1
|
She Z, Chen H, Lin X, Li C, Su J. POSTN Regulates Fibroblast Proliferation and Migration in Laryngotracheal Stenosis Through the TGF-β/RHOA Pathway. Laryngoscope 2024; 134:4078-4087. [PMID: 38771155 DOI: 10.1002/lary.31505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVES To investigate the role of periostin (POSTN) and the transforming growth factor β (TGF-β) pathway in the formation of laryngotracheal stenosis (LTS) scar fibrosis and to explore the specific signaling mechanism of POSTN-regulated TGF-β pathway in tracheal fibroblasts. METHODS Bioinformatics analysis was performed on scar data sets from the GEO database to preliminarily analyze the involvement of POSTN and TGF-β pathways in fibrosis diseases. Expression of POSTN and TGF-β pathway-related molecules was analyzed in LTS scar tissue at the mRNA and protein levels. The effect of POSTN on the biological behavior of tracheal fibroblasts was studied using plasmid DNA overexpression and siRNA silencing techniques to regulate POSTN expression and observe the activation of TGF-β1 and the regulation of cell proliferation and migration via the TGF-β/RHOA pathway. RESULTS The bioinformatics analysis revealed that POSTN and the TGF-β pathway are significantly involved in fibrosis diseases. High expression of POSTN and TGF-β/RHOA pathway-related molecules (TGFβ1, RHOA, CTGF, and COL1) was observed in LTS tissue at both mRNA and protein levels. In tracheal fibroblasts, overexpression or silencing of POSTN led to the activation of TGF-β1 and regulation of cell proliferation and migration through the TGF-β/RHOA pathway. CONCLUSION POSTN is a key molecule in scar formation in LTS, and it regulates the TGF-β/RHOA pathway to mediate the formation of cicatricial LTS by acting on TGF-β1. This study provides insights into the molecular mechanisms underlying LTS and suggests potential therapeutic targets for the treatment of this condition. LEVEL OF EVIDENCE NA Laryngoscope, 134:4078-4087, 2024.
Collapse
Affiliation(s)
- Zhiqiang She
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huiying Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoyu Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiping Su
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Suzaki I, Maruyama Y, Kamimura S, Hirano K, Nunomura S, Izuhara K, Kobayashi H. Residual nasal polyp tissue following dupilumab therapy is associated with periostin-associated fibrosis. Eur Arch Otorhinolaryngol 2024; 281:1807-1817. [PMID: 37979011 DOI: 10.1007/s00405-023-08336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE Dupilumab, an anti-interleukin-4 receptor alpha monoclonal antibody, is a new treatment for severe uncontrolled chronic rhinosinusitis with nasal polyps. However, data on the effect of dupilumab on histological changes in nasal polyp tissue are lacking. We aimed to investigate the effect of dupilumab on real-life clinical conditions and nasal polyp tissues from patients with eosinophilic chronic rhinosinusitis (ECRS), which is a refractory subtype. METHODS We conducted an open-label, prospective, observational, single-centre study on 63 patients with refractory ECRS on the basis of the criteria of the Japanese Epidemiological Survey of Refractory Eosinophilic Chronic Rhinosinusitis Study. These patients had a history of surgery and received dupilumab for 24 weeks. Patient-reported sinonasal symptoms, T&T olfactometry and nasal polyp scores were prospectively evaluated. In 23 patients with residual nasal polyps following dupilumab treatment, changes in systemic and local periostin expression, and total collagen deposition in nasal polyp tissues were investigated before and after dupilumab administration. RESULTS Dupilumab rapidly improved sinonasal symptoms and reduced the nasal polyp score 24 weeks after initiation. 40 (63.5%) patients had resolution of nasal polyps, but the reduction was limited in the remaining 23 (36.5%) patients. Periostin expression in serum and nasal lavage fluid was decreased, whereas periostin and the total collagen deposition area in subepithelial tissues in residual nasal polyps were enhanced after dupilumab administration. CONCLUSION Dupilumab improves sinonasal symptoms and reduces the nasal polyp score in refractory ECRS. Periostin-associated tissue fibrosis may be involved in the differential effect of dupilumab on nasal polyp reduction.
Collapse
Affiliation(s)
- Isao Suzaki
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai Shinagawa-Ku, Tokyo, 142-8666, Japan.
| | - Yuki Maruyama
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Sawa Kamimura
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Kojiro Hirano
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Hitome Kobayashi
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, Showa University, 1-5-8 Hatanodai Shinagawa-Ku, Tokyo, 142-8666, Japan
| |
Collapse
|
3
|
Lamothe PA, Runnstrom M, Smirnova N, Flores FC, Shepherd A, Park J, Lee FEH. Allergic bronchopulmonary aspergillosis in identical twins: Effectiveness of dupilumab. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1556-1558.e2. [PMID: 36706986 PMCID: PMC10164683 DOI: 10.1016/j.jaip.2022.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023]
Affiliation(s)
- Pedro A Lamothe
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Ga
| | - Martin Runnstrom
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Ga
| | - Natalia Smirnova
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Ga
| | | | | | - Jiwon Park
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Ga; Emory College of Arts and Sciences, Atlanta, Ga
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Ga.
