1
|
Yang N, Shi L, Xu P, Ren F, Li C, Qi X. Identification of potential drug targets for amyotrophic lateral sclerosis by Mendelian randomization analysis based on brain and plasma proteomics. Exp Gerontol 2024; 195:112538. [PMID: 39116956 DOI: 10.1016/j.exger.2024.112538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Amyotrophic lateral sclerosis as a fatal neurodegenerative disease currently lacks effective therapeutic agents. Thus, finding new therapeutic targets to drive disease treatment is necessary. In this study, we utilized brain and plasma proteins as genetic instruments obtained from genome-wide association studies to conduct a Mendelian randomization analysis to identify potential drug targets for amyotrophic lateral sclerosis. Additionally, we validated our results externally using other datasets. We also used Bayesian co-localization analysis and phenotype scanning. Furthermore, we constructed a protein-protein interaction network to elucidate potential correlations between the identified proteins and existing targets. Mendelian randomization analysis indicated that elevated levels of ANO5 (OR = 1.30; 95 % CI, 1.14-1.49; P = 1.52E-04), SCFD1 (OR = 3.82; 95 % CI, 2.39-6.10; P = 2.19E-08), and SIGLEC9 (OR = 1.05; 95% CI, 1.03-1.07; P = 4.71E-05) are associated with an increased risk of amyotrophic lateral sclerosis, with external validation supporting these findings. Co-localization analysis confirmed that ANO5, SCFD1, and SIGLEC9 (coloc.abf-PPH4 = 0.848, 0.984, and 0.945, respectively) shared the same variant with amyotrophic lateral sclerosis, further substantiating potential role of these proteins as a therapeutic target. There are interactive relationships between the potential proteins and existing targets of amyotrophic lateral sclerosis. Our findings suggested that elevated levels of ANO5, SCFD1, and SIGLEC9 are connected with an increased risk of amyotrophic lateral sclerosis and might be promising therapeutic targets. However, further exploration is necessary to fully understand the underlying mechanisms involved.
Collapse
Affiliation(s)
- Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liangyuan Shi
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, China.
| | - Pengfei Xu
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, China
| | - Fang Ren
- Department of Laboratory, Jimo District Qingdao Hospital of Traditional Chinese Medicine, Qingdao, China
| | - Chunlin Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianghua Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Konigsberg IR, Vu T, Liu W, Litkowski EM, Pratte KA, Vargas LB, Gilmore N, Abdel-Hafiz M, Manichaikul A, Cho MH, Hersh CP, DeMeo DL, Banaei-Kashani F, Bowler RP, Lange LA, Kechris KJ. Proteomic networks and related genetic variants associated with smoking and chronic obstructive pulmonary disease. BMC Genomics 2024; 25:825. [PMID: 39223457 PMCID: PMC11370252 DOI: 10.1186/s12864-024-10619-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Studies have identified individual blood biomarkers associated with chronic obstructive pulmonary disease (COPD) and related phenotypes. However, complex diseases such as COPD typically involve changes in multiple molecules with interconnections that may not be captured when considering single molecular features. METHODS Leveraging proteomic data from 3,173 COPDGene Non-Hispanic White (NHW) and African American (AA) participants, we applied sparse multiple canonical correlation network analysis (SmCCNet) to 4,776 proteins assayed on the SomaScan v4.0 platform to derive sparse networks of proteins associated with current vs. former smoking status, airflow obstruction, and emphysema quantitated from high-resolution computed tomography scans. We then used NetSHy, a dimension reduction technique leveraging network topology, to produce summary scores of each proteomic network, referred to as NetSHy scores. We next performed a genome-wide association study (GWAS) to identify variants associated with the NetSHy scores, or network quantitative trait loci (nQTLs). Finally, we evaluated the replicability of the networks in an independent cohort, SPIROMICS. RESULTS We identified networks of 13 to 104 proteins for each phenotype and exposure in NHW and AA, and the derived NetSHy scores significantly associated with the variable of interests. Networks included known (sRAGE, ALPP, MIP1) and novel molecules (CA10, CPB1, HIS3, PXDN) and interactions involved in COPD pathogenesis. We observed 7 nQTL loci associated with NetSHy scores, 4 of which remained after conditional analysis. Networks for smoking status and emphysema, but not airflow obstruction, demonstrated a high degree of replicability across race groups and cohorts. CONCLUSIONS In this work, we apply state-of-the-art molecular network generation and summarization approaches to proteomic data from COPDGene participants to uncover protein networks associated with COPD phenotypes. We further identify genetic associations with networks. This work discovers protein networks containing known and novel proteins and protein interactions associated with clinically relevant COPD phenotypes across race groups and cohorts.
