environmental protection goals and global change constraints. The unique defense mechanisms of extremophilic bacteria and archaea have been proving usefulness towards M&Rs bioremediation. Hence, extremophiles can be viewed as microfactories capable of providing specific and controlled services (i.e., genetic/metabolic mechanisms) and/or products (e.g., biomolecules) for that purpose. However, the natural physiological plasticity of such extremophilic microfactories can be further explored to nourish different hallmarks of M&R bioremediation, which are scantly approached in the literature and were never integrated. Therefore, this review not only briefly describes major valuable extremophilic pathways for M&R bioremediation, as it highlights the advances, challenges and gaps from the interplay of ‘omics’ and biological engineering to improve extremophilic microfactories performance for M&R clean-up. Microfactories’ potentialities are also envisaged to close the M&R bioremediation processes and shift the classical idea of never ‘getting rid’ of M&Rs into making them ‘the belle of the ball’ through bio-recycling and bio-recovering techniques.
Collapse
Affiliation(s)
- Catarina R Marques
- Departamento de Biologia and Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
13
|
Freshwater Ecosystem Services in Mining Regions: Modelling Options for Policy Development Support. WATER 2018. [DOI: 10.3390/w10040531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14
|
Valentín-Vargas A, Neilson JW, Root RA, Chorover J, Maier RM. Treatment impacts on temporal microbial community dynamics during phytostabilization of acid-generating mine tailings in semiarid regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:357-368. [PMID: 29132003 PMCID: PMC5773348 DOI: 10.1016/j.scitotenv.2017.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/28/2017] [Accepted: 11/01/2017] [Indexed: 05/27/2023]
Abstract
Direct revegetation, or phytostabilization, is a containment strategy for contaminant metals associated with mine tailings in semiarid regions. The weathering of sulfide ore-derived tailings frequently drives acidification that inhibits plant establishment resulting in materials prone to wind and water dispersal. The specific objective of this study was to associate pyritic mine waste acidification, characterized through pore-water chemistry analysis, with dynamic changes in microbial community diversity and phylogenetic composition, and to evaluate the influence of different treatment strategies on the control of acidification dynamics. Samples were collected from a highly instrumented one-year mesocosm study that included the following treatments: 1) unamended tailings control; 2) tailings amended with 15% compost; and 3) the 15% compost-amended tailings planted with Atriplex lentiformis. Tailings samples were collected at 0, 3, 6 and 12months and pore water chemistry was monitored as an indicator of acidification and weathering processes. Results confirmed that the acidification process for pyritic mine tailings is associated with a temporal progression of bacterial and archaeal phylotypes from pH sensitive Thiobacillus and Thiomonas to communities dominated by Leptospirillum and Ferroplasma. Pore-water chemistry indicated that weathering rates were highest when Leptospirillum was most abundant. The planted treatment was most successful in disrupting the successional evolution of the Fe/S-oxidizing community. Plant establishment stimulated growth of plant-growth-promoting heterotrophic phylotypes and controlled the proliferation of lithoautotrophic Fe/S-oxidizers. The results suggest the potential for eco-engineering a microbial inoculum to stimulate plant establishment and inhibit proliferation of the most efficient Fe/S-oxidizing phylotypes.
Collapse
Affiliation(s)
- Alexis Valentín-Vargas
- Department of Soil, Water and Environmental Science, 429 Shantz Bldg. #38, 1177 E. Fourth Street, University of Arizona, Tucson, AZ 85721-0038, USA
| | - Julia W Neilson
- Department of Soil, Water and Environmental Science, 429 Shantz Bldg. #38, 1177 E. Fourth Street, University of Arizona, Tucson, AZ 85721-0038, USA.
| | - Robert A Root
- Department of Soil, Water and Environmental Science, 429 Shantz Bldg. #38, 1177 E. Fourth Street, University of Arizona, Tucson, AZ 85721-0038, USA
| | - Jon Chorover
- Department of Soil, Water and Environmental Science, 429 Shantz Bldg. #38, 1177 E. Fourth Street, University of Arizona, Tucson, AZ 85721-0038, USA
| | - Raina M Maier
- Department of Soil, Water and Environmental Science, 429 Shantz Bldg. #38, 1177 E. Fourth Street, University of Arizona, Tucson, AZ 85721-0038, USA
| |
Collapse
|