| |
Collapse
|
4
|
Xu M, Hu J, Yang L, Gen G, Fu Z, Luo Z, Zou W. Knockdown of Brg1 reduced mucus secretion in HDM stimulated airway inflammation. Mol Immunol 2023; 153:42-50. [PMID: 36427449 DOI: 10.1016/j.molimm.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The Brg1 (Brahma-related gene 1) is an important chromatin remodeling factor protein. The Brg1 protein can promote the transcriptional activation or inhibit target genes through regulating ATP hydrolysis which rearranges the nucleosomes position and the histone DNA interaction. In this study, we explored the role of Brg1 in house dust mite (HDM) stimulated airway inflammation. METHODS The wild-type C57BL/6 mice (wild-type, WT) and alveolar epithelial cells specifically knockout Brg1 mice (Brg1fl/fl) were selected as the experimental subjects. HDM was used to stimulate human bronchial epithelial cells (16HBE) to construct an model of airway inflammation in vitro. The asthma group was established with HDM, and the control group was treated with normal saline. Wright's staining for the detection of differential counts of inflammatory cells in bronchoalveolar lavage fluid (BALF). Invasive lung function was used to assess the airway compliance. Hematoxylin and eosin (HE) staining and periodic acid-schiff (PAS) staining were used to detect mucus secretion. Immunohistochemistry was used to measure mucin glycoprotein 5AC (MUC5AC) protein expression in airway epithelium. Western blotting was used to detect the MUC5AC and JAK1/2-STAT6 proteins in mouse lung tissues and 16HBE cells. Co-immunoprecipitation (Co-IP) and Chromatin Immunoprecipitation (CHIP) were used to detect whether Brg1 could regulate the JAK1/2-STAT6 signaling pathway. RESULTS The airway inflammation, pulmonary ventilation resistance, airway mucus secretion, MUC5AC and IL-13 in BALF and MUC5AC protein expression in lung tissue of Brg1 knockout mice stimulated by HDM were lower than those of wild-type mice. The expression of MUC5AC protein in HDM stimulated Brg1 knockdown 16HBE cells was significantly lower than that in the control group. In vivo and in vitro, it was found that the activation of JAK1/2-STAT6 signal pathway in mouse lung tissue or 16HBE cells was inhibited after knockdown of Brg1 gene. The Co-IP and CHIP results showed that Brg1 could bind to the JAK1/2 promoter region and regulate the expression of JAK1/2 gene. CONCLUSION The Brg1 may promote the secretion of airway mucus stimulated by HDM through regulating the JAK1/2-STAT6 pathway. Knockdown of Brg1 reduced mucus secretion in HDM stimulated airway inflammation.
Collapse
Affiliation(s)
- Maozhu Xu
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China
| | - Jie Hu
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China
| | - Lili Yang
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China
| | - Gang Gen
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China
| | - Zhou Fu
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China; Chongqing Key Laboratory of Pediatrics, China.
| | - Wenjing Zou
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China; Chongqing Key Laboratory of Pediatrics, China.
| |
Collapse
|
5
|
Esnault S, Jarjour NN. Development of Adaptive Immunity and Its Role in Lung Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:287-351. [PMID: 37464127 DOI: 10.1007/978-3-031-32259-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Asthma is characterized by airflow limitations resulting from bronchial closure, which can be either reversible or fixed due to changes in airway tissue composition and structure, also known as remodeling. Airway remodeling is defined as increased presence of mucins-producing epithelial cells, increased thickness of airway smooth muscle cells, angiogenesis, increased number and activation state of fibroblasts, and extracellular matrix (ECM) deposition. Airway inflammation is believed to be the main cause of the development of airway remodeling in asthma. In this chapter, we will review the development of the adaptive immune response and the impact of its mediators and cells on the elements defining airway remodeling in asthma.
Collapse
|
6
|
Wang Z, An J, Zhu D, Chen H, Lin A, Kang J, Liu W, Kang X. Periostin: an emerging activator of multiple signaling pathways. J Cell Commun Signal 2022; 16:515-530. [PMID: 35412260 PMCID: PMC9733775 DOI: 10.1007/s12079-022-00674-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Matricellular proteins are responsible for regulating the microenvironment, the behaviors of surrounding cells, and the homeostasis of tissues. Periostin (POSTN), a non-structural matricellular protein, can bind to many extracellular matrix proteins through its different domains. POSTN usually presents at low levels in most adult tissues but is highly expressed in pathological sites such as in tumors and inflamed organs. POSTN can bind to diverse integrins to interact with multiple signaling pathways within cells, which is one of its core biological functions. Increasing evidence shows that POSTN can activate the TGF-β, the PI3K/Akt, the Wnt, the RhoA/ROCK, the NF-κB, the MAPK and the JAK pathways to promote the occurrence and development of many diseases, especially cancer and inflammatory diseases. Furthermore, POSTN can interact with some pathways in an upstream and downstream relationship, forming complicated crosstalk. This article focuses on the interactions between POSTN and different signaling pathways in diverse diseases, attempting to explain the mechanisms of interaction and provide novel guidelines for the development of targeted therapies.