Collapse
Affiliation(s)
- Iain R Konigsberg
- Department of Biomedical Informatics, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Thao Vu
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Weixuan Liu
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Elizabeth M Litkowski
- Department of Biomedical Informatics, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
- Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Luciana B Vargas
- Department of Biomedical Informatics, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Niles Gilmore
- Department of Biomedical Informatics, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Mohamed Abdel-Hafiz
- Department of Computer Science and Engineering, University of Colorado - Denver, Denver, CO, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Farnoush Banaei-Kashani
- Department of Computer Science and Engineering, University of Colorado - Denver, Denver, CO, USA
| | | | - Leslie A Lange
- Department of Biomedical Informatics, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Katerina J Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA.
| |
Collapse
|
3
|
Ge L, Wang N, Chen Z, Xu S, Zhou L. Expression of Siglec-9 in peripheral blood neutrophils was increased and associated with disease severity in patients with AECOPD. Cytokine 2024; 177:156558. [PMID: 38412768 DOI: 10.1016/j.cyto.2024.156558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND The pathogenesis and treatment strategies for chronic obstructive pulmonary disease (COPD) require further exploration. Abnormal neutrophil inflammation and the overexpression of neutrophil extracellular traps (NETs) are closely associated with acute exacerbations of COPD (AECOPD). Siglec-9, a specific receptor expressed on neutrophils that inhibits their function, prompted us to investigate its relationship with NETs found in induced sputum and the severity of the disease. METHODS We collected clinical data from patients with AECOPD and assessed the expression of Siglec-9 in peripheral blood neutrophils and the presence of NETs in induced sputum. We then observed the correlation between Siglec-9, the inflammatory response, and the severity of AECOPD. RESULTS We observed an increase in the expression of Siglec-9 in the peripheral blood neutrophils of patients with AECOPD. Concurrently, these patients exhibited more severe clinical symptoms, higher systemic inflammation levels, and a reduced quality of life compared to those with induced sputum NET expression. Further subgroup analysis of AECOPD patients with high Siglec-9 expression revealed worsened quality of life and more severe inflammation, particularly in indicators such as the BODE index, CRP, peripheral blood neutrophil count, IL-6, IL-8, TNF-α expression, and others. Furthermore, we noted a significant increase in NET-specific expression in the sputum of patients with high Siglec-9 expression levels. In comparison to patients with low Siglec-9 expression, those with high expression experienced more systemic inflammatory reactions and a lower quality of life. Correlation analysis of the aforementioned indicators revealed that the expression ratio of Siglec-9 in the peripheral blood of patients correlated with lung function, quality of life, and NETs in the induced sputum of patients with AECOPD. CONCLUSION The increased expression of Siglec-9 in peripheral blood neutrophils of AECOPD patients leads to elevated NET expression in induced sputum, exacerbating the systemic inflammatory response and worsening lung function and quality of life in these patients.
Collapse
Affiliation(s)
- Linyang Ge
- Department of Respiratory and Critical Care Medicine, Affiliated Gaochun Hospital, Jiangsu University, Nanjing, Jiangsu, China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nan Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Gaochun Hospital, Jiangsu University, Nanjing, Jiangsu, China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuanglan Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linfu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Institute of Integrative Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Konigsberg IR, Vu T, Liu W, Litkowski EM, Pratte KA, Vargas LB, Gilmore N, Abdel-Hafiz M, Manichaikul AW, Cho MH, Hersh CP, DeMeo DL, Banaei-Kashani F, Bowler RP, Lange LA, Kechris KJ. Proteomic Networks and Related Genetic Variants Associated with Smoking and Chronic Obstructive Pulmonary Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.26.24303069. [PMID: 38464285 PMCID: PMC10925350 DOI: 10.1101/2024.02.26.24303069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Studies have identified individual blood biomarkers associated with chronic obstructive pulmonary disease (COPD) and related phenotypes. However, complex diseases such as COPD typically involve changes in multiple molecules with interconnections that may not be captured when considering single molecular features. Methods Leveraging proteomic data from 3,173 COPDGene Non-Hispanic White (NHW) and African American (AA) participants, we applied sparse multiple canonical correlation network analysis (SmCCNet) to 4,776 proteins assayed on the SomaScan v4.0 platform to derive sparse networks of proteins associated with current vs. former smoking status, airflow obstruction, and emphysema quantitated from high-resolution computed tomography scans. We then used NetSHy, a dimension reduction technique leveraging network topology, to produce summary scores of each proteomic network, referred to as NetSHy scores. We next performed genome-wide association study (GWAS) to identify variants associated with the NetSHy scores, or network quantitative trait loci (nQTLs). Finally, we evaluated the replicability of the networks in an independent cohort, SPIROMICS. Results We identified networks of 13 to 104 proteins for each phenotype and exposure in NHW and AA, and the derived NetSHy scores significantly associated with the variable of interests. Networks included known (sRAGE, ALPP, MIP1) and novel molecules (CA10, CPB1, HIS3, PXDN) and interactions involved in COPD pathogenesis. We observed 7 nQTL loci associated with NetSHy scores, 4 of which remained after conditional analysis. Networks for smoking status and emphysema, but not airflow obstruction, demonstrated a high degree of replicability across race groups and cohorts. Conclusions In this work, we apply state-of-the-art molecular network generation and summarization approaches to proteomic data from COPDGene participants to uncover protein networks associated with COPD phenotypes. We further identify genetic associations with networks. This work discovers protein networks containing known and novel proteins and protein interactions associated with clinically relevant COPD phenotypes across race groups and cohorts.
