1
|
Conceição TA, Santos AS, Fernandes AKC, Meireles GN, de Oliveira FA, Barbosa RM, Gaiotto FA. Guiding seed movement: environmental heterogeneity drives genetic differentiation in Plathymenia reticulata, providing insights for restoration. AOB PLANTS 2024; 16:plae032. [PMID: 38883565 PMCID: PMC11176975 DOI: 10.1093/aobpla/plae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Forest and landscape restoration is one of the main strategies for overcoming the environmental crisis. This activity is particularly relevant for biodiversity-rich areas threatened by deforestation, such as tropical forests. Efficient long-term restoration requires understanding the composition and genetic structure of native populations, as well as the factors that influence these genetic components. This is because these populations serve as the seed sources and, therefore, the gene reservoirs for areas under restoration. In the present study, we investigated the influence of environmental, climatic and spatial distance factors on the genetic patterns of Plathymenia reticulata, aiming to support seed translocation strategies for restoration areas. We collected plant samples from nine populations of P. reticulata in the state of Bahia, Brazil, located in areas of Atlantic Forest and Savanna, across four climatic types, and genotyped them using nine nuclear and three chloroplast microsatellite markers. The populations of P. reticulata evaluated generally showed low to moderate genotypic variability and low haplotypic diversity. The populations within the Savanna phytophysiognomy showed values above average for six of the eight evaluated genetic diversity parameters. Using this classification based on phytophysiognomy demonstrated a high predictive power for genetic differentiation in P. reticulata. Furthermore, the interplay of climate, soil and geographic distance influenced the spread of alleles across the landscape. Based on our findings, we propose seed translocation, taking into account the biome, with restricted use of seed sources acquired or collected from the same environment as the areas to be restored (Savanna or Atlantic Forest).
Collapse
Affiliation(s)
- Taise Almeida Conceição
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, USP, Piracicaba, São Paulo 13418-900, Brazil
| | - Alesandro Souza Santos
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Ane Karoline Campos Fernandes
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Gabriela Nascimento Meireles
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Fernanda Ancelmo de Oliveira
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo 13083-875, Brazil
| | - Rafael Marani Barbosa
- Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Fernanda Amato Gaiotto
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, USP, Piracicaba, São Paulo 13418-900, Brazil
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| |
Collapse
|
2
|
Taylor M, Brook B, Johnson C, de Little S. Wildlife Conservation on Private Land: A Social-Ecological Systems Study. ENVIRONMENTAL MANAGEMENT 2024; 73:1049-1071. [PMID: 38520553 PMCID: PMC11024003 DOI: 10.1007/s00267-024-01962-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
As human activity accelerates the global crisis facing wildlife populations, private land conservation provides an example of wildlife management challenges in social-ecological systems. This study reports on the research phase of 'WildTracker' - a co-created citizen science project, involving 160 landholders across three Tasmanian regions. This was a transdisciplinary collaboration between an environmental organisation, university researchers, and local landholders. Focusing on mammal and bird species, the project integrated diverse data types and technologies: social surveys, quantitative ecology, motion sensor cameras, acoustic recorders, and advanced machine-learning analytics. An iterative analytical methodology encompassed Pearson and point-biserial correlation for interrelationships, Non-Metric Multidimensional Scaling (NMDS) for clustering, and Random Forest machine learning for variable importance and prediction. Taken together, these analyses revealed complex relationships between wildlife populations and a suite of ecological, socio-economic, and land management variables. Both site-scale habitat characteristics and landscape-scale vegetation patterns were useful predictors of mammal and bird activity, but these relationships were different for mammals and birds. Four focal mammal species showed variation in their response to ecological and land management drivers. Unexpectedly, threatened species, such as the eastern quoll (Dasyurus viverrinus), favoured locations where habitat was substantially modified by human activities. The research provides actionable insights for landowners, and highlights the importance of 'messy,' ecologically heterogeneous, mixed agricultural landscapes for wildlife conservation. The identification of thresholds in habitat fragmentation reinforced the importance of collaboration across private landscapes. Participatory research models such as WildTracker can complement efforts to address the wicked problem of wildlife conservation in the Anthropocene.
Collapse
Affiliation(s)
- Matthew Taylor
- College of Sciences and Engineering, University of Tasmania, Hobart, TAS, Australia.