Collapse
Affiliation(s)
- Zhaoheng Wang
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Jiangdong An
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China
| | - Daxue Zhu
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Haiwei Chen
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Aixin Lin
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Jihe Kang
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Wenzhao Liu
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| | - Xuewen Kang
- grid.411294.b0000 0004 1798 9345Lanzhou University Second Hospital, 82, Cuiyingmen, Lanzhou, 730030 People’s Republic of China ,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730030 People’s Republic of China
| |
Collapse
|
7
|
Pyun BJ, Jo K, Lee JY, Lee A, Jung MA, Hwang YH, Jung DH, Ji KY, Choi S, Kim YH, Kim T. Caesalpinia sappan Linn. Ameliorates Allergic Nasal Inflammation by Upregulating the Keap1/Nrf2/HO-1 Pathway in an Allergic Rhinitis Mouse Model and Nasal Epithelial Cells. Antioxidants (Basel) 2022; 11:2256. [PMID: 36421442 PMCID: PMC9686907 DOI: 10.3390/antiox11112256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 08/15/2023] Open
Abstract
Allergic rhinitis (AR) is a common upper-airway inflammatory disease of the nasal mucosa caused by immunoglobulin (IgE)-mediated inflammation. AR causes various painful clinical symptoms of the nasal mucosa that worsen the quality of daily life, necessitating the urgent development of therapeutic agents. Herein, we investigated the effects of Caesalpinia sappan Linn. heartwood water extract (CSLW), which has anti-inflammatory and antioxidant properties, on AR-related inflammatory responses. We examined the anti-inflammatory and anti-allergic effects of CSLW in ovalbumin (OVA)-induced AR mice and in primary human nasal epithelial cells (HNEpCs). Administration of CSLW mitigated allergic nasal symptoms in AR mice, decreased total immune cell and eosinophil counts in nasal lavage fluid, and significantly reduced serum levels of OVA-specific IgE, histamine, and Th2 inflammation-related cytokines. CSLW also inhibited the infiltration of several inflammatory and goblet cells, thereby ameliorating OVA-induced thickening of the nasal mucosa tissue. We found that CSLW treatment significantly reduced infiltration of eosinophils and production of periostin, MUC5AC, and intracellular reactive oxygen species through the Keap1/Nrf2/HO-1 pathway in HNEpCs. Thus, our findings strongly indicate that CSLW is a potent therapeutic agent for AR and can improve the daily life of patients by controlling the allergic inflammatory reaction of the nasal epithelium.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yun Hee Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
8
|
Wei YY, Zhang DW, Ye JJ, Lan QX, Ji S, Sun L, Li F, Fei GH. Interleukin-6 neutralizing antibody attenuates the hypersecretion of airway mucus via inducing the nuclear translocation of Nrf2 in chronic obstructive pulmonary disease. Biomed Pharmacother 2022; 152:113244. [PMID: 35687911 DOI: 10.1016/j.biopha.2022.113244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022] Open
Abstract
Airway mucus hypersecretion is a vital pathophysiologic feature in chronic obstructive pulmonary disease (COPD) patients in which airflow limitation result, and it is key to strategizing in the management of COPD. To investigate the mechanisms underlying the action of interleukin-6 neutralizing antibody (IL-6 Ab) in attenuating airway mucus hypersecretion in COPD, human and mouse primary bronchial epithelial cells from COPD patients and mice were isolated, human organoid model of trachea was established and all treated with IL-6 and/or IL-6 Ab. The differential expression of Muc5ac and Nrf2 were determined in pDHBE compared to pNHBE cells via high-throughput sequencing of transcriptome. The serum concentration of Muc5ac was significantly elevated and positively correlated with IL-6 in COPD patients using ELISA, and the excessive mucus secretion was observed in the trachea of COPD patients using HE, AB-PAS and IHC staining. The levels of Muc5ac were significantly elevated in the IL-6-treated group, and diminished with IL-6 Ab treatment, both in vitro and in the organoid model using qRT-PCR, WB and IF. The expression levels of protein Muc5ac were significantly reduced in cells transfected with the IL-6 small interfering RNA (siRNA-IL-6), which was in contrast to the levels of protein Nrf2, and the protective effects of IL-6 Ab were inhibited in cells transfected with Nrf2 short hairpin RNA (shRNA-Nrf2). IL-6 Ab significantly attenuated hypersecretion of airway mucus by inducing nuclear translocation of Nrf2 in COPD. These findings indicated that IL-6 Ab may constitute a novel therapeutic agent for IL-6-induced airway mucus hypersecretion by improving airflow limitation in COPD patients.
Collapse
Affiliation(s)
- Yuan-Yuan Wei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, PR China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei 230022, Anhui, PR China
| | - Da-Wei Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, PR China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei 230022, Anhui, PR China
| | - Jing-Jing Ye
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, PR China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei 230022, Anhui, PR China
| | - Qing-Xia Lan
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, PR China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei 230022, Anhui, PR China
| | - Shuang Ji
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, PR China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei 230022, Anhui, PR China
| | - Li Sun
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, PR China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei 230022, Anhui, PR China
| | - Fang Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, PR China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei 230022, Anhui, PR China
| | - Guang-He Fei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, PR China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei 230022, Anhui, PR China.
| |
Collapse
|
9
|
Kolesnikoff N, Chen CH, Samuel M. Interrelationships between the extracellular matrix and the immune microenvironment that govern epithelial tumour progression. Clin Sci (Lond) 2022; 136:361-377. [PMID: 35260891 PMCID: PMC8907655 DOI: 10.1042/cs20210679] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/19/2022]
Abstract
Solid tumours are composed of cancer cells characterised by genetic mutations that underpin the disease, but also contain a suite of genetically normal cells and the extracellular matrix (ECM). These two latter components are constituents of the tumour microenvironment (TME), and are key determinants of tumour biology and thereby the outcomes for patients. The tumour ECM has been the subject of intense research over the past two decades, revealing key biochemical and mechanobiological principles that underpin its role in tumour cell proliferation and survival. However, the ECM also strongly influences the genetically normal immune cells within the microenvironment, regulating not only their proliferation and survival, but also their differentiation and access to tumour cells. Here we review recent advances in our knowledge of how the ECM regulates the tumour immune microenvironment and vice versa, comparing normal skin wound healing to the pathological condition of tumour progression.