Collapse
Affiliation(s)
- Iain R Konigsberg
- Department of Biomedical Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO
| | - Thao Vu
- Department of Biostatistics and Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO
| | - Weixuan Liu
- Department of Biostatistics and Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO
| | - Elizabeth M Litkowski
- Department of Biomedical Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO
- Department of Medicine, University of Michigan, Ann Arbor, MI
| | | | - Luciana B Vargas
- Department of Biomedical Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO
| | - Niles Gilmore
- Department of Biomedical Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO
| | - Mohamed Abdel-Hafiz
- Department of Computer Science and Engineering, University of Colorado - Denver, Denver, CO
| | - Ani W Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Michael H Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Craig P Hersh
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Dawn L DeMeo
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | | | - Leslie A Lange
- Department of Biomedical Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO
| | - Katerina J Kechris
- Department of Biostatistics and Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
5
|
Suzuki M, Makita H, Konno S, Nishimura M. Clinical characteristics and natural course of chronic obstructive pulmonary disease and/or asthma in Japanese patients: a summary report of two Hokkaido-based cohort studies. Respir Investig 2023; 61:527-539. [PMID: 37300900 DOI: 10.1016/j.resinv.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/16/2023] [Accepted: 05/01/2023] [Indexed: 06/12/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are the most common chronic airway diseases and are characterized by chronic airway inflammation and airflow limitation. Japanese patients with COPD or asthma have characteristics different from those of Westerners. Therefore, understanding the characteristics and clinical course of Japanese patients with COPD and those with asthma, particularly severe asthma, is critical for their management and appropriate treatment. The Hokkaido COPD cohort and Hokkaido-based Investigative Cohort Analysis for Refractory Asthma (Hi-CARAT) are high-quality cohort studies of COPD and asthma in the Japanese population and provide valuable data. This report summarizes the clinical findings from the two cohort studies and provides data for more appropriate management of Japanese patients with COPD and/or asthma. Overall, 279 patients with COPD were followed up for up to 10 years in the Hokkaido COPD cohort study, and 127 with severe asthma were followed up for up to 6 years in the Hi-CARAT study. Seventy-nine patients with mild-to-moderate asthma provided baseline data for the Hi-CARAT study. In each disease, several distinct factors, including systemic status and non-pulmonary factors, were associated with important clinical outcomes, such as lung function decline, exacerbations, impaired quality of life, and mortality. Therefore, multifaceted evaluation based on the characteristics of the Japanese population is necessary for the management of COPD and asthma.
Collapse
Affiliation(s)
- Masaru Suzuki
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hironi Makita
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Hokkaido Medical Research Institute for Respiratory Diseases, Sapporo, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaharu Nishimura
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Hokkaido Medical Research Institute for Respiratory Diseases, Sapporo, Japan.
| |
Collapse
|
6
|
Angata T, Varki A. Discovery, classification, evolution and diversity of Siglecs. Mol Aspects Med 2023; 90:101117. [PMID: 35989204 PMCID: PMC9905256 DOI: 10.1016/j.mam.2022.101117] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 02/08/2023]
Abstract
Immunoglobulin (Ig) superfamily proteins play diverse roles in vertebrates, including regulation of cellular responses by sensing endogenous or exogenous ligands. Siglecs are a family of glycan-recognizing proteins belonging to the Ig superfamily (i.e., I-type lectins). Siglecs are expressed on various leukocyte types and are involved in diverse aspects of immunity, including the regulation of inflammatory responses, leukocyte proliferation, host-microbe interaction, and cancer immunity. Sialoadhesin/Siglec-1, CD22/Siglec-2, and myelin-associated glycoprotein/Siglec-4 were among the first to be characterized as members of the Siglec family, and along with Siglec-15, they are relatively well-conserved among tetrapods. Conversely, CD33/Siglec-3-related Siglecs (CD33rSiglecs, so named as they show high sequence similarity with CD33/Siglec-3) are encoded in a gene cluster with many interspecies variations and even intraspecies variations within some lineages such as humans. The rapid evolution of CD33rSiglecs expressed on leukocytes involved in innate immunity likely reflects the selective pressure by pathogens that interact and possibly exploit these Siglecs. Human Siglecs have several additional unique and/or polymorphic properties as compared with closely related great apes, changes possibly related to the loss of the sialic acid Neu5Gc, another distinctly human event in sialobiology. Multiple changes in human CD33rSiglecs compared to great apes include many examples of human-specific expression in non-immune cells, coinciding with human-specific diseases involving such cell types. Some Siglec gene polymorphisms have dual consequences-beneficial in a situation but detrimental in another. The association of human Siglec gene polymorphisms with several infectious and non-infectious diseases likely reflects the ongoing competition between the host and microbial pathogens.
