1
|
Alameda-Martín A, Chamizo S, Maggioli L, Roman R, Machado-de-Lima N, Muñoz-Rojas M, Cantón Y. Optimizing survival and growth of inoculated biocrust-forming cyanobacteria through native plant-based habitat amelioration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122960. [PMID: 39447361 DOI: 10.1016/j.jenvman.2024.122960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Low restoration success in degraded drylands has promoted research efforts towards recovery of pioneer components of these ecosystems such as biocrusts. Biocrusts can stabilize soils and improve nutrient cycling to assist vegetation establishment, but their natural recovery following a disturbance may be very slow. Soil inoculation with biocrust-forming components such as cyanobacteria is widely spread to foster biocrust formation. However, the growth of induced biocrust can be constrained under field conditions due to the harsh environmental conditions in drylands. Thus, strategies to reduce abiotic stresses have to be explored to improve cyanobacteria survival and growth. In this study, we performed an outdoor experiment to analyze the effect of plant-based ameliorating strategies in combination with cyanobacteria inoculum on biocrust formation and improvement of degraded arid soil properties. These ameliorants consisted of a plant mesh made of Macrochloa tenacissima and a Plantago ovata-based stabilizer. Application of ameliorating treatments improved cyanobacteria growth (higher chlorophyll a content, lower albedo and higher NDVI) compared to the application of cyanobacteria inoculum alone. Inoculated soils showed higher aggregate stability than non-inoculated ones, but the highest soil stability was found in the soils treated with P. ovata and was also significantly increased in the soils covered by the M. tenacissima mesh compared to uncovered soils. Both the mesh and the P. ovata stabilizer increased soil organic carbon content by up to 10% and 172%, respectively, compared to soils without habitat amelioration. Microbial community composition was similar between control and inoculated soils and between the mesh covered and uncovered soils, indicating that neither cyanobacteria inoculation nor the vegetal mesh had negative effects on the native soil community. In contrast, the soil with the P. ovata stabilizer alone displayed a different composition, with up to 95% of the bacteria's relative abundance represented by Firmicutes. This effect needs to be considered when applying this stabilizer to prevent a potential alteration of the indigenous soil microbial community. This study indicates the viability of using plant-based ameliorating strategies to optimize the establishment and growth of cyanobacteria inoculum and maximize their effects on soil properties, thus contributing to advancing in the application of nature-based solutions for the restoration of degraded dryland ecosystems.
Collapse
Affiliation(s)
- Aitor Alameda-Martín
- Department of Agronomy, University of Almería, Carretera de Sacramento s/n, 04120, Almería, Spain; Research Centre for Scientific Collections from the University of Almeria (CECOUAL), Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Sonia Chamizo
- Department of Agronomy, University of Almería, Carretera de Sacramento s/n, 04120, Almería, Spain; Estación Experimental de Zonas Áridas (EEZA-CSIC), Carretera de Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain.
| | - Lisa Maggioli
- Department of Agronomy, University of Almería, Carretera de Sacramento s/n, 04120, Almería, Spain; Research Centre for Scientific Collections from the University of Almeria (CECOUAL), Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Raul Roman
- School of Life Sciences, University of Nevada-Las Vegas, 4505 S. Maryland Pkwy., Las Vegas, NV, 89154, USA
| | - Náthali Machado-de-Lima
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW, 2052, Australia; Zoology and Botany Department, IBILCE/UNESP, São Paulo State University, Rua Cristóvão Colombo, 2265, BR15051-000, São José do Rio Preto, SP, Brazil
| | - Miriam Muñoz-Rojas
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW, 2052, Australia; Department of Vegetal Biology and Ecology, University of Sevilla, Av. Reina Mercedes, 6, 41012, Sevilla, Spain
| | - Yolanda Cantón
- Department of Agronomy, University of Almería, Carretera de Sacramento s/n, 04120, Almería, Spain; Research Centre for Scientific Collections from the University of Almeria (CECOUAL), Carretera de Sacramento s/n, 04120, Almería, Spain; ECO-ARID, UAL, Unidad Asociada al CSIC por la EEZA, 04120, Almería, Spain
| |
Collapse
|
2
|
Sorochkina K, Martens-Habbena W, Reardon CL, Inglett PW, Strauss SL. Nitrogen-fixing bacterial communities differ between perennial agroecosystem crops. FEMS Microbiol Ecol 2024; 100:fiae064. [PMID: 38637314 DOI: 10.1093/femsec/fiae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024] Open
Abstract
Biocrusts, common in natural ecosystems, are specific assemblages of microorganisms at or on the soil surface with associated microorganisms extending into the top centimeter of soil. Agroecosystem biocrusts have similar rates of nitrogen (N) fixation as those in natural ecosystems, but it is unclear how agricultural management influences their composition and function. This study examined the total bacterial and diazotrophic communities of biocrusts in a citrus orchard and a vineyard that shared a similar climate and soil type but differed in management. To contrast climate and soil type, these biocrusts were also compared with those from an apple orchard. Unlike natural ecosystem biocrusts, these agroecosystem biocrusts were dominated by proteobacteria and had a lower abundance of cyanobacteria. All of the examined agroecosystem biocrust diazotroph communities were dominated by N-fixing cyanobacteria from the Nostocales order, similar to natural ecosystem cyanobacterial biocrusts. Lower irrigation and fertilizer in the vineyard compared with the citrus orchard could have contributed to biocrust microbial composition, whereas soil type and climate could have differentiated the apple orchard biocrust. Season did not influence the bacterial and diazotrophic community composition of any of these agroecosystem biocrusts. Overall, agricultural management and climatic and edaphic factors potentially influenced the community composition and function of these biocrusts.
Collapse
Affiliation(s)
- Kira Sorochkina
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, United States
- Southwest Research and Education Center, University of Florida, Immokalee, FL, United States
| | - Willm Martens-Habbena
- Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, FL, United States
| | - Catherine L Reardon
- Soil and Water Conservation Research Unit, U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pendleton, OR, United States
| | - Patrick W Inglett
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, United States
| | - Sarah L Strauss
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, United States
- Southwest Research and Education Center, University of Florida, Immokalee, FL, United States
| |
Collapse
|
3
|
Giraldo-Silva A, Masiello CA. Environmental conditions play a key role in controlling the composition and diversity of Colombian biocrust microbiomes. Front Microbiol 2024; 15:1236554. [PMID: 38725684 PMCID: PMC11081033 DOI: 10.3389/fmicb.2024.1236554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/11/2024] [Indexed: 05/12/2024] Open
Abstract
Drylands soils worldwide are naturally colonized by microbial communities known as biocrusts. These soil microbiomes render important ecosystem services associated with soil fertility, water holding capacity, and stability to the areas they cover. Because of the importance of biocrusts in the global cycling of nutrients, there is a growing interest in describing the many microbial configurations these communities display worldwide. However, comprehensive 16S rRNA genes surveys of biocrust communities do not exist for much of the planet: for example, in the continents of South America and the northern part of Africa. The absence of a global understanding of biocrust biodiversity has lead us to assign a general importance to community members that may, in fact, be regional. Here we report for the first time the presence of biocrusts in Colombia (South America) through 16S rRNA genes surveys across an arid, a semi-arid and a dry subtropical region within the country. Our results constitute the first glance of the Bacterial/Archaeal communities associated with South American biocrust microbiomes. Communities where cyanobacteria other than Microcoleus vaginatus prevail, despite the latter being considered a key species elsewhere, illustrate differentiable results in these surveys. We also find that the coastal biocrust communities in Colombia include halo-tolerant and halophilic species, and that niche preference of some nitrogen fixing organisms deviate from previously described global trends. In addition, we identified a high proportion (ranging from 5 to 70%, in average) of cyanobacterial sequences that did not match any formally described cyanobacterial species. Our investigation of Colombian biocrusts points to highly diverse communities with climatic regions controlling taxonomic configurations. They also highlight an extensive local diversity to be discovered which is central to better design management and restoration strategies for drylands soils currently undergoing disturbances due to land use and global warming. Finally, this field study highlights the need for an improved mechanistic understanding of the response of key biocrust community members to changes in moisture and temperature.