Collapse
Affiliation(s)
- Natasha Kolesnikoff
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Chun-Hsien Chen
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Michael Susithiran Samuel
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
10
|
Wu D, Jiang W, Liu C, Liu L, Li F, Ma X, Pan L, Liu C, Qu X, Liu H, Qin X, Xiang Y. CTNNAL1 participates in the regulation of mucus overproduction in HDM‐induced asthma mouse model through the YAP‐ROCK2 pathway. J Cell Mol Med 2022; 26:1656-1671. [PMID: 35092120 PMCID: PMC8899158 DOI: 10.1111/jcmm.17206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/24/2021] [Accepted: 01/12/2022] [Indexed: 01/26/2023] Open
Abstract
Our previous study indicated that adhesion molecule catenin alpha‐like 1(CTNNAL1) is downregulated in airway epithelial cells of asthma patients and asthma animal model but little is known about how the CTNNAL1 affects asthma pathogenesis. To reveal the direct relationship between asthma and CTNNAL1, CTNNAL1‐deficient mouse model in bronchopulmonary tissue was constructed by introducing CTNNAL1‐siRNA sequence using adeno‐associated virus (AAV) as vector. The mouse model of asthma was established by stimulation of house dust mite (HDM). After HDM‐challenged, there was marked airway inflammation, especially mucus hypersecretion in the CTNNAL1‐deficient mice. In addition, the CTNNAL1‐deficient mice exhibited an increase of lung IL‐4 and IL‐13 levels, as well as a significant increase of goblet cell hyperplasia and MUC5AC after HDM exposure. The expression of Yes‐associated protein (YAP), protein that interacted with α‐catenin, was downregulated after CTNNAL1 silencing and was upregulated due to its overexpression. In addition, the interaction between CTNNAL1 and YAP was confirmed by CO‐IP. Besides, inhibition of YAP could decrease the secretion of MUC5AC, IL‐4 and IL‐13 in CTNNAL1‐deficient 16HBE14o‐cells. Above results indicated us that CTNNAL1 regulated mucus hypersecretion through YAP pathway. In addition, the expression of ROCK2 increased when CTNNAL1 was silenced and decreased after YAP silencing, and inhibition of YAP decreased the expression of ROCK2 in CTNNAL1‐deficient HBE cells. Inhibition of ROCK2 decreased MUC5AC expression and IL‐13 secretion. In all, our study demonstrates that CTNNAL1 plays an important role in HDM‐induced asthma, mediating mucus secretion through the YAP‐ROCK2 pathway.
Collapse
Affiliation(s)
- Di Wu
- Department of Physiology School of Basic Medical Science Central South University Changsha China
| | - Wang Jiang
- Department of Medical Microbiology and Parasitology School of Basic Medical Sciences Capital Medical University Beijing China
| | - Caixia Liu
- School of Integrated Chinese and Western Medicine Hunan University of Chinese Medicine Changsha China
| | - Lexin Liu
- Department of Physiology School of Basic Medical Science Central South University Changsha China
| | - Furong Li
- Department of Physiology School of Basic Medical Science Central South University Changsha China
| | - Xiaodi Ma
- Department of Physiology School of Basic Medical Science Central South University Changsha China
| | - Lang Pan
- Department of Physiology School of Basic Medical Science Central South University Changsha China
| | - Chi Liu
- Department of Physiology School of Basic Medical Science Central South University Changsha China
| | - Xiangping Qu
- Department of Physiology School of Basic Medical Science Central South University Changsha China
| | - Huijun Liu
- Department of Physiology School of Basic Medical Science Central South University Changsha China
| | - Xiaoqun Qin
- Department of Physiology School of Basic Medical Science Central South University Changsha China
| | - Yang Xiang
- Department of Physiology School of Basic Medical Science Central South University Changsha China
| |
Collapse
|
11
|
Komlósi ZI, van de Veen W, Kovács N, Szűcs G, Sokolowska M, O'Mahony L, Akdis M, Akdis CA. Cellular and molecular mechanisms of allergic asthma. Mol Aspects Med 2021; 85:100995. [PMID: 34364680 DOI: 10.1016/j.mam.2021.100995] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
Asthma is a chronic disease of the airways, which affects more than 350 million people worldwide. It is the most common chronic disease in children, affecting at least 30 million children and young adults in Europe. Asthma is a complex, partially heritable disease with a marked heterogeneity. Its development is influenced both by genetic and environmental factors. The most common, as well as the most well characterized subtype of asthma is allergic eosinophilic asthma, which is characterized by a type 2 airway inflammation. The prevalence of asthma has substantially increased in industrialized countries during the last 60 years. The mechanisms underpinning this phenomenon are incompletely understood, however increased exposure to various environmental pollutants probably plays a role. Disease inception is thought to be enabled by a disadvantageous shift in the balance between protective and harmful lifestyle and environmental factors, including exposure to protective commensal microbes versus infection with pathogens, collectively leading to airway epithelial cell damage and disrupted barrier integrity. Epithelial cell-derived cytokines are one of the main drivers of the type 2 immune response against innocuous allergens, ultimately leading to infiltration of lung tissue with type 2 T helper (TH2) cells, type 2 innate lymphoid cells (ILC2s), M2 macrophages and eosinophils. This review outlines the mechanisms responsible for the orchestration of type 2 inflammation and summarizes the novel findings, including but not limited to dysregulated epithelial barrier integrity, alarmin release and innate lymphoid cell stimulation.
Collapse
Affiliation(s)
- Zsolt I Komlósi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary.