Collapse
Affiliation(s)
- Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | - Ajit Varki
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Huang R, Zheng J, Shao Y, Zhu L, Yang T. Siglec-15 as multifunctional molecule involved in osteoclast differentiation, cancer immunity and microbial infection. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:34-41. [PMID: 36265694 DOI: 10.1016/j.pbiomolbio.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 09/19/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Siglec-15 is a highly conserved member of the Siglec family, expressed on osteoclasts, a subset of myeloid cells and some cancer cells. Except for regulating osteoclast differentiation, Siglec-15 engages in immunoregulation as an immune suppressor. Siglec-15 functions as an immunosuppressive molecule in tumor-associated macrophage-mediated T cell immunity in the tumor microenvironment (TME), which makes Siglec-15 to be an emerging and promising target for normalization cancer immunotherapy. Besides, Siglec-15 interacts with sialylated pathogens and modulates host immune response against microbial pathogens by altering cytokine production and/or phagocytosis, which further broadens the underlying pathophysiological roles of Siglec-15. The fact that N-glycosylation and sialylation of Siglec-15 play a pivotal role in Siglec-15 biological function indicates that targeting certain post-translational modification may be an effective strategy for targeting Siglec-15 therapy. In-depth exploring Siglec-15 biology function is crucial for better design of Siglec-15-based therapy according to different clinical indications.
Collapse
Affiliation(s)
- Rui Huang
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China; Department of Clinical Laboratory, Children's Hospital and Women Health Center of Shanxi, Taiyuan, China
| | - Jinxiu Zheng
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Ying Shao
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - Lei Zhu
- Department of Clinical Laboratory, Children's Hospital and Women Health Center of Shanxi, Taiyuan, China
| | - Tao Yang
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China.
| |
Collapse
|
8
|
Xu S, Yin Z, Chen Z, Zhang D, Ye S, Zhou P, Chen A, Wu D, Liu W, Zhang L, Guo L, Xu G, Zhou L. Remotely monitored Baduanjin exercise in moderate-to-severe chronic obstructive pulmonary disease patients (BROCADE): A study protocol. Medicine (Baltimore) 2022; 101:e32079. [PMID: 36596062 PMCID: PMC9803505 DOI: 10.1097/md.0000000000032079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Baduanjin is a traditional Chinese exercise regimen used to treat various chronic illnesses and is associated with both psychological and physical benefits. However, its benefits for patients suffering from chronic obstructive pulmonary disease (COPD) are unclear. This study aims to assess the efficacy, safety, and underlying mechanisms of Baduanjin exercise in patients with moderate-to-severe COPD (BROCADE) by remote monitoring. METHODS This study protocol describes a multicenter, open-label, prospective randomized computed tomography. A total of 150 individuals who meet the inclusion criteria after the screening and consent processes will take part in the study. All participants will be provided routine medication and lifestyle interventions. They will be randomly assigned to a control group, a classical pulmonary rehabilitation group, or a Baduanjin group, which will undergo remotely monitored Baduanjin exercises for a cumulative duration of 1 hour per day, three times per week for 12 weeks. The participants will be followed for 24 weeks. The primary outcomes will be a 6-minutes walking distance and St. George's Respiratory Questionnaire index. The secondary outcomes will be lung function, cross-sectional area of the pectoralis major and subcutaneous fat, modified Medical Research Council score, COPD assessment test questionnaire results, extremity muscle strength, and quality of life. Any adverse events that may occur will be monitored and recorded. RESULTS This study is ongoing and will be submitted to a peer-reviewed journal for publication once completed. CONCLUSION A novel neutrophil-related inflammatory mechanism will potentially be identified. In addition, the study results will provide a safe, effective, simple and operational Baduanjin exercise protocol for moderate-to-severe COPD patients aimed at improving prognosis and quality of life.