Collapse
Affiliation(s)
- Ana Giraldo-Silva
- Department of Science, Ecology Group and Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre (UPNA), Pamplona, Spain
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX, United States
| | - Caroline A. Masiello
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX, United States
| |
Collapse
|
4
|
Kut P, Garcia-Pichel F. Nimble vs. torpid responders to hydration pulse duration among soil microbes. Commun Biol 2024; 7:455. [PMID: 38609432 PMCID: PMC11015016 DOI: 10.1038/s42003-024-06141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Environmental parameters vary in time, and variability is inherent in soils, where microbial activity follows precipitation pulses. The expanded pulse-reserve paradigm (EPRP) contends that arid soil microorganisms have adaptively diversified in response to pulse regimes differing in frequency and duration. To test this, we incubate Chihuahuan Desert soil microbiomes under separate treatments in which 60 h of hydration was reached with pulses of different pulse duration (PD), punctuated by intervening periods of desiccation. Using 16S rRNA gene amplicon data, we measure treatment effects on microbiome net growth, growth efficiency, diversity, and species composition, tracking the fate of 370 phylotypes (23% of those detected). Consistent with predictions, microbial diversity is a direct, saturating function of PD. Increasingly larger shifts in community composition are detected with decreasing PD, as specialist phylotypes become more prominent. One in five phylotypes whose fate was tracked responds consistently to PD, some preferring short pulses (nimble responders; NIRs) and some longer pulses (torpid responders; TORs). For pulses shorter than a day, microbiome growth efficiency is an inverse function of PD, as predicted. We conclude that PD in pulsed soil environments constitutes a major driver of microbial community assembly and function, largely consistent with the EPRP predictions.
Collapse
Affiliation(s)
- Patrick Kut
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
5
|
Roncero-Ramos B, Savaglia V, Durieu B, Van de Vreken I, Richel A, Wilmotte A. Ecophysiological and genomic approaches to cyanobacterial hardening for restoration. JOURNAL OF PHYCOLOGY 2024; 60:465-482. [PMID: 38373045 DOI: 10.1111/jpy.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 02/20/2024]
Abstract
Cyanobacteria inhabit extreme environments, including drylands, providing multiple benefits to the ecosystem. Soil degradation in warm drylands is increasing due to land use intensification. Restoration methods adapted to the extreme stress in drylands are being developed, such as cyanobacteria inoculation to recover biocrusts. For this type of restoration method to be a success, it is crucial to optimize the survival of inoculated cyanobacteria in the field. One strategy is to harden them to be acclimated to stressful conditions after laboratory culturing. Here, we analyzed the genome and ecophysiological response to osmotic desiccation and UVR stresses of an Antarctic cyanobacterium, Stenomitos frigidus ULC029, which is closely related to other cyanobacteria from warm and cold dryland soils. Chlorophyll a concentrations showed that preculturing ULC029 under moderate osmotic stress improved its survival during an assay of desiccation plus rehydration under UVR. Additionally, its sequential exposure to these stress factors increased the production of exopolysaccharides, carotenoids, and scytonemin. Desiccation, but not osmotic stress, increased the concentrations of the osmoprotectants trehalose and sucrose. However, osmotic stress might induce the production of other osmoprotectants, for which the complete pathways were observed in the ULC029 genome. In total, 140 genes known to be involved in stress resistance were annotated. Here, we confirm that the sequential application of moderate osmotic stress and dehydration could improve cyanobacterial hardening for soil restoration by inducing several resistance mechanisms. We provide a high-quality genome of ULC029 and a description of the main resistance mechanisms (i.e., production of exopolysaccharides, osmoprotectants, chlorophyll, and carotenoids; DNA repair; and oxidative stress protection).
Collapse
Affiliation(s)
- Beatriz Roncero-Ramos
- InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liege, Belgium
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - Valentina Savaglia
- InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liege, Belgium
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Benoit Durieu
- InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liege, Belgium
| | | | - Aurore Richel
- TERRA-Biomass and Green Technologies, University of Liège, Gembloux, Belgium
| | - Annick Wilmotte
- InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liege, Belgium
| |
Collapse
|
6
|
Jech SD, Day N, Barger NN, Antoninka A, Bowker MA, Reed S, Tucker C. Cultivating Resilience in Dryland Soils: An Assisted Migration Approach to Biological Soil Crust Restoration. Microorganisms 2023; 11:2570. [PMID: 37894228 PMCID: PMC10608944 DOI: 10.3390/microorganisms11102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Land use practices and climate change have driven substantial soil degradation across global drylands, impacting ecosystem functions and human livelihoods. Biological soil crusts, a common feature of dryland ecosystems, are under extensive exploration for their potential to restore the stability and fertility of degraded soils through the development of inoculants. However, stressful abiotic conditions often result in the failure of inoculation-based restoration in the field and may hinder the long-term success of biocrust restoration efforts. Taking an assisted migration approach, we cultivated biocrust inocula sourced from multiple hot-adapted sites (Mojave and Sonoran Deserts) in an outdoor facility at a cool desert site (Colorado Plateau). In addition to cultivating inoculum from each site, we created an inoculum mixture of biocrust from the Mojave Desert, Sonoran Desert, and Colorado Plateau. We then applied two habitat amelioration treatments to the cultivation site (growth substrate and shading) to enhance soil stability and water availability and reduce UV stress. Using marker gene sequencing, we found that the cultivated mixed inoculum comprised both local- and hot-adapted cyanobacteria at the end of cultivation but had similar cyanobacterial richness as each unmixed inoculum. All cultivated inocula had more cyanobacterial 16S rRNA gene copies and higher cyanobacterial richness when cultivated with a growth substrate and shade. Our work shows that it is possible to field cultivate biocrust inocula sourced from different deserts, but that community composition shifts toward that of the cultivation site unless habitat amelioration is employed. Future assessments of the function of a mixed inoculum in restoration and its resilience in the face of abiotic stressors are needed to determine the relative benefit of assisted migration compared to the challenges and risks of this approach.
Collapse
Affiliation(s)
- Sierra D Jech
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Natalie Day
- Colorado Water Science Center, U.S. Geological Survey, Grand Junction, CO 81506, USA
| | - Nichole N Barger
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Anita Antoninka
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86001, USA
| | - Matthew A Bowker
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86001, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86001, USA
| | - Sasha Reed
- Southwest Biological Science Center, U.S. Geological Survey, Moab, UT 84532, USA
| | - Colin Tucker
- Manti-La Sal National Forest, U.S. Forest Service, Monticello, UT 84535, USA
| |
Collapse
|
7
|
Marasco R, Ramond JB, Van Goethem MW, Rossi F, Daffonchio D. Diamonds in the rough: Dryland microorganisms are ecological engineers to restore degraded land and mitigate desertification. Microb Biotechnol 2023. [PMID: 36641786 PMCID: PMC10364308 DOI: 10.1111/1751-7915.14216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/16/2023] Open
Abstract
Our planet teeters on the brink of massive ecosystem collapses, and arid regions experience manifold environmental and climatic challenges that increase the magnitude of selective pressures on already stressed ecosystems. Ultimately, this leads to their aridification and desertification, that is, to simplified and barren ecosystems (with proportionally less microbial load and diversity) with altered functions and food webs and modification of microbial community network. Thus, preserving and restoring soil health in such a fragile biome could help buffer climate change's effects. We argue that microorganisms and the protection of their functional properties and networks are key to fight desertification. Specifically, we claim that it is rational, possible and certainly practical to rely on native dryland edaphic microorganisms and microbial communities as well as dryland plants and their associated microbiota to conserve and restore soil health and mitigate soil depletion in newly aridified lands. Furthermore, this will meet the objective of protecting/stabilizing (and even enhancing) soil biodiversity globally. Without urgent conservation and restoration actions that take into account microbial diversity, we will ultimately, and simply, not have anything to protect anymore.
Collapse
Affiliation(s)
- Ramona Marasco
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Jean-Baptiste Ramond
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marc W Van Goethem
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Federico Rossi
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, Pisa, Italy
| | - Daniele Daffonchio
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
| |
Collapse
|
8
|
Loiola M, Silva AET, Krull M, Barbosa FA, Galvão EH, Patire VF, Cruz ICS, Barros F, Hatje V, Meirelles PM. Mangrove microbial community recovery and their role in early stages of forest recolonization within shrimp ponds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158863. [PMID: 36126709 DOI: 10.1016/j.scitotenv.2022.158863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
Shrimp farming is blooming worldwide, posing a severe threat to mangroves and its multiple goods and ecosystem services. Several studies reported the impacts of aquaculture on mangrove biotic communities, including microbiomes. However, little is known about how mangrove soil microbiomes would change in response to mangrove forest recolonization. Using genome-resolved metagenomics, we compared the soil microbiome of mangrove forests (both with and without the direct influence of shrimp farming effluents) with active shrimp farms and mangroves under a recolonization process. We found that the structure and composition of active shrimp farms microbial communities differ from the control mangrove forests, mangroves under the impact of the shrimp farming effluents, and mangroves under recolonization. Shrimp farming ponds microbiomes have lower microbial diversity and are dominated by halophilic microorganisms, presenting high abundance of multiple antibiotic resistance genes. On the other hand, control mangrove forests, impacted mangroves (exposed to the shrimp farming effluents), and recolonization ponds were more diverse, with a higher abundance of genes related to carbon mobilization. Our data also indicated that the microbiome is recovering in the mangrove recolonization ponds, performing vital metabolic functions and functionally resembling microbiomes found in those soils of neighboring control mangrove forests. Despite highlighting the damage caused by the habitat changes in mangrove soil microbiome community and functioning, our study sheds light on these systems incredible recovery capacity. Our study shows the importance of natural mangrove forest recovery, enhancing ecosystem services by the soil microbial communities even in a very early development stage of mangrove forest, thus encouraging mangrove conservation and restoration efforts worldwide.
Collapse
Affiliation(s)
- Miguel Loiola
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
| | | | - Marcos Krull
- Leibniz Centre for Agricultural Landscape Research (ZALF), Germany
| | | | | | - Vinicius F Patire
- Centro Interdisciplinar de Energia e Ambiente (CIENAM), Universidade Federal da Bahia, Brazil
| | | | - Francisco Barros
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil; Instituto Nacional de Estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução (IN-TREE), Brazil
| | - Vanessa Hatje
- Centro Interdisciplinar de Energia e Ambiente (CIENAM), Universidade Federal da Bahia, Brazil; Instituto de Química, Universidade Federal da Bahia, Brazil
| | - Pedro Milet Meirelles
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil; Instituto Nacional de Estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução (IN-TREE), Brazil.
| |
Collapse
|
9
|
Roncero-Ramos B, Román JR, Acién G, Cantón Y. Towards large scale biocrust restoration: Producing an efficient and low-cost inoculum of N-fixing cyanobacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157704. [PMID: 35908695 DOI: 10.1016/j.scitotenv.2022.157704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Dryland soil degradation is increasing due to global change and traditional restoration methods are not successful due to water scarcity. Thus, an alternative technology based on inoculating biocrust-forming cyanobacteria on degraded soils has emerged. Biocrusts are communities of mosses, lichens, cyanobacteria or fungi that colonize soil surface forming a stable and fertile layer. Previous studies have shown the benefits of inoculating cyanobacteria to restore soils at a small scale. However, to face field restoration projects, it is necessary to produce high quantities of biomass at an affordable cost. In this work, we analyze if the previously tested cyanobacteria Scytonema hyalinum, Tolypothrix distorta (heterocystous strains) and Trichocoleus desertorum (a bundle-forming one) can be produced with agricultural fertilizers. Different culture media were used: two containing pure chemicals (BG11 and BG110, this N-free medium was used just for heterocystous strains) and two containing fertilizers (BG11-F and MM-F). The performance of the cultures was monitored by measuring the biomass concentration and photosynthetic stress. Afterwards, we analyzed their capacity to induce biocrusts and improve soil properties by inoculating the biomass on a mine substrate indoors and measuring, three months later, the albedo, chlorophyll a and organic carbon content. Results show that the bundle-forming cyanobacterium was unable to grow in the media tested, whereas both heterocystous cyanobacteria grew in all of them and induced the formation of biocrusts improving the organic carbon substrate content. The best results for S. hyalinum were found using the MM-F medium, and for T. distorta using a medium containing pure chemicals (BG11). However, results were also positive when using a medium containing fertilizers (BG11-F). Thus, agricultural fertilizers can be used to undertake the production of heterocystous cyanobacteria for large scale restoration in drylands. On the other hand, more research is needed to find sustainable techniques to produce biomass of bundle-forming cyanobacteria.
Collapse
Affiliation(s)
- Beatriz Roncero-Ramos
- Department of Life Sciences, InBios-Center for Protein Engineering, University of Liège, Belgium; Agronomy Department, University of Almería, Spain.
| | - José Raúl Román
- Agronomy Department, University of Almería, Spain; Department of Ecosystem Science and Management, The Pennsylvania State University, State College, PA, USA
| | - Gabriel Acién
- Chemical Engineering Department, University of Almería, Spain
| | - Yolanda Cantón
- Agronomy Department, University of Almería, Spain; Research Centre for Scientific Collections from the University of Almeria (CECOUAL), Spain
| |
Collapse
|
10
|
Nelson C, Giraldo-Silva A, Warsop Thomas F, Garcia-Pichel F. Spatial self-segregation of pioneer cyanobacterial species drives microbiome organization in biocrusts. ISME COMMUNICATIONS 2022; 2:114. [PMID: 37938289 PMCID: PMC9723579 DOI: 10.1038/s43705-022-00199-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2023]
Abstract
Microbial communities are typically characterized by some degree of self-organization. In biological soil crust (biocrust) communities, vertical organization of resident populations at the mm scale is driven by organismal adaptations to physicochemical microniches. However, the extent of horizontal organization and its driving processes are unknown. Using a combination of observational and genetic mapping, we provide evidence for a highly defined, horizontal self-organization (patchiness) at the mm to cm scale in a successionally early biocrust community dominated by the pioneer cyanobacteria, Microcoleus vaginatus (Microcoleaceae) and Parifilum sp. (Coleofasciculaceae). Experiments with representative isolates of each species demonstrate that the phenomenon is driven by active spatial segregation based on cross-species sensing through the exometabolome acted upon with motility responses. Further, we show that both species share the ability to enrich for specialized cyanospheres of heterotrophic bacteria at smaller scales, and that these cyanospheres are characterized by compositional host-specificity, thus expanding the reach of spatial patchiness beyond primary producers. Our results highlight the importance of specific microbial interactions in the emergence of microbiome compositional architecture and the enhancement of microbial diversity.
Collapse
Affiliation(s)
- Corey Nelson
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Ana Giraldo-Silva
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Finlay Warsop Thomas
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
11
|
High impact of bacterial predation on cyanobacteria in soil biocrusts. Nat Commun 2022; 13:4835. [PMID: 35977950 PMCID: PMC9385608 DOI: 10.1038/s41467-022-32427-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022] Open
Abstract
Diverse bacteria lead a life as pathogens or predators of other bacteria in many environments. However, their impact on emerging ecological processes in natural settings remains to be assessed. Here we describe a novel type of obligate, intracellular predatory bacterium of widespread distribution that preys on soil cyanobacteria in biocrusts. The predator, Candidatus Cyanoraptor togatus, causes localized, cm-sized epidemics that are visible to the naked eye, obliterates cyanobacterial net primary productivity, and severely impacts crucial biocrust properties like nitrogen cycling, dust trapping and moisture retention. The combined effects of high localized morbidity and areal incidence result in decreases approaching 10% of biocrust productivity at the ecosystem scale. Our findings show that bacterial predation can be an important loss factor shaping not only the structure but also the function of microbial communities. Some bacteria act as pathogens or predators of other bacteria, but their impact in natural settings is often unclear. Here, Bethany et al. describe a new type of obligate, intracellular predatory bacterium of widespread distribution that preys on soil cyanobacteria in biocrusts and thus severely impacts biocrust productivity.
Collapse
|
12
|
Long-read metagenomics of soil communities reveals phylum-specific secondary metabolite dynamics. Commun Biol 2021; 4:1302. [PMID: 34795375 PMCID: PMC8602731 DOI: 10.1038/s42003-021-02809-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023] Open
Abstract
Microbial biosynthetic gene clusters (BGCs) encoding secondary metabolites are thought to impact a plethora of biologically mediated environmental processes, yet their discovery and functional characterization in natural microbiomes remains challenging. Here we describe deep long-read sequencing and assembly of metagenomes from biological soil crusts, a group of soil communities that are rich in BGCs. Taking advantage of the unusually long assemblies produced by this approach, we recovered nearly 3,000 BGCs for analysis, including 712 full-length BGCs. Functional exploration through metatranscriptome analysis of a 3-day wetting experiment uncovered phylum-specific BGC expression upon activation from dormancy, elucidating distinct roles and complex phylogenetic and temporal dynamics in wetting processes. For example, a pronounced increase in BGC transcription occurs at night primarily in cyanobacteria, implicating BGCs in nutrient scavenging roles and niche competition. Taken together, our results demonstrate that long-read metagenomic sequencing combined with metatranscriptomic analysis provides a direct view into the functional dynamics of BGCs in environmental processes and suggests a central role of secondary metabolites in maintaining phylogenetically conserved niches within biocrusts.
Collapse
|
13
|
Moreira C Fernandes V, Giraldo-Silva A, Roush D, Garcia-Pichel F. Coleofasciculaceae, a Monophyletic Home for the Microcoleus steenstrupii Complex and Other Desiccation-tolerant Filamentous Cyanobacteria. JOURNAL OF PHYCOLOGY 2021; 57:1563-1579. [PMID: 34289106 DOI: 10.1111/jpy.13199] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacteria classified as Microcoleus steenstrupii play a significant role as pioneers of biological soil crusts (biocrusts), but this taxon is recognized to constitute a diverse complex of strains and field populations. With the aim of clarifying its systematics, we conducted a polyphasic characterization of this and allied taxa. A 16S ribosomal gene meta-analysis of published environmental sequences showed that the complex encompasses a variety of well supported genus-level clades with clade-specific environmental preferences, indicating significant niche differentiation. Fifteen strains in the M. steenstrupii complex were selected as representative of naturally occurring clades and studied using 16S rRNA gene phylogeny, morphology, and niche delineation with respect to temperature and rainfall. Bayesian phylogenetic reconstructions within a comprehensive, curated database of long 16S rRNA cyanobacterial sequences (1,000 base pairs or more) showed that they all belonged in a monophyletic, family-level clade (91.4% similarity) that included some other known genera of desiccation-resistant, largely terrestrial, filamentous, nonheterocystous cyanobacteria, including Coleofasciculus, the type genus for the family Coleofasciculaceae. To accommodate this biodiversity, we redescribe the Coleofasciculaceae, now composed of 11 genera, among which six are newly described herein (Funiculus, Parifilum, Arizonema, Crassifilum, Crustifilum, and Allocoleopsis), and five were previously recognized (Porphyrosiphon, Coleofasciculus, Pycnacronema, Potamolinea, and Wilmottia). We provide an evaluation of their respective niches and global distributions within biocrusts based on published molecular data. This new systematics treatment should help simplify and improve our understanding of the biology of terrestrial cyanobacteria.
Collapse
Affiliation(s)
- Vanessa Moreira C Fernandes
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85287, USA
- Center for Fundamental and Applied Microbiomics (CFAM), Biodesign Institute, Arizona State University, Tempe, Arizona, 85287, USA
| | - Ana Giraldo-Silva
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85287, USA
- Center for Fundamental and Applied Microbiomics (CFAM), Biodesign Institute, Arizona State University, Tempe, Arizona, 85287, USA
| | - Daniel Roush
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85287, USA
- Center for Fundamental and Applied Microbiomics (CFAM), Biodesign Institute, Arizona State University, Tempe, Arizona, 85287, USA
| | - Ferran Garcia-Pichel
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85287, USA
- Center for Fundamental and Applied Microbiomics (CFAM), Biodesign Institute, Arizona State University, Tempe, Arizona, 85287, USA
| |
Collapse
|
14
|
Beneficial cyanosphere heterotrophs accelerate establishment of cyanobacterial biocrust. Appl Environ Microbiol 2021; 87:e0123621. [PMID: 34379492 DOI: 10.1128/aem.01236-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biological soil crusts (biocrusts) are communities of microbes that inhabit the surface of arid soils and provide essential services to dryland ecosystems. While resistant to extreme environmental conditions, biocrusts are susceptible to anthropogenic disturbances that can deprive ecosystems of these valuable services for decades. Until recently, culture-based efforts to produce inoculum for cyanobacterial biocrust restoration in the Southwestern US focused on producing and inoculating the most abundant primary producers and biocrust pioneers, Microcoleus vaginatus and members of the family Coleofasciculaceae (aka "Microcoleus streenstrupii complex"). The discovery that a unique microbial community characterized by diazotrophs is intimately associated with M. vaginatus, known as the "cyanosphere", suggests a symbiotic division of labor in which nutrients are traded between phototrophs and heterotrophs. To probe the potential use of such cyanosphere members in the restoration of biocrusts, we performed co-inoculations of soil substrates with cyanosphere constituents. This resulted in more rapid cyanobacterial growth over inoculations with the cyanobacterium alone. Additionally, we found that the mere addition of beneficial heterotrophs enhanced the formation of a cohesive biocrust without the need of additional phototrophic biomass within native soils that contain trace amounts of biocrust cyanobacteria. Our findings support the hitherto unknown role of beneficial heterotrophic bacteria in the establishment and growth of biocrusts and allow us to make recommendations concerning biocrust restoration efforts based on the presence of remnant biocrust communities in disturbed areas. Future biocrust restoration efforts should consider cyanobacteria and their beneficial heterotrophic community as inoculants. Importance The advancement of biocrust restoration methodologies for cyanobacterial biocrusts has been largely achieved through trial and error. Successes and failures could not always be traced back to particular factors. The investigation and application of foundational microbial interactions existing within biocrust communities is a crucial step toward informed and repeatable biocrust restoration methodologies.
Collapse
|
15
|
Pietrasiak N, Reeve S, Osorio-Santos K, Lipson DA, Johansen JR. Trichotorquatus gen. nov. - a new genus of soil cyanobacteria discovered from American drylands 1. JOURNAL OF PHYCOLOGY 2021; 57:886-902. [PMID: 33583028 DOI: 10.1111/jpy.13147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/15/2020] [Accepted: 12/06/2020] [Indexed: 05/25/2023]
Abstract
Cyanobacteria are crucial ecosystem components in dryland soils. Advances in describing α-level taxonomy are needed to understand what drives their abundance and distribution. We describe Trichotorquatus gen. nov. (Oculatellaceae, Synechococcales, Cyanobacteria) based on four new species isolated from dryland soils including the coastal sage scrub near San Diego, California (USA), the Mojave and Colorado Deserts with sites at Joshua Tree National Park and Mojave National Preserve, California (USA), and the Atacama Desert (Chile). The genus is morphologically characterized by having thin trichomes (<4.5 μm wide), cells both shorter and longer than wide, rarely occurring single and double false branching, necridia appearing singly or in rows, and sheaths with a distinctive collar-like fraying and widening mid-filament, the feature for which the genus is named. The genus is morphologically nearly identical with Leptolyngbya sensu stricto but is phylogenetically quite distant from that genus. It is consequently a cryptic genus that will likely be differentiated in future studies based on 16S rRNA sequence data. The type species, T. maritimus sp. nov. is morphologically distinct from the other three species, T. coquimbo sp. nov., T. andrei sp. nov. and T. ladouxae sp. nov. However, these latter three species are morphologically very close and are considered by the authors to be cryptic species. All species are separated phylogenetically based on sequence of the 16S-23S ITS region. Three distinct ribosomal operons were recovered from the genus, lending difficulty to recognizing further diversity in this morphologically cryptic genus.
Collapse
Affiliation(s)
- Nicole Pietrasiak
- Plant and Environmental Sciences Department, New Mexico State University, 945 College Drive, Las Cruces, New Mexico, 88003, USA
| | - Sharon Reeve
- Department of Biology, San Diego State University, 5500 Campanile Drive, Mail Code 4614, San Diego, California, 92182, USA
| | - Karina Osorio-Santos
- Departamento de Biología Comparada, Universidad Nacional Autónoma de México (UNAM), Colonia Coyoacán, Código Postal 04451070474, P.O. Box 70-474, Ciudad de México, México
| | - David A Lipson
- Department of Biology, San Diego State University, 5500 Campanile Drive, Mail Code 4614, San Diego, California, 92182, USA
| | - Jeffrey R Johansen
- Department of Biology, John Carroll University, University Heights, Ohio, 44118, USA
- Department of Botany, Faculty of Sciences, University of South Bohemia, Branišovská 31, České Budějovice, 370 05, Czech Republic
| |
Collapse
|
16
|
Tao L, Ren H, Ren J. Assessment of cultured media for desert moss crust by physiological responses. J Basic Microbiol 2021; 61:157-164. [PMID: 33393125 DOI: 10.1002/jobm.202000665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/04/2020] [Accepted: 12/18/2020] [Indexed: 11/10/2022]
Abstract
The physiological responses of desert moss crusts under four artificial media (Beneck, Part, BG11, and Hogland) were investigated to evaluate the function of culture media during different culture periods. The results showed that the value of malondialdehyde (MDA) was at a maximum at 11d, on the contrary, chlorophyll-a, soluble protein, and soluble sugar were at a minimum. As the time increased, the value of MDA and soluble protein decreased faster in the Hogland, while the value of chlorophyll-a and soluble sugar increased. At the end of the culture period, the value of chlorophyll-a and soluble sugar was at a maximum in the Hogland, while the value of MDA and soluble protein was at a minimum. The results suggested that the Hogland medium had a promoting effect on the growth of desert moss crusts. The selected artificial cultivation medium towards wider and larger scale field applications of cultural desert biocrust was widely anticipated.
Collapse
Affiliation(s)
- Ling Tao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, China.,Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, China.,Gansu Hanxing Environmental Protection Co., Ltd., Lanzhou, China
| | - Hanru Ren
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Jun Ren
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, China.,Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, China.,Gansu Hanxing Environmental Protection Co., Ltd., Lanzhou, China
| |
Collapse
|
17
|
Bio-synthesis of silver nanoparticles with the brackish water blue-green alga Oscillatoria princeps and antibacterial assessment. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01593-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
A symbiotic nutrient exchange within the cyanosphere microbiome of the biocrust cyanobacterium, Microcoleus vaginatus. ISME JOURNAL 2020; 15:282-292. [PMID: 32968213 DOI: 10.1038/s41396-020-00781-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 02/01/2023]
Abstract
Microcoleus vaginatus plays a prominent role as both primary producer and pioneer in biocrust communities from dryland soils. And yet, it cannot fix dinitrogen, essential in often nitrogen-limited drylands. But a diazotroph-rich "cyanosphere" has been described in M. vaginatus, hinting that there exists a C for N exchange between the photoautotroph and heterotrophic diazotrophs. We provide evidence for this by establishing such a symbiosis in culture and by showing that it is selective and dependent on nitrogen availability. In natural populations, provision of nitrogen resulted in loss of diazotrophs from the cyanosphere of M. vaginatus compared to controls, but provision of phosphorus did not. Co-culturing of pedigreed cyanosphere diazotroph isolates with axenic M. vaginatus resulted in copious growth in C and N-free medium, but co-culture with non-cyanosphere diazotrophs or other heterotrophs did not. Unexpectedly, bundle formation in M. vaginatus, diacritical to the genus but not seen in axenic culture, was restored in vitro by imposed nitrogen limitation or, even more strongly, by co-culture with diazotrophic partners, implicating this trait in the symbiosis. Our findings provide direct evidence for a symbiotic relationship between M. vaginatus and its cyanosphere and help explain how it can be a global pioneer in spite of its genetic shortcomings.
Collapse
|
19
|
Román JR, Chilton AM, Cantón Y, Muñoz-Rojas M. Assessing the viability of cyanobacteria pellets for application in arid land restoration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110795. [PMID: 32721290 DOI: 10.1016/j.jenvman.2020.110795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/23/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
The role of cyanobacteria from soil biocrusts in restoring degraded land is gaining interest in recent years because of their critical role in enhancing soil fertility and preventing erosion. However, soil restoration through cyanobacterial inoculation remains a challenge for large-scale restoration efforts and new methodologies for effective cyanobacterial application need to be developed. Here, we propose a bioenvironmental approach to inoculate soils with pelletized cyanobacteria from soil biocrusts. Fresh cultures of three soil native cyanobacteria strains from two representative N-fixing genera (Nostoc and Scytonema) and a non-heterocystous filamentous genus (Leptolyngbya) were added into a substrate composed of commercial bentonite powder and sand (1:10 wt ratio) and extruded into pellets. Then, in two multifactorial microcosm experiments under glasshouse conditions, we evaluated (i) the survival and establishment over time of the cyanobacteria encapsulated in pellets, and ii) the viability of pelletized cyanobacteria after drying and storing for 30 d, on soils from three arid regions in Australia. Our results showed that pellets can dissolve completely and spread out in all treatments. Scytonema and the consortium of the three cyanobacteria species showed significant (P < 0.001) deeper CR680 peaks, higher chlorophyll a contents and lower albedo compared to the other inoculation treatments. Storing the pellets for 30 d significantly affected the viability of the cyanobacteria inoculum with reductions of approximately 50% in chlorophyll a content (a proxy for cyanobacteria biomass). Overall, our results showed that some cyanobacteria species can be successfully incorporated into extruded pellets and survive on degraded soils. This technology opens a wide range of opportunities for application in large scale restoration programs although further testing and refining through field trials is recommended.
Collapse
Affiliation(s)
- J R Román
- Agronomy Department, University of Almería, Almería, Spain; Centro de Investigación de Colecciones Científicas de La Universidad de Almería (CECOUAL), University of Almería, Almería, Spain.
| | - A M Chilton
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, 2052, Sydney, NSW, Australia
| | - Y Cantón
- Agronomy Department, University of Almería, Almería, Spain; Centro de Investigación de Colecciones Científicas de La Universidad de Almería (CECOUAL), University of Almería, Almería, Spain
| | - M Muñoz-Rojas
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, 2052, Sydney, NSW, Australia; School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia; Kings Park Science, Department of Biodiversity, Conservation and Attractions, Kings Park, Western Australia, 6005, Australia.
| |
Collapse
|
20
|
Tucker C, Antoninka A, Day N, Poff B, Reed S. Biological soil crust salvage for dryland restoration: an opportunity for natural resource restoration. Restor Ecol 2020. [DOI: 10.1111/rec.13115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Colin Tucker
- Southwest Biological Science CenterU.S. Geological Survey Moab UT U.S.A
- Northern Research StationU.S. Forest Service Houghton MI U.S.A
| | - Anita Antoninka
- School of ForestryNorthern Arizona University Flagstaff AZ U.S.A
| | - Natalie Day
- Southwest Biological Science CenterU.S. Geological Survey Moab UT U.S.A
| | - Boris Poff
- Southern Nevada District OfficeBureau of Land Management Las Vegas NV U.S.A
| | - Sasha Reed
- Southwest Biological Science CenterU.S. Geological Survey Moab UT U.S.A
| |
Collapse
|
21
|
Antoninka A, Faist A, Rodriguez‐Caballero E, Young KE, Chaudhary VB, Condon LA, Pyke DA. Biological soil crusts in ecological restoration: emerging research and perspectives. Restor Ecol 2020. [DOI: 10.1111/rec.13201] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Anita Antoninka
- School of Forestry Northern Arizona University 200 E Pine Knoll Drive, Flagstaff AZ 86011 U.S.A
| | - Akasha Faist
- Department of Animal and Range Sciences New Mexico State University Box 30003 MSC 3‐I, Las Cruces NM 88003 U.S.A
| | - Emilio Rodriguez‐Caballero
- Centro de Investigación de Colecciones Científicas de la Universidad de Almería (CECOUAL) University of Almería 04120 Almería Spain
| | - Kristina E. Young
- Department of Biological Sciences University of Texas at El Paso 500 West University Avenue, El Paso TX 79968 U.S.A
| | - V. Bala Chaudhary
- Department of Environmental Science and Studies DePaul University 1110 West Belden Avenue, Chicago IL 60614 U.S.A
| | - Lea A. Condon
- U.S. Geological Survey Forest and Rangeland Ecosystem Science Center Corvallis OR 97331 U.S.A
| | - David A. Pyke
- U.S. Geological Survey Forest and Rangeland Ecosystem Science Center Corvallis OR 97331 U.S.A
| |
Collapse
|
22
|
A Fog-Irrigated Soil Substrate System Unifies and Optimizes Cyanobacterial Biocrust Inoculum Production. Appl Environ Microbiol 2020; 86:AEM.00624-20. [PMID: 32358005 DOI: 10.1128/aem.00624-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/23/2020] [Indexed: 02/01/2023] Open
Abstract
Biological soil crusts (biocrusts) are globally important microbial communities inhabiting the top layer of soils. They provide multiple services to dryland ecosystems but are particularly vulnerable to anthropogenic disturbance from which they naturally recover only slowly. Assisted inoculation with cyanobacteria is held as a promising approach to promote biocrust regeneration. Two different methodologies have been developed for this purpose: mass cultivation of biocrust pioneer species (such as the cyanobacteria Microcoleus spp.) on cellulose supports, and polymicrobial cultivation of biocrusts in soils within greenhouse settings. Here, we aimed to test a novel method to grow cyanobacterial biocrust inoculum based on fog irrigation of soil substrates (FISS) that can be used with either culture-based or mixed-community approaches. We found that the FISS system presents clear advantages over previous inoculum production methodologies; overall, FISS eliminates the need for specialized facilities and decreases user effort. Specifically, there were increased microbial yields and simplification of design compared to those of the culture-based and mixed-community approaches, respectively. Its testing also allows us to make recommendations on underexplored aspects of biocrust restoration: (i) field inoculation levels should be equal to or greater than the biomass found in the substrate and (ii) practices regarding evaluation of cyanobacterial biomass should, under certain circumstances, include proxies additional to chlorophyll a IMPORTANCE Biocrust inoculum production for use in dryland rehabilitation is a powerful tool in combating the degradation of dryland ecosystems. However, the facilities and effort required to produce high-quality inoculum are often a barrier to effective large-scale implementation by land managers. By unifying and optimizing the two foremost methods for cyanobacterial biocrust inoculum production, our work improves on the ease and cost with which biocrust restoration technology can be translated to practical widespread implementation.
Collapse
|
23
|
Zhou X, Zhao Y, Belnap J, Zhang B, Bu C, Zhang Y. Practices of biological soil crust rehabilitation in China: experiences and challenges. Restor Ecol 2020. [DOI: 10.1111/rec.13148] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaobing Zhou
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land Xinjiang Institute of Ecology and Geography Urumqi Xinjiang 830011 China
| | - Yunge Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Northwest A&F University Yangling Shaanxi 712100 China
| | - Jayne Belnap
- US Geological Survey Southwest Biological Science Center 2290 South Resource Blvd Moab UT 84532 U.S.A
| | - Bingchang Zhang
- Geography Science College Shanxi Normal University Linfen Shanxi Province 041000 China
| | - Chongfeng Bu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Northwest A&F University Yangling Shaanxi 712100 China
| | - Yuanming Zhang
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land Xinjiang Institute of Ecology and Geography Urumqi Xinjiang 830011 China
| |
Collapse
|
24
|
Giraldo-Silva A, Fernandes VMC, Bethany J, Garcia-Pichel F. Niche Partitioning with Temperature among Heterocystous Cyanobacteria ( Scytonema spp., Nostoc spp., and Tolypothrix spp.) from Biological Soil Crusts. Microorganisms 2020; 8:microorganisms8030396. [PMID: 32178304 PMCID: PMC7142793 DOI: 10.3390/microorganisms8030396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 11/16/2022] Open
Abstract
Heterocystous cyanobacteria of biocrusts are key players for biological fixation in drylands, where nitrogen is only second to water as a limiting resource. We studied the niche partitioning among the three most common biocrust heterocystous cyanobacteria sts using enrichment cultivation and the determination of growth responses to temperature in 30 representative isolates. Isolates of Scytonema spp. were most thermotolerant, typically growing up to 40 °C, whereas only those of Tolypothrix spp. grew at 4 °C. Nostoc spp. strains responded well at intermediate temperatures. We could trace the heat sensitivity in Nostoc spp. and Tolypothrix spp. to N2-fixation itself, because the upper temperature for growth increased under nitrogen replete conditions. This may involve an inability to develop heterocysts (specialized N2-fixing cells) at high temperatures. We then used a meta-analysis of biocrust molecular surveys spanning four continents to test the relevance of this apparent niche partitioning in nature. Indeed, the geographic distribution of the three types was clearly constrained by the mean local temperature, particularly during the growth season. This allows us to predict a potential shift in dominance in many locales as a result of global warming, to the benefit of Scytonema spp. populations.
Collapse
Affiliation(s)
- Ana Giraldo-Silva
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (A.G.-S.); (J.B.)
- Center for Fundamental and Applied Microbiomics (CFAM), Biodesing Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Vanessa M. C. Fernandes
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (A.G.-S.); (J.B.)
- Center for Fundamental and Applied Microbiomics (CFAM), Biodesing Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Julie Bethany
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (A.G.-S.); (J.B.)
- Center for Fundamental and Applied Microbiomics (CFAM), Biodesing Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Ferran Garcia-Pichel
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (A.G.-S.); (J.B.)
- Center for Fundamental and Applied Microbiomics (CFAM), Biodesing Institute, Arizona State University, Tempe, AZ 85287, USA
- Correspondence: , Tel.: +1-4807270498
| |
Collapse
|
25
|
Sommer V, Karsten U, Glaser K. Halophilic Algal Communities in Biological Soil Crusts Isolated From Potash Tailings Pile Areas. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00046] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
26
|
Ayuso SV, Giraldo‐Silva A, Barger NN, Garcia‐Pichel F. Microbial inoculum production for biocrust restoration: testing the effects of a common substrate versus native soils on yield and community composition. Restor Ecol 2020. [DOI: 10.1111/rec.13127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sergio Velasco Ayuso
- School of Life SciencesArizona State University Tempe AZ 85287 U.S.A
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA‐CONICET), Facultad de Agronomía, Universidad de Buenos Aires Buenos Aires C1417DSE Argentina
| | - Ana Giraldo‐Silva
- School of Life SciencesArizona State University Tempe AZ 85287 U.S.A
- Center for Fundamental and Applied Microbiomics, Biodesign InstituteArizona State University Tempe AZ 85287 U.S.A
| | - Nichole N. Barger
- Department of Ecology and Evolutionary BiologyUniversity of Colorado Boulder CO 80309 U.S.A
| | - Ferran Garcia‐Pichel
- School of Life SciencesArizona State University Tempe AZ 85287 U.S.A
- Center for Fundamental and Applied Microbiomics, Biodesign InstituteArizona State University Tempe AZ 85287 U.S.A
| |
Collapse
|
27
|
Faist AM, Antoninka AJ, Belnap J, Bowker MA, Duniway MC, Garcia‐Pichel F, Nelson C, Reed SC, Giraldo‐Silva A, Velasco‐Ayuso S, Barger NN. Inoculation and habitat amelioration efforts in biological soil crust recovery vary by desert and soil texture. Restor Ecol 2020. [DOI: 10.1111/rec.13087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Akasha M. Faist
- Department of Animal and Range SciencesNew Mexico State University Las Cruces NM 88003 U.S.A
| | | | - Jayne Belnap
- Southwest Biological Science CenterU.S. Geological Survey Moab UT 84532 U.S.A
| | - Matthew A. Bowker
- School of ForestryNorthern Arizona University Flagstaff AZ 86011 U.S.A
| | - Michael C. Duniway
- Southwest Biological Science CenterU.S. Geological Survey Moab UT 84532 U.S.A
| | - Ferran Garcia‐Pichel
- School of Life Sciences and Center for Fundamental and Applied Microbiomics, Biodesign InstituteArizona State University Tempe AZ 85281 U.S.A
| | - Corey Nelson
- School of Life Sciences and Center for Fundamental and Applied Microbiomics, Biodesign InstituteArizona State University Tempe AZ 85281 U.S.A
| | - Sasha C. Reed
- Southwest Biological Science CenterU.S. Geological Survey Moab UT 84532 U.S.A
| | - Ana Giraldo‐Silva
- School of Life Sciences and Center for Fundamental and Applied Microbiomics, Biodesign InstituteArizona State University Tempe AZ 85281 U.S.A
| | - Sergio Velasco‐Ayuso
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de AgronomíaUniversidad de Buenos Aires, Ciudad Autónoma de Buenos Aires Buenos Aires C1417DSE Argentina
| | - Nichole N. Barger
- Department of Ecology and Evolutionary BiologyUniversity of Colorado Boulder CO 80309 U.S.A
| |
Collapse
|
28
|
Chaudhary VB, Akland K, Johnson NC, Bowker MA. Do soil inoculants accelerate dryland restoration? A simultaneous assessment of biocrusts and mycorrhizal fungi. Restor Ecol 2020. [DOI: 10.1111/rec.13088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- V. Bala Chaudhary
- Department of Environmental Science and Studies DePaul University 1110 West Belden Avenue Chicago IL 60614 U.S.A
| | - Kristine Akland
- Department of Biological Sciences Northern Arizona University 617 S. Beaver Flagstaff AZ 86011 U.S.A
| | - Nancy C. Johnson
- Department of Biological Sciences Northern Arizona University 617 S. Beaver Flagstaff AZ 86011 U.S.A
- School of Earth and Sustainability Northern Arizona University 625 S. Knoles Drive Flagstaff AZ 86011 U.S.A
| | - Matthew A. Bowker
- School of Forestry Northern Arizona University 200 E. Pine Knoll Drive, Box 15018 Flagstaff AZ 86011 U.S.A
| |
Collapse
|
29
|
Machado-de-Lima NM, Fernandes VMC, Roush D, Velasco Ayuso S, Rigonato J, Garcia-Pichel F, Branco LHZ. The Compositionally Distinct Cyanobacterial Biocrusts From Brazilian Savanna and Their Environmental Drivers of Community Diversity. Front Microbiol 2019; 10:2798. [PMID: 31921007 PMCID: PMC6929519 DOI: 10.3389/fmicb.2019.02798] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/18/2019] [Indexed: 02/01/2023] Open
Abstract
The last decade was marked by efforts to define and identify the main cyanobacterial players in biological crusts around the world. However, not much is known about biocrusts in Brazil’s tropical savanna (cerrado), despite the existence of environments favorable to their development and ecological relevance. We examined the community composition of cyanobacteria in biocrusts from six sites distributed in the Southeast of the country using high throughput sequencing of 16S rRNA and phylogenetic placement in the wider context of biocrusts from deserts. Sequences ascribable to 22 genera of cyanobacteria were identified. Although a significant proportion of sequences did not match those of known cyanobacteria, several clades of Leptolyngbya and Porphyrosiphon were found to be the most abundant. We identified significant differences in dominance and overall composition among the cerrado sites, much larger than within-site variability. The composition of cerrado cyanobacterial communities was distinct from those known in biocrusts from North American deserts. Among several environmental drivers considered, the opposing trend of annual precipitation and mean annual temperature best explained the variability in community composition within Brazilian biocrusts. Their compositional uniqueness speaks of the need for dedicated efforts to study the ecophysiology of tropical savanna biocrust and their roles in ecosystem function for management and preservation.
Collapse
Affiliation(s)
- Náthali Maria Machado-de-Lima
- Microbiology Graduation Program, Department of Zoology and Botany, São Paulo State University (UNESP), São Paulo, Brazil
| | | | - Daniel Roush
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Sergio Velasco Ayuso
- Facultad de Agronomía, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Janaina Rigonato
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, Brazil
| | - Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Luis Henrique Zanini Branco
- Microbiology Graduation Program, Department of Zoology and Botany, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
30
|
Fick SE, Day N, Duniway MC, Hoy‐Skubik S, Barger NN. Microsite enhancements for soil stabilization and rapid biocrust colonization in degraded drylands. Restor Ecol 2019. [DOI: 10.1111/rec.13071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stephen E. Fick
- US Geological Survey Southwest Biological Science Center Moab UT U.S.A
- Department of Ecology and Evolutionary BiologyUniversity of Colorado Boulder CO U.S.A
| | - Natalie Day
- US Geological Survey Southwest Biological Science Center Moab UT U.S.A
| | | | - Sean Hoy‐Skubik
- US Geological Survey Southwest Biological Science Center Moab UT U.S.A
| | - Nichole N. Barger
- Department of Ecology and Evolutionary BiologyUniversity of Colorado Boulder CO U.S.A
| |
Collapse
|
31
|
Giraldo‐Silva A, Nelson C, Penfold C, Barger NN, Garcia‐Pichel F. Effect of preconditioning to the soil environment on the performance of 20 cyanobacterial strains used as inoculum for biocrust restoration. Restor Ecol 2019. [DOI: 10.1111/rec.13048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ana Giraldo‐Silva
- School of Life SciencesArizona State University Tempe AZ 85287 U.S.A
- Center for Fundamental and Applied Microbiomics, Biodesign InstituteArizona State University Tempe AZ 85287 U.S.A
| | - Corey Nelson
- School of Life SciencesArizona State University Tempe AZ 85287 U.S.A
- Center for Fundamental and Applied Microbiomics, Biodesign InstituteArizona State University Tempe AZ 85287 U.S.A
| | - Cory Penfold
- School of Life SciencesArizona State University Tempe AZ 85287 U.S.A
| | - Nichole N. Barger
- Department of Ecology and Evolutionary BiologyUniversity of Colorado Boulder CO 80309 U.S.A
| | - Ferran Garcia‐Pichel
- School of Life SciencesArizona State University Tempe AZ 85287 U.S.A
- Center for Fundamental and Applied Microbiomics, Biodesign InstituteArizona State University Tempe AZ 85287 U.S.A
| |
Collapse
|
32
|
Bowker MA, Antoninka AJ, Chuckran PF. Improving field success of biocrust rehabilitation materials: hardening the organisms or softening the environment? Restor Ecol 2019. [DOI: 10.1111/rec.12965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Matthew A. Bowker
- School of Forestry Northern Arizona University 200 E. Pine Knoll Dr., Box 15018, Flagstaff AZ 86011 U.S.A
| | - Anita J. Antoninka
- School of Forestry Northern Arizona University 200 E. Pine Knoll Dr., Box 15018, Flagstaff AZ 86011 U.S.A
| | - Peter F. Chuckran
- School of Forestry Northern Arizona University 200 E. Pine Knoll Dr., Box 15018, Flagstaff AZ 86011 U.S.A
| |
Collapse
|
33
|
Optimizing the Production of Nursery-Based Biological Soil Crusts for Restoration of Arid Land Soils. Appl Environ Microbiol 2019; 85:AEM.00735-19. [PMID: 31152015 PMCID: PMC6643228 DOI: 10.1128/aem.00735-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
Biocrust communities provide important ecosystem services for arid land soils, such as soil surface stabilization promoting erosion resistance and contributing to overall soil fertility. Anthropogenic degradation to biocrust communities (through livestock grazing, agriculture, urban sprawl, and trampling) is common and significant, resulting in a loss of those ecosystem services. Losses impact both the health of the native ecosystem and the public health of local populations due to enhanced dust emissions. Because of this, approaches for biocrust restoration are being developed worldwide. Here, we present optimization of a nursery-based approach to scaling up the production of biocrust inoculum for field restoration with respect to temporal dynamics and reuse of biological materials. Unexpectedly, we also report on complex population dynamics, significant spatial variability, and lower than expected yields that we ascribe to the demonstrable presence of cyanobacterial pathogens, the spread of which may be enhanced by some of the nursery production standard practices. Biological soil crusts (biocrusts) are topsoil communities formed by cyanobacteria or other microbial primary producers and are typical of arid and semiarid environments. Biocrusts promote a range of ecosystem services, such as erosion resistance and soil fertility, but their degradation by often anthropogenic disturbance brings about the loss of these services. This has prompted interest in developing restoration techniques. One approach is to source biocrust remnants from the area of interest for scale-up cultivation in a microbial “nursery” that produces large quantities of high-quality inoculum for field deployment. However, growth dynamics and the ability to reuse the produced inoculum for continued production have not been assessed. To optimize production, we followed nursery growth dynamics of biocrusts from cold (Great Basin) and hot (Chihuahuan) deserts. Peak phototrophic biomass was attained between 3 and 7 weeks in cold desert biocrusts and at 12 weeks in those from hot deserts. We also reused the resultant biocrust inoculum to seed successive incubations, tracking both phototroph biomass and cyanobacterial community structure using 16S rRNA gene amplicon sequencing. Hot desert biocrusts showed little to no viability upon reinoculation, while cold desert biocrusts continued to grow, but at the expense of progressive shifts in species composition. This leads us to discourage the reuse of nursery-grown inoculum. Surprisingly, growth was highly variable among replicates, and overall yields were low, a fact that we attribute to the demonstrable presence of virulent and stochastically distributed but hitherto unknown cyanobacterial pathogens. We provide recommendations to avoid pathogen incidence in the process. IMPORTANCE Biocrust communities provide important ecosystem services for arid land soils, such as soil surface stabilization promoting erosion resistance and contributing to overall soil fertility. Anthropogenic degradation to biocrust communities (through livestock grazing, agriculture, urban sprawl, and trampling) is common and significant, resulting in a loss of those ecosystem services. Losses impact both the health of the native ecosystem and the public health of local populations due to enhanced dust emissions. Because of this, approaches for biocrust restoration are being developed worldwide. Here, we present optimization of a nursery-based approach to scaling up the production of biocrust inoculum for field restoration with respect to temporal dynamics and reuse of biological materials. Unexpectedly, we also report on complex population dynamics, significant spatial variability, and lower than expected yields that we ascribe to the demonstrable presence of cyanobacterial pathogens, the spread of which may be enhanced by some of the nursery production standard practices.
Collapse
|
34
|
Young KE, Bowker MA, Reed SC, Duniway MC, Belnap J. Temporal and abiotic fluctuations may be preventing successful rehabilitation of soil-stabilizing biocrust communities. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01908. [PMID: 31004536 DOI: 10.1002/eap.1908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/15/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Land degradation is a persistent ecological problem in many arid and semiarid systems globally (drylands hereafter). Most instances of dryland degradation include some form of soil disturbance and/or soil erosion, which can hinder vegetation establishment and reduce ecosystem productivity. To combat soil erosion, researchers have identified a need for rehabilitation of biological soil crusts (biocrusts), a globally relevant community of organisms aggregating the soil surface and building soil fertility. Here, the impact of plant and biocrust cover was tested on soil erosion potential in the piñon-juniper woodlands of Bandelier National Monument, New Mexico, USA. Biocrusts were found to be similarly influential to vascular plants in reducing erosion, largely acting by promoting surface roughness. The potential to rehabilitate biocrusts within the Monument was also tested. Plots were inoculated on eroding soils before the summer monsoon with greenhouse-cultured biocrusts. In a full-factorial design, treatments to reduce or halt erosion were administered to the inoculated plots and their paired controls. These erosion-reduction treatments included barriers to overland flow (flashing), slash placement, and seeding of vascular plants. Dynamic changes to soil stability, penetration resistance, and extractable soil nutrients were observed through time, but no strong effects with the addition of biocrust inoculum, seeding, or erosion intervention treatments were seen. The results do suggest possible ways forward to successfully rehabilitate biocrust, including varying the timing of biocrust application, amending inoculum application with different types of soil stabilization techniques, and adding nutrients to soils. The insights gleaned from the lack of response brings us closer to developing effective techniques to arrest soil loss in these socially and ecologically important dryland systems.
Collapse
Affiliation(s)
- Kristina E Young
- School of Forestry, Northern Arizona University, 200 E. Pine Knoll Drive, Flagstaff, Arizona, 86011, USA
| | - Matthew A Bowker
- School of Forestry, Northern Arizona University, 200 E. Pine Knoll Drive, Flagstaff, Arizona, 86011, USA
| | - Sasha C Reed
- U.S. Geological Survey, Southwest Biological Science Center, 2290 SW. Resource Boulevard, Moab, Utah, 84532, USA
| | - Michael C Duniway
- U.S. Geological Survey, Southwest Biological Science Center, 2290 SW. Resource Boulevard, Moab, Utah, 84532, USA
| | - Jayne Belnap
- U.S. Geological Survey, Southwest Biological Science Center, 2290 SW. Resource Boulevard, Moab, Utah, 84532, USA
| |
Collapse
|