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Nóra Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Lung Health Hospital, Munkácsy Mihály Str. 70, 2045, Törökbálint, Hungary
| | - Gergő Szűcs
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Department of Pulmonology, Semmelweis University, Tömő Str. 25-29, 1083, Budapest, Hungary
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, APC Microbiome Ireland, University College Cork, Ireland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
12
|
Xun Q, Kuang J, Yang Q, Wang W, Zhu G. Glucocorticoid induced transcript 1 represses airway remodeling of asthmatic mouse via inhibiting IL-13/periostin/TGF-β1 signaling. Int Immunopharmacol 2021; 97:107637. [PMID: 33895479 DOI: 10.1016/j.intimp.2021.107637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/18/2022]
Abstract
Asthma is characterized by airway remodeling. Glucocorticoid induced transcript 1 (GLCCI1) was reported to be associated with the development of asthma, while its exact mechanism is still not clear. In our study, ovalbumin (OVA) combined with aluminum hydroxide were used to establish asthmatic mouse model. ELISA assay was fulfilled to ensure the concentration of inflammatory factors in both bronchoalveolar lavage fluid and serum. The pathological changes and collagen deposition in lung tissues were analyzed using H&E staining and Masson staining, respectively. The expression of proteins was measured using western blot, and the expression of GLCCI1 mRNA was ensured by qRT-PCR. Here, we demonstrated that OVA-induced inflammation, lung structural remodeling and collagen deposition in asthmatic mice was notably improved by hydroprednisone treatment or GLCCI1 overexpressing. The expression of GLCCI1 was decreased, while IL-13, periostin and TGF-β1 were increased in the lung tissue of asthmatic mice. Importantly, upregulation of GLCCI1 suppressed the expression of IL-13, periostin and TGF-β1, phosphorylation of Smad2 and Smad3, and extracellular matrix (ECM) deposition-related proteins expression. IL-13-induced upregulation of periostin and TGF-β1 expression, phosphorylation of Smad2 and Smad3, and ECM deposition in airway epithelial cells (AECs) was repressed by GLCCI1 increasing. Furthermore, our results showed that overexpression of GLCCI1 repressed the effect of IL-13 on AECs via inhibiting periostin expression. Overall, our data revealed that GLCCI1 limited the airway remodeling in mice with asthma through inhibiting IL-13/periostin/TGF-β1 signaling pathway. Our data provided a novel target for asthma treatment.
Collapse
Affiliation(s)
- Qiufen Xun
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Jiulong Kuang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Qing Yang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Guofeng Zhu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
13
|
Burgess JK, Jonker MR, Berg M, Ten Hacken NTH, Meyer KB, van den Berge M, Nawijn MC, Heijink IH. Periostin: contributor to abnormal airway epithelial function in asthma? Eur Respir J 2021; 57:13993003.01286-2020. [PMID: 32907887 DOI: 10.1183/13993003.01286-2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/17/2020] [Indexed: 11/05/2022]
Abstract
Periostin (POSTN) may serve as a biomarker for Type-2 mediated eosinophilic airway inflammation in asthma. We hypothesised that a Type-2 cytokine, interleukin (IL)-13, induces airway epithelial expression of POSTN, which in turn contributes to epithelial changes observed in asthma.We studied the effect of IL-13 on POSTN expression in BEAS-2B and air-liquid interface differentiated primary bronchial epithelial cells (PBECs). Additionally, the effects of recombinant human POSTN on epithelial-to-mesenchymal transition (EMT) markers and mucin genes were assessed. POSTN single cell gene expression and protein levels were analysed in bronchial biopsies and induced sputum from asthma patients and healthy controls.IL-13 increased POSTN expression in both cell types and this was accompanied by EMT-related features in BEAS-2B. In air-liquid interface differentiated PBECs, IL-13 increased POSTN basolateral and apical release. Apical administration of POSTN increased the expression of MMP-9, MUC5B and MUC5AC In bronchial biopsies, POSTN expression was mainly confined to basal epithelial cells, ionocytes, endothelial cells and fibroblasts, showing higher expression in basal epithelial cells from asthma patients versus those from controls. A higher level of POSTN protein expression in epithelial and subepithelial layers was confirmed in bronchial biopsies from asthma patients when compared to healthy controls. Although sputum POSTN levels were not higher in asthma, levels correlated with eosinophil numbers and with the coughing-up of mucus.POSTN expression is increased by IL-13 in bronchial epithelial cells and is higher in bronchial biopsies from asthma patients. This may have important consequences, as administration of POSTN increases epithelial expression of mucin genes, supporting the relationship of POSTN with Type-2 mediated asthma and mucus secretion.
Collapse
Affiliation(s)
- Janette K Burgess
- Dept of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Marnix R Jonker
- Dept of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Marijn Berg
- Dept of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Nick T H Ten Hacken
- Dept of Pulmonology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Maarten van den Berge
- GRIAC Research Institute, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Dept of Pulmonology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Martijn C Nawijn
- Dept of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Irene H Heijink
- Dept of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Dept of Pulmonology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Wang W, Luo X, Zhang Q, He X, Zhang Z, Wang X. Bifidobacterium infantis Relieves Allergic Asthma in Mice by Regulating Th1/Th2. Med Sci Monit 2020; 26:e920583. [PMID: 32249275 PMCID: PMC7160606 DOI: 10.12659/msm.920583] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Bifidobacteria are among the probiotics used in treating intestinal diseases and are rarely used for allergic asthma treatment. The present study investigated the mechanism of B. infantis in treating allergic asthma in mice. Material/Methods A total of 40 male Balb/c mice were randomized into control, ovalbumin (OVA), montelukast (Mon), and B. infantis (B10) groups, and allergic asthma was induced in the OVA, Mon, and B10 groups. Airway reactivity was measured on day 29 by methacholine at various doses. The numbers of total cells and inflammatory cells in bronchoalveolar lavage fluid (BALF) were counted by blood cell counter and Diff-Quik staining. Hematoxylin-eosin (HE) staining was performed to observe inflammatory cell infiltration in lung tissues. Total IgE and OVA-specific IgE in serum were measured by ELISA. Mucin 5AC expression was detected by Western blot to evaluate airway obstruction. The levels of Th1 (IFN-γ, IL-2) and Th2 (IL-4, IL-5, IL-13) cytokines in BALF and tissues were detected by ELISA and qRT-PCR, respectively. Results The mice in the OVA group had airway hyperreactivity, while the symptoms in the B10 group and Mon group were effectively relieved. B10 reduced the number of inflammatory cells in BALF as well as inflammatory cell infiltration in tissues. Moreover, the levels of total serum IgE, OVA-specific IgE, and Mucin 5AC were increased in the OVA group, but were reduced in the Mon group and B10 group. B. infantis increased the levels of Th1 cytokines and decreased those of Th2 cytokines. Conclusions B. infantis can reduce the infiltration of inflammatory cells induced by OVA-specific antibodies in mice. B. infantis has therapeutic effects on allergic asthma by promoting Th1 and inhibiting Th2 immune responses.
Collapse
Affiliation(s)
- Wenlan Wang
- Department of Pediatrics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China (mainland)
| | - Xiaoming Luo
- Department of Pediatrics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China (mainland)
| | - Qin Zhang
- Department of Pediatrics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China (mainland)
| | - Xujun He
- Gastrointestinal Laboratory, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Zhifang Zhang
- Department of Pediatrics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China (mainland)
| | - Xinxin Wang
- Department of Pediatrics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
15
|
Ramonell RP, Lee FEH, Swenson C, Kuruvilla M. Dupilumab treatment for allergic bronchopulmonary aspergillosis: A case series. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 8:742-743. [PMID: 31811944 DOI: 10.1016/j.jaip.2019.11.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Richard Paul Ramonell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, Ga
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, Ga
| | - Colin Swenson
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, Ga
| | - Merin Kuruvilla
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, Ga.
| |
Collapse
|
16
|
Lai X, Li X, Chang L, Chen X, Huang Z, Bao H, Huang J, Yang L, Wu X, Wang Z, Bellanti JA, Zheng SG, Zhang G. IL-19 Up-Regulates Mucin 5AC Production in Patients With Chronic Rhinosinusitis via STAT3 Pathway. Front Immunol 2019; 10:1682. [PMID: 31379870 PMCID: PMC6660249 DOI: 10.3389/fimmu.2019.01682] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
The mucin gene, MUC5AC, is highly expressed both in chronic respiratory inflammatory diseases and inflammatory bowel disease where mucin secretion is regulated by members of the interleukin IL-20 subfamily. This study was conducted to determine the roles and mechanisms of IL-19, a member of the IL-20 subfamily, in regulating MUC5AC production in chronic rhinosinusitis (CRS). We analyzed the expression of mucin and MUC5AC in the nasal mucosa of patients with CRS through periodic acid Schiff (PAS) staining and immunohistochemical examination. Real-time quantitative PCR, ELISA, confocal microscopy and western blotting were used to measure MUC5AC expression in primary human nasal epithelium cells (PHNECs) stimulated with recombinant human IL-19 (rhIL-19), IL-19 receptor siRNA transfection or a control. The involvement of the STAT3 signaling pathway was examined using cryptotanshinone (CRY, an inhibitor of STAT3). Mucin and MUC5AC were significantly increased in mucosa of CRS patients with/without nasal polyps compared to mucosa isolated from controls who had no CRS, but there were no significant differences between these two groups. Pretreatment with rhIL-19 up-regulated the expression of MUC5AC levels in PHNECs. Knockdown of IL-20R2 and pretreatment with CRY attenuated MUC5AC production induced by rhIL-19. We propose that IL-19 up-regulates MUC5AC-induced mucin production via the STAT3 pathway in CRS, highlighting the important role IL-19 may play in mucin production in chronic respiratory diseases.
Collapse
Affiliation(s)
- Xiaoping Lai
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xia Li
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lihong Chang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Chen
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zizhen Huang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongwei Bao
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiancong Huang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Luoying Yang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xifu Wu
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiyuan Wang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Joseph A. Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Song Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, OH, United States
| | - Gehua Zhang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Samsuzzaman M, Uddin MS, Shah MA, Mathew B. Natural inhibitors on airway mucin: Molecular insight into the therapeutic potential targeting MUC5AC expression and production. Life Sci 2019; 231:116485. [PMID: 31116959 DOI: 10.1016/j.lfs.2019.05.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 11/19/2022]
Abstract
Airway mucin overproduction is the hallmark risk factor of asthma, which is associated with the reduction of lung function. An aberrant mucin expression is responsible for airway obstruction due to its high viscous characteristics. Among the mucins discovered, MUC5AC is the prime mucin of airway epithelia. Nowadays, mucins induced asthma and chronic obstructive pulmonary disease (COPD) are a great concern all over the world. This review focuses on the effects of natural compounds that can be beneficial to explore new drugs to halt MUC5AC secretion and production in airway epithelial, and also their underlying molecular mechanisms based on recent studies. Several researchers are seeking natural sources to identify a new potent MUC5AC inhibitory agent for clinical applications, because of countable limitations of existing synthetic drugs. Currently, flavonoids, glycoside and steroids like natural compounds have acquired great attention due to their anti-inflammatory and mucoregulatory effects. Most importantly, many natural compounds have shown their potential effects as the modulator of mucin expression, secretion, and production. Therefore, targeting airway MUC5AC expression and production represents an auspicious area of research for the development of drugs against various respiratory diseases.
Collapse
Affiliation(s)
- Md Samsuzzaman
- Department of Molecular Medicine, School of Medicine, Keimyung University, Daegu 42601, South Korea; Department of Food and Life Science, Pukyong National University, Busan 48513, South Korea
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| |
Collapse
|
18
|
Wei Y, Ma R, Zhang J, Wu X, Yu G, Hu X, Li J, Liu Z, Ji W, Li H, Wen W. Excessive periostin expression and Th2 response in patients with nasal polyps: association with asthma. J Thorac Dis 2018; 10:6585-6597. [PMID: 30746204 DOI: 10.21037/jtd.2018.11.12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Periostin has been shown to be upregulated in chronic rhinosinusitis with nasal polyps (CRSwNP), especially in the CRSwNP patients with asthma. However, the underlying mechanism that how periostin contributes to the polyp genesis remains unclear. Methods In this study, we collected 63 CRSwNP patients' nasal polyps (NPs) and 25 control subjects' uncinated tissues. The expressions of periostin, thymic stromal lymphopoietin (TSLP), and other proinflammatory cytokines were examined using IHC staining, qRT-PCR, Western blot (WB), ELISA and FACS. The eosinophil infiltration, phenotype profiles and clinical characteristics of 2 NP subtypes (eosinophilic and non-eosinophilic) were evaluated. We examined the effects and mechanisms of periostin on human nasal epithelial cells cultured at air-liquid interface (ALI). Results The expressions of periostin in NPs with asthma were higher than without asthma and the control nasal mucosa and positively associated with the TSLP (P<0.05). And the periostin levels was positively associated with the basement membrane thickness, goblet cell hyperplasia and tissue eosinophilia polyp tissues, as well as the clinical parameters (computed tomography scores, polyp size, and polyp recurrence after endoscopic surgery). In vitro experiments show that type 2 T-helper (Th2) cytokines interleukin-4 (IL-4), IL-13 and TGF-β1 stimulates epithelial cells derived from polyp tissues to produce periostin through ERK and STAT6 signal pathways (P<0.05). Autocrine or recombinant periostin activates epithelial cells to produce TSLP via NF-κB signal pathways (P<0.05). The supernatant of periostin-treated epithelial cells activates dendritic cells (DCs), which subsequently induce naïve T cells to differentiate into Th2 cells and express IL-4 and IL-13. Conclusions Our findings indicate periostin may play an important role in the polyp genesis, which can be considered as a therapeutic target for the management of CRSwNP.
Collapse
Affiliation(s)
- Yi Wei
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.,Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou 510000, China
| | - Renqiang Ma
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.,Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou 510000, China
| | - Jia Zhang
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.,Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, China
| | - Xingmei Wu
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.,Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou 510000, China
| | - Guodong Yu
- Department of Otolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Xianting Hu
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, China
| | - Jian Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.,Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou 510000, China
| | - Zhuofu Liu
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, China
| | - Wendong Ji
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Huabin Li
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, China
| | - Weiping Wen
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.,Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou 510000, China
| |
Collapse
|
19
|
The Cell Research Trends of Asthma: A Stem Frequency Analysis of the Literature. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2018:9363820. [PMID: 30210753 PMCID: PMC6126072 DOI: 10.1155/2018/9363820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/26/2018] [Accepted: 07/22/2018] [Indexed: 02/06/2023]
Abstract
Objective This study summarized asthma literature indexed in the Medical Literature Analysis and Retrieval System Online (MEDLINE) and explored the history and present trends of asthma cell research by stem frequency ranking to forecast the prospect of future work. Methods Literature was obtained from MEDLINE for the past 30 years and divided into three groups by decade as the retrieval time. The frequency of stemmed words in each group was calculated using Python with Apache Spark and the Natural Language Tool Kit for ranking. The unique stems or shared stems of 3 decades were summarized. Results A total of 1331, 4393, and 7215 records were retrieved from 3 decades chronologically, and the stem ranking of the top 50 were listed by frequency. The number of stems shared with 3 decades was 26 and with the first and last 2 decades was 5 and 13. Conclusions The number of cell research studies of asthma has increased rapidly, and scholars have paid more attentions on experimental research, especially on mechanistic research. Eosinophils, mast cells, and T cells are the hot spots of immunocyte research, while epithelia and smooth muscle cells are the hot spots of structural cell research. The research trend is closely linked with the development of experimental technology, including animal models. Early studies featured basic research, but immunity research has dominated in recent decades. The distinct definition of asthma phenotypes associated with genetic characteristics, immunity research, and the introduction of new cells will be the hot spots in future work.
Collapse
|
20
|
IL-13 induces periostin and eotaxin expression in human primary alveolar epithelial cells: Comparison with paired airway epithelial cells. PLoS One 2018; 13:e0196256. [PMID: 29672593 PMCID: PMC5908159 DOI: 10.1371/journal.pone.0196256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/09/2018] [Indexed: 01/01/2023] Open
Abstract
Alveolar epithelial cells are critical to the pathogenesis of pulmonary inflammation and fibrosis, which are associated with overexpression of type 2 cytokine IL-13. IL-13 is known to induce the production of profibrotic (e.g., periostin) and pro-inflammatory (e.g., eotaxin-3) mediators in human airway epithelial cells, but it remains unclear if human primary alveolar epithelial cells increase periostin and eotaxin expression following IL-13 stimulation. The goals of this study are to determine if alveolar epithelial cells increase periostin and eotaxin expression upon IL-13 stimulation, and if alveolar and airway epithelial cells from the same subjects have similar responses to IL-13. Paired alveolar and airway epithelial cells were isolated from donors without any lung disease, and cultured under submerged or air-liquid interface conditions with or without IL-13. Up-regulation of periostin protein and mRNA was observed in IL-13-stimulated alveolar epithelial cells, which was comparable to that in IL-13-stimulated paired airway epithelial cells. IL-13 also increased eotaxin-3 expression in alveolar epithelial cells, but the level of eotaxin mRNA was lower in alveolar epithelial cells than in airway epithelial cells. Our findings demonstrate that human alveolar epithelial cells are able to produce periostin and eotaxin in responses to IL-13 stimulation. This study suggests the need to further determine the contribution of alveolar epithelial cell-derived mediators to pulmonary fibrosis.
Collapse
|
21
|
Benton MJ, Lim TK, Ko FWS, Kan-O K, Mak JCW. Year in review 2017: Chronic obstructive pulmonary disease and asthma. Respirology 2018; 23:538-545. [PMID: 29502339 DOI: 10.1111/resp.13285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Melissa J Benton
- Helen and Arthur E. Johnson Beth-El College of Nursing and Health Sciences, University of Colorado, Colorado Springs, CO, USA
| | - Tow Keang Lim
- Department of Medicine, National University Hospital, Singapore
| | - Fanny W S Ko
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Keiko Kan-O
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Judith C W Mak
- Department of Medicine, The University of Hong Kong, Hong Kong.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong
| |
Collapse
|
22
|
Mucins, Mucus, and Goblet Cells. Chest 2017; 154:169-176. [PMID: 29170036 DOI: 10.1016/j.chest.2017.11.008] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/19/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022] Open
Abstract
The respiratory epithelium is lined by mucus, a gel consisting of water, ions, proteins, and macromolecules. The major macromolecular components of mucus are the mucin glycoproteins, which are critical for local defense of the airway. There are three classes of mucins in the airways: those that are secreted but do not polymerize (MUC7), those that are secreted and polymerize to form gels (MUC5AC, MUC5B), and those that have transmembrane domains and are cell surface associated (MUC1, MUC4, MUC16, MUC20). The mucins are regulated at the transcriptional, posttranscriptional, and epigenetic levels, and posttranslational modifications play an important role in mucin binding and clearance of microbes and pollutants. The development of mice deficient in specific mucins, and the cystic fibrosis pig, has greatly advanced our understanding of the role of mucins as innate immune mediators and how mucins and mucus contribute to lung disease. These observations suggest new strategies to ameliorate mucus obstruction by targeting mucociliary clearance and mucin hyperconcentration. Furthermore, a polymorphism in the promoter of MUC5B is strongly associated with risk of developing pulmonary fibrosis, supporting a novel function for MUC5B to influence interstitial lung disease. Exciting new data support the concept not only that mucins and mucus are important for lung homeostasis and protection from environmental threats but also that goblet cells play an important role as regulators of innate immune function. These insights into the innate immune properties of mucins and goblet cells support a shift from the current paradigm of repressing increased mucin expression to targeting regulation of specific mucins and the abnormal airway milieu.
Collapse
|
23
|
O'Dwyer DN, Moore BB. The role of periostin in lung fibrosis and airway remodeling. Cell Mol Life Sci 2017; 74:4305-4314. [PMID: 28918442 DOI: 10.1007/s00018-017-2649-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/04/2017] [Indexed: 12/14/2022]
Abstract
Periostin is a protein that plays a key role in development and repair within the biological matrix of the lung. As a matricellular protein that does not contribute to extracellular matrix structure, periostin interacts with other extracellular matrix proteins to regulate the composition of the matrix in the lung and other organs. In this review, we discuss the studies exploring the role of periostin to date in chronic respiratory diseases, namely asthma and idiopathic pulmonary fibrosis. Asthma is a major health problem globally affecting millions of people worldwide with significant associated morbidity and mortality. Periostin is highly expressed in the lungs of asthmatic patients, contributes to mucus secretion, airway fibrosis and remodeling and is recognized as a biomarker of Th2 high inflammation. Idiopathic pulmonary fibrosis is a fatal interstitial lung disease characterized by progressive aberrant fibrosis of the lung matrix and respiratory failure. It predominantly affects adults over 50 years of age and its incidence is increasing worldwide. Periostin is also highly expressed in the lungs of idiopathic pulmonary fibrosis patients. Serum levels of periostin may predict clinical progression in this disease and periostin promotes myofibroblast differentiation and type 1 collagen production to contribute to aberrant lung fibrosis. Studies to date suggest that periostin is a key player in several pathogenic mechanisms within the lung and may provide us with a useful biomarker of clinical progression in both asthma and idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- David N O'Dwyer
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, 4053 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Bethany B Moore
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, 4053 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA. .,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
24
|
Clarithromycin attenuates IL-13-induced periostin production in human lung fibroblasts. Respir Res 2017; 18:37. [PMID: 28219384 PMCID: PMC5319114 DOI: 10.1186/s12931-017-0519-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/06/2017] [Indexed: 01/14/2023] Open
Abstract
Background Periostin is a biomarker indicating the presence of type 2 inflammation and submucosal fibrosis; serum periostin levels have been associated with asthma severity. Macrolides have immunomodulatory effects and are considered a potential therapy for patients with severe asthma. Therefore, we investigated whether macrolides can also modulate pulmonary periostin production. Methods Using quantitative PCR and ELISA, we measured periostin production in human lung fibroblasts stimulated by interleukin-13 (IL-13) in the presence of two 14-member–ring macrolides—clarithromycin or erythromycin—or a 16-member–ring macrolide, josamycin. Phosphorylation of signal transducers and activators of transcription 6 (STAT6), downstream of IL-13 signaling, was evaluated by Western blotting. Changes in global gene expression profile induced by IL-13 and/or clarithromycin were assessed by DNA microarray analysis. Results Clarithromycin and erythromycin, but not josamycin, inhibited IL-13–stimulated periostin production. The inhibitory effects of clarithromycin were stronger than those of erythromycin. Clarithromycin significantly attenuated STAT6 phosphorylation induced by IL-13. Global gene expression analyses demonstrated that IL-13 increased mRNA expression of 454 genes more than 4-fold, while decreasing its expression in 390 of these genes (85.9%), mainly “extracellular,” “plasma membrane,” or “defense response” genes. On the other hand, clarithromycin suppressed 9.8% of the genes in the absence of IL-13. Clarithromycin primarily attenuated the gene expression of extracellular matrix protein, including periostin, especially after IL-13. Conclusions Clarithromycin suppressed IL-13–induced periostin production in human lung fibroblasts, in part by inhibiting STAT6 phosphorylation. This suggests a novel mechanism of the immunomodulatory effect of clarithromycin in asthmatic airway inflammation and fibrosis. Electronic supplementary material The online version of this article (doi:10.1186/s12931-017-0519-8) contains supplementary material, which is available to authorized users.
Collapse
|