Collapse
Affiliation(s)
- Shuanglan Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhifei Yin
- Department of Geriatric Rehabilitation Medicine, Centre of Rehabilitation Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Dandan Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Sheng Ye
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Department of Respiratory Medicine, BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Zhou
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Aiping Chen
- Department of Radiology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Di Wu
- Department of Geriatric Rehabilitation Medicine, Centre of Rehabilitation Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Weihua Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Liuchao Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Liquan Guo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Guangxu Xu
- Department of Geriatric Rehabilitation Medicine, Centre of Rehabilitation Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Linfu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Institute of Integrative Medicine, Nanjing Medical University, Nanjing, China
- * Correspondence: Linfu Zhou, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China (e-mail: )
| |
Collapse
|
9
|
Tvaroška I. Glycosyltransferases as targets for therapeutic intervention in cancer and inflammation: molecular modeling insights. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Tsai TY, Huang MT, Sung PS, Peng CY, Tao MH, Yang HI, Chang WC, Yang AS, Yu CM, Lin YP, Bau CY, Huang CJ, Pan MH, Wu CY, Hsiao CD, Yeh YH, Duan S, Paulson JC, Hsieh SL. SIGLEC-3 (CD33) serves as an immune checkpoint receptor for HBV infection. J Clin Invest 2021; 131:e141965. [PMID: 34060491 DOI: 10.1172/jci141965] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B (CHB) infection is rarely eradicated by current antiviral nucleos(t)ide analogues. We found that α2,6-biantennary sialoglycans of HBV surface antigen (HBsAg) bound human SIGLEC-3 (CD33) by IP and ELISA, and the binding affinity between SIGLEC-3 and α2,6-biantennary sialoglycans was determined by biolayer interferometry (equilibrium dissociation constant [KD]: 1.95 × 10-10 ± 0.21 × 10-10 M). Moreover, HBV activated SIGLEC-3 on myeloid cells and induced immunosuppression by stimulating immunoreceptor tyrosine-based inhibitory motif phosphorylation and SHP-1/-2 recruitment via α2,6-biantennary sialoglycans on HBsAg. An antagonistic anti-SIGLEC-3 mAb reversed this effect and enhanced cytokine production in response to TLR-7 agonist GS-9620 in PBMCs from CHB patients. Moreover, anti-SIGLEC-3 mAb alone was able to upregulate the expression of molecules involved in antigen presentation, such as CD80, CD86, CD40, MHC-I, MHC-II, and PD-L1 in CD14+ cells. Furthermore, SIGLEC-3 SNP rs12459419 C, which expressed a higher amount of SIGLEC-3, was associated with increased risk of hepatocellular carcinoma (HCC) in CHB patients (HR: 1.256, 95% CI: 1.027-1.535, P = 0.0266). Thus, blockade of SIGLEC-3 is a promising strategy to reactivate host immunity to HBV and lower the incidence of HCC in the CHB patient population.
Collapse
Affiliation(s)
- Tsung-Yu Tsai
- PhD Program for Translational Medicine, China Medical University and Academia Sinica, Taichung, Taiwan.,Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | | | - Pei-Shan Sung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Yuan Peng
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - An-Suei Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chung-Ming Yu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ya-Ping Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ching-Yu Bau
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Jen Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Mei-Hung Pan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yi-Hung Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shiteng Duan
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - James C Paulson
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
11
|
Sialic Acid-Siglec Axis in Human Immune Regulation, Involvement in Autoimmunity and Cancer and Potential Therapeutic Treatments. Int J Mol Sci 2021; 22:ijms22115774. [PMID: 34071314 PMCID: PMC8198044 DOI: 10.3390/ijms22115774] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Siglecs are sialic acid-binding immunoglobulin-like lectins. Most Siglecs function as transmembrane receptors mainly expressed on blood cells in a cell type-specific manner. They recognize and bind sialic acids in specific linkages on glycoproteins and glycolipids. Since Sia is a self-molecule, Siglecs play a role in innate immune responses by distinguishing molecules as self or non-self. Increasing evidence supports the involvement of Siglecs in immune signaling representing immune checkpoints able to regulate immune responses in inflammatory diseases as well as cancer. Although further studies are necessary to fully understand the involvement of Siglecs in pathological conditions as well as their interactions with other immune regulators, the development of therapeutic approaches that exploit these molecules represents a tremendous opportunity for future treatments of several human diseases, as demonstrated by their application in several clinical trials. In the present review, we discuss the involvement of Siglecs in the regulation of immune responses, with particular focus on autoimmunity and cancer and the chance to target the sialic acid-Siglec axis as novel treatment strategy.
Collapse
|
12
|
Chen Z, Xu SL, Ge LY, Zhu J, Zheng T, Zhu Z, Zhou L. Sialic acid-binding immunoglobulin-like lectin 9 as a potential therapeutic target for chronic obstructive pulmonary disease. Chin Med J (Engl) 2021; 134:757-764. [PMID: 33595976 PMCID: PMC8104259 DOI: 10.1097/cm9.0000000000001381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT Chronic obstructive pulmonary disease (COPD) has become the third-leading cause of death worldwide, which is a severe economic burden to the healthcare system. Chronic bronchitis is the most common condition that contributes to COPD, both locally and systemically. Neutrophilic inflammation predominates in the COPD airway wall and lumen. Logically, repression of neutrophilia is an essential fashion to COPD treatment. However, currently available anti-neutrophilic therapies provide little benefit in COPD patients and may have serious side effects. Thus, there is an urgent need to explore an effective and safe anti-neutrophilic approach that might delay progression of the disease. Sialic acid-binding immunoglobulin-like lectin (Siglec)-9 is a member of the Siglec cell surface immunoglobulin family. It is noteworthy that Siglec-9 is highly expressed on human neutrophils and monocytes. Ligation of Siglec-9 by chemical compounds or synthetic ligands induced apoptosis and autophagic-like cell death in human neutrophils. Furthermore, administration of antibody to Siglec-E, mouse functional ortholog of Siglec-9, restrained recruitment and activation of neutrophils in mouse models of airway inflammation in vivo. Given the critical role that neutrophils play in chronic bronchitis and emphysema, targeting Siglec-9 could be beneficial for the treatment of COPD, asthma, fibrosis, and related chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Zi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shuang-Lan Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lin-Yang Ge
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jin Zhu
- Epidemiological Department, Huadong Medical Institute of Biotechniques, Nanjing, Jiangsu 210002, China
| | - Tao Zheng
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, Brown University Warren Alpert Medical School, Providence, RI 02912, USA
| | - Zhou Zhu
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, Brown University Warren Alpert Medical School, Providence, RI 02912, USA
| | - Linfu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
13
|
Exploring the Impact of Ketodeoxynonulosonic Acid in Host-Pathogen Interactions Using Uptake and Surface Display by Nontypeable Haemophilus influenzae. mBio 2021; 12:mBio.03226-20. [PMID: 33468699 PMCID: PMC7845648 DOI: 10.1128/mbio.03226-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
All cells in vertebrates are coated with a dense array of glycans often capped with sugars called sialic acids. Sialic acids have many functions, including serving as a signal for recognition of “self” cells by the immune system, thereby guiding an appropriate immune response against foreign “nonself” and/or damaged cells. Surface expression of the common vertebrate sialic acid (Sia) N-acetylneuraminic acid (Neu5Ac) by commensal and pathogenic microbes appears structurally to represent “molecular mimicry” of host sialoglycans, facilitating multiple mechanisms of host immune evasion. In contrast, ketodeoxynonulosonic acid (Kdn) is a more ancestral Sia also present in prokaryotic glycoconjugates that are structurally quite distinct from vertebrate sialoglycans. We detected human antibodies against Kdn-terminated glycans, and sialoglycan microarray studies found these anti-Kdn antibodies to be directed against Kdn-sialoglycans structurally similar to those on human cell surface Neu5Ac-sialoglycans. Anti-Kdn-glycan antibodies appear during infancy in a pattern similar to those generated following incorporation of the nonhuman Sia N-glycolylneuraminic acid (Neu5Gc) onto the surface of nontypeable Haemophilus influenzae (NTHi), a human commensal and opportunistic pathogen. NTHi grown in the presence of free Kdn took up and incorporated the Sia into its lipooligosaccharide (LOS). Surface display of the Kdn within NTHi LOS blunted several virulence attributes of the pathogen, including Neu5Ac-mediated resistance to complement and whole blood killing, complement C3 deposition, IgM binding, and engagement of Siglec-9. Upper airway administration of Kdn reduced NTHi infection in human-like Cmah null (Neu5Gc-deficient) mice that express a Neu5Ac-rich sialome. We propose a mechanism for the induction of anti-Kdn antibodies in humans, suggesting that Kdn could be a natural and/or therapeutic “Trojan horse” that impairs colonization and virulence phenotypes of free Neu5Ac-assimilating human pathogens.
Collapse
|
14
|
Functions and therapeutic targets of Siglec-mediated infections, inflammations and cancers. J Formos Med Assoc 2021; 120:5-24. [DOI: 10.1016/j.jfma.2019.10.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/11/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
|
15
|
Yang H, Zhang C, Wu J, Xiao W, Xie X, Zeng Z, Chen K, Wang W, An X, Tang W, Huang Q. Association of matrix metalloproteinase-12 polymorphisms with chronic obstructive pulmonary disease risk: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2020; 99:e21543. [PMID: 32756209 PMCID: PMC7402750 DOI: 10.1097/md.0000000000021543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a multifactorial disease with gene-environment interaction leading to airflow limitation through the respiratory tract. Reports on the association of matrix metalloproteinase 12 (MMP-12) polymorphisms with COPD have been controversial. A new systematic evaluation which could examine whether MMP-12 mutations are associated with the susceptibility to COPD is needed. METHODS We will search PubMed, EMBASE, Web of Science, China National Knowledge Infrastructure and Google Scholar to obtain eligible case-control studies for meta-analysis. The time is limited from the construction of the library to July 2020. Two investigators systematically will extract relevant data within those included studies.The odds ratio and 95% confidence intervals will be used to assess the genetic association between the allelic, dominant and recessive models of MMP-12 gene polymorphisms and COPD risk. Stata 12.0 software and Revman 5.3 will be adopted for statistical analysis. This protocol reported under the Preferred Reporting ltems for Systematic Reviews and Meta-Analyses Protocols statement. RESULTS This study will provide a better understanding of the association between MMP-12 polymorphisms and COPD risk. CONCLUSION Publishing this protocol will minimise the possibility of bias due to post hoc changes to the analysis protocol.
Collapse
Affiliation(s)
| | | | - Jianying Wu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Xiao
- Department of Respiratory Medicine
| | | | - Zhu Zeng
- Department of Respiratory Medicine
| | | | | | - Xing An
- Department of Respiratory Medicine
| | | | | |
Collapse
|
16
|
Läubli H, Varki A. Sialic acid-binding immunoglobulin-like lectins (Siglecs) detect self-associated molecular patterns to regulate immune responses. Cell Mol Life Sci 2020; 77:593-605. [PMID: 31485715 PMCID: PMC7942692 DOI: 10.1007/s00018-019-03288-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/11/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022]
Abstract
The mammalian immune system evolved to tightly regulate the elimination of pathogenic microbes and neoplastic transformed cells while tolerating our own healthy cells. Here, we summarize experimental evidence for the role of Siglecs-in particular CD33-related Siglecs-as self-receptors and their sialoglycan ligands in regulating this balance between recognition of self and non-self. Sialoglycans are found in the glycocalyx and extracellular fluids and matrices of all mammalian cells and can be considered as self-associated molecular patterns (SAMPs). We also provide an overview of the known interactions of Siglec receptors and sialoglycan-SAMPs. Manipulation of the Siglec-SAMP axis offers new therapeutic opportunities for the treatment of inflammatory conditions, autoimmune diseases and also cancer immunotherapy.
Collapse
Affiliation(s)
- Heinz Läubli
- Laboratory for Cancer Immunotherapy, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
| | - Ajit Varki
- Department of Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, 92093-0687, USA.
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, 92093-0687, USA.
| |
Collapse
|
17
|
Ponce-Gallegos MA, Pérez-Rubio G, Ambrocio-Ortiz E, Partida-Zavala N, Hernández-Zenteno R, Flores-Trujillo F, García-Gómez L, Hernández-Pérez A, Ramírez-Venegas A, Falfán-Valencia R. Genetic variants in IL17A and serum levels of IL-17A are associated with COPD related to tobacco smoking and biomass burning. Sci Rep 2020; 10:784. [PMID: 31964947 PMCID: PMC6972744 DOI: 10.1038/s41598-020-57606-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/06/2019] [Indexed: 11/08/2022] Open
Abstract
IL-17A is an important pro-inflammatory cytokine involved in the inflammatory response in chronic obstructive pulmonary disease (COPD). To evaluate the role played by single nucleotide polymorphisms of IL17A and protein levels in susceptibility to COPD, 1,807 subjects were included in a case-control study; 436 had COPD related to tobacco smoking (COPD-S) and 190 had COPD related to biomass burning (COPD-BB). Six hundred fifty-seven smokers without COPD (SWOC) and 183 biomass burning-exposed subjects (BBES) served as the respective control groups. The CC genotype and C allele of rs8193036 were associated with COPD (COPD-S vs. SWOC: p < 0.05; OR = 3.01, and OR = 1.28, respectively), as well as a recessive model (p < 0.01; OR = 2.91). Significant differences in serum levels were identified between COPD-S vs. SWOC, COPD-S vs. COPD-BB, and SWOC vs. BBES (p < 0.01). By comparing genotypes in the COPD-BB group TT vs. CC and TC vs. CC (p < 0.05), we found lower levels for the CC genotype. Logistic regression analysis by co-variables was performed, keeping the associations between COPD-S vs. SWOC with both polymorphisms evaluated (p < 0.05), as well as in COPD-BB vs. BBES but with a reduced risk of exacerbation (p < 0.05). In conclusion, polymorphisms in IL17A are associated with COPD. Serum levels of IL-17A were higher in smokers with and without COPD.
Collapse
Affiliation(s)
- Marco A Ponce-Gallegos
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Enrique Ambrocio-Ortiz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Neftali Partida-Zavala
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Rafael Hernández-Zenteno
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Fernando Flores-Trujillo
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Leonor García-Gómez
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Andrea Hernández-Pérez
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Alejandra Ramírez-Venegas
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico.
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico.
| |
Collapse
|
18
|
Xiao W, Du LY, Mao B, Miao TW, Fu JJ. Endotype-driven prediction of acute exacerbations in chronic obstructive pulmonary disease (EndAECOPD): protocol for a prospective cohort study. BMJ Open 2019; 9:e034592. [PMID: 31690612 PMCID: PMC6858242 DOI: 10.1136/bmjopen-2019-034592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/15/2019] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Current strategies for the prevention of acute exacerbations in chronic obstructive pulmonary disease (COPD) are primarily based on clinical measurements but fail to target the pathophysiological mechanisms, namely endotypes, of the disease. Studies identifying endotypes underlying exacerbation susceptibility and discovering specific biomarkers may lead to the development of targeted therapeutics but are lacking. This study aims to assess a broad spectrum of biomarkers at multiple biological levels (genetics, airway inflammation and respiratory microbiome) for their ability in predicting acute exacerbations of COPD, thus enables high-resolution disease endotyping and may lead to precision treatment of the disease. METHODS AND ANALYSIS In this prospective cohort study, participants with stable COPD (n=600) will be recruited and assessed for demographics, symptom scores, spirometry, medication use and comorbidities at baseline. Blood will be obtained for genotyping variants in a panel of nine genes. Induced sputum will be collected for the profile of microbiota using 16S rRNA gene sequencing, quantification of bacterial load, inflammatory mediators assay and sputum cytometry. Participants will be followed up for their exacerbations till 12 months and reassessed for the clinical measurements as baseline. The primary outcomes are total number of exacerbations, severe exacerbations, moderate exacerbations and time to first exacerbation. The secondary outcomes are changes in lung function and symptom scores. The effect of biomarkers representing genetic variants, airway inflammation and respiratory microbiome on predicting the frequent exacerbator phenotype and exacerbation frequency will be analysed with multivariable modelling, and time to first exacerbation with a Cox regression model. ETHICS AND DISSEMINATION The study has been approved by the Clinical Trial and Biomedical Ethics Committee of West China Hospital of Sichuan University (No. 2018-298). The results of the study will be published on peer-reviewed journals. TRIAL REGISTRATION NUMBER ChiCTR1800019063.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan University West China Hospital, Chengdu, China
| | - Long-Yi Du
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan University West China Hospital, Chengdu, China
| | - Bing Mao
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan University West China Hospital, Chengdu, China
| | - Ti-Wei Miao
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan University West China Hospital, Chengdu, China
| | - Juan-Juan Fu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan University West China Hospital, Chengdu, China
| |
Collapse
|
19
|
Estus S, Shaw BC, Devanney N, Katsumata Y, Press EE, Fardo DW. Evaluation of CD33 as a genetic risk factor for Alzheimer's disease. Acta Neuropathol 2019; 138:187-199. [PMID: 30949760 PMCID: PMC7035471 DOI: 10.1007/s00401-019-02000-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/22/2019] [Accepted: 03/30/2019] [Indexed: 12/23/2022]
Abstract
In 2011, genome-wide association studies implicated a polymorphism near CD33 as a genetic risk factor for Alzheimer's disease. This finding sparked interest in this member of the sialic acid-binding immunoglobulin-type lectin family which is linked to innate immunity. Subsequent studies found that CD33 is expressed in microglia in the brain and then investigated the molecular mechanism underlying the CD33 genetic association with Alzheimer's disease. The allele that protects from Alzheimer's disease acts predominately to increase a CD33 isoform lacking exon 2 at the expense of the prototypic, full-length CD33 that contains exon 2. Since this exon encodes the sialic acid ligand-binding domain, the finding that the loss of exon 2 was associated with decreased Alzheimer's disease risk was interpreted as meaning that a decrease in functional CD33 and its associated immune suppression was protective from Alzheimer's disease. However, this interpretation may need to be reconsidered given current findings that a genetic deletion which abrogates CD33 is not associated with Alzheimer's disease risk. Therefore, integrating currently available findings leads us to propose a model wherein the CD33 isoform lacking the ligand-binding domain represents a gain of function variant that reduces Alzheimer's disease risk.
Collapse
Affiliation(s)
- Steven Estus
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| | - Benjamin C Shaw
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Nicholas Devanney
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Yuriko Katsumata
- Department of Biostatistics and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | | | - David W Fardo
- Department of Biostatistics and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
20
|
Franssen FME, Alter P, Bar N, Benedikter BJ, Iurato S, Maier D, Maxheim M, Roessler FK, Spruit MA, Vogelmeier CF, Wouters EFM, Schmeck B. Personalized medicine for patients with COPD: where are we? Int J Chron Obstruct Pulmon Dis 2019; 14:1465-1484. [PMID: 31371934 PMCID: PMC6636434 DOI: 10.2147/copd.s175706] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic airflow limitation is the common denominator of patients with chronic obstructive pulmonary disease (COPD). However, it is not possible to predict morbidity and mortality of individual patients based on the degree of lung function impairment, nor does the degree of airflow limitation allow guidance regarding therapies. Over the last decades, understanding of the factors contributing to the heterogeneity of disease trajectories, clinical presentation, and response to existing therapies has greatly advanced. Indeed, diagnostic assessment and treatment algorithms for COPD have become more personalized. In addition to the pulmonary abnormalities and inhaler therapies, extra-pulmonary features and comorbidities have been studied and are considered essential components of comprehensive disease management, including lifestyle interventions. Despite these advances, predicting and/or modifying the course of the disease remains currently impossible, and selection of patients with a beneficial response to specific interventions is unsatisfactory. Consequently, non-response to pharmacologic and non-pharmacologic treatments is common, and many patients have refractory symptoms. Thus, there is an ongoing urgency for a more targeted and holistic management of the disease, incorporating the basic principles of P4 medicine (predictive, preventive, personalized, and participatory). This review describes the current status and unmet needs regarding personalized medicine for patients with COPD. Also, it proposes a systems medicine approach, integrating genetic, environmental, (micro)biological, and clinical factors in experimental and computational models in order to decipher the multilevel complexity of COPD. Ultimately, the acquired insights will enable the development of clinical decision support systems and advance personalized medicine for patients with COPD.
Collapse
Affiliation(s)
- Frits ME Franssen
- Department of Research and Education, CIRO, Horn, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - Peter Alter
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Nadav Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Birke J Benedikter
- Institute for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
- Department of Medical Microbiology, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | | | | | - Michael Maxheim
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Fabienne K Roessler
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Martijn A Spruit
- Department of Research and Education, CIRO