| | - Barry Brook
- College of Sciences and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Christopher Johnson
- College of Sciences and Engineering, University of Tasmania, Hobart, TAS, Australia
| | | |
Collapse
|
3
|
Walters SJ, Robinson TP, Byrne M, Nevill P. Seed sourcing in the genomics era: Multispecies provenance delineation for current and future climates. Restor Ecol 2022. [DOI: 10.1111/rec.13718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sheree J. Walters
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences Curtin University Bentley WA 6102 Australia
| | - Todd P. Robinson
- School of Earth and Planetary Sciences Curtin University Bentley WA 6102 Australia
| | - Margaret Byrne
- Biodiversity and Conservation Science, Department of Biodiversity Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre WA 6983 Australia
- School of Molecular and Life Sciences Curtin University Bentley WA 6102 Australia
| | - Paul Nevill
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences Curtin University Bentley WA 6102 Australia
- Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences Curtin University Bentley WA 6102 Australia
| |
Collapse
|
4
|
Harrison PA, Davidson NJ, Bailey TG, Jones M, Gilfedder L, Bridle K, Bowman DMJS, Baker TP, Richardson BJ, Wallis L, Potts BM. A decade of restoring a temperate woodland: Lessons learned and future directions. ECOLOGICAL MANAGEMENT & RESTORATION 2021. [DOI: 10.1111/emr.12537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
5
|
Jones ME, Bain GC, Hamer RP, Proft KM, Gardiner RZ, Dixon KJ, Kittipalawattanapol K, Zepeda de Alba AL, Ranyard CE, Munks SA, Barmuta LA, Burridge CP, Johnson CN, Davidson NJ. Research supporting restoration aiming to make a fragmented landscape ‘functional’ for native wildlife. ECOLOGICAL MANAGEMENT & RESTORATION 2021. [DOI: 10.1111/emr.12504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Davidson NJ, Bailey TG, Burgess S, Potts BM. New approaches for revegetating agricultural landscapes to provide connectivity for wildlife: The example of the Tasmanian Midlands, Australia. ECOLOGICAL MANAGEMENT & RESTORATION 2021. [DOI: 10.1111/emr.12519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Biermann C, Havlick D. Genetics and the question of purity in cutthroat trout restoration. Restor Ecol 2021. [DOI: 10.1111/rec.13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christine Biermann
- Department of Geography and Environmental Studies University of Colorado Colorado Springs 1420 Austin Bluffs Parkway Colorado Springs CO 80918 U.S.A
| | - David Havlick
- Department of Geography and Environmental Studies University of Colorado Colorado Springs 1420 Austin Bluffs Parkway Colorado Springs CO 80918 U.S.A
| |
Collapse
|
8
|
Predicting burrowing owl flight trajectories in urban environments. Urban Ecosyst 2021. [DOI: 10.1007/s11252-021-01170-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Genomic Approaches for Conservation Management in Australia under Climate Change. Life (Basel) 2021; 11:life11070653. [PMID: 34357024 PMCID: PMC8304512 DOI: 10.3390/life11070653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022] Open
Abstract
Conservation genetics has informed threatened species management for several decades. With the advent of advanced DNA sequencing technologies in recent years, it is now possible to monitor and manage threatened populations with even greater precision. Climate change presents a number of threats and challenges, but new genomics data and analytical approaches provide opportunities to identify critical evolutionary processes of relevance to genetic management under climate change. Here, we discuss the applications of such approaches for threatened species management in Australia in the context of climate change, identifying methods of facilitating viability and resilience in the face of extreme environmental stress. Using genomic approaches, conservation management practices such as translocation, targeted gene flow, and gene-editing can now be performed with the express intention of facilitating adaptation to current and projected climate change scenarios in vulnerable species, thus reducing extinction risk and ensuring the protection of our unique biodiversity for future generations. We discuss the current barriers to implementing conservation genomic projects and the efforts being made to overcome them, including communication between researchers and managers to improve the relevance and applicability of genomic studies. We present novel approaches for facilitating adaptive capacity and accelerating natural selection in species to encourage resilience in the face of climate change.
Collapse
|
10
|
Seaborn T, Griffith D, Kliskey A, Caudill CC. Building a bridge between adaptive capacity and adaptive potential to understand responses to environmental change. GLOBAL CHANGE BIOLOGY 2021; 27:2656-2668. [PMID: 33666302 DOI: 10.1111/gcb.15579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Adaptive capacity is a topic at the forefront of environmental change research with roots in both social, ecological, and evolutionary science. It is closely related to the evolutionary biology concept of adaptive potential. In this systematic literature review, we: (1) summarize the history of these topics and related fields; (2) assess relationship(s) between the concepts among disciplines and the use of the terms in climate change research, and evaluate methodologies, metrics, taxa biases, and the geographic scale of studies; and (3) provide a synthetic conceptual framework to clarify concepts. Bibliometric analyses revealed the terms have been used most frequently in conservation and evolutionary biology journals, respectively. There has been a greater growth in studies of adaptive potential than adaptive capacity since 2001, but a greater geographical extent of adaptive capacity studies. Few studies include both, and use is often superficial. Our synthesis considers adaptive potential as one process contributing to adaptive capacity of complex systems, notes "sociological" adaptive capacity definitions include actions aimed at desired outcome (i.e., policies) as a system driver whereas "biological" definitions exclude such drivers, and suggests models of adaptive capacity require integration of evolutionary and social-ecological system components.
Collapse
Affiliation(s)
- Travis Seaborn
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID, USA
| | - David Griffith
- Center for Resilient Communities, University of Idaho, Moscow, ID, USA
| | - Andrew Kliskey
- Center for Resilient Communities, University of Idaho, Moscow, ID, USA
| | | |
Collapse
|
11
|
High gene flow through pollen partially compensates spatial limited gene flow by seeds for a Neotropical tree in forest conservation and restoration areas. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01344-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Borges D, Mariano-Neto E, Caribé D, Corrêa R, Gaiotto F. Changes in fine-scale spatial genetic structure related to protection status in Atlantic Rain Forest fragment. J Nat Conserv 2020. [DOI: 10.1016/j.jnc.2019.125784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Nevill PG, Robinson TP, Di Virgilio G, Wardell‐Johnson G. Beyond isolation by distance: What best explains functional connectivity among populations of three sympatric plant species in an ancient terrestrial island system? DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.12959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Paul Gerard Nevill
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences Curtin University Perth Western Australia Australia
| | - Todd P. Robinson
- School of Earth and Planetary Sciences Curtin University Perth Western Australia Australia
| | - Giovanni Di Virgilio
- Climate Change Research Centre, School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
| | - Grant Wardell‐Johnson
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences Curtin University Perth Western Australia Australia
| |
Collapse
|
14
|
Wide outcrossing provides functional connectivity for new and old Banksia populations within a fragmented landscape. Oecologia 2019; 190:255-268. [DOI: 10.1007/s00442-019-04387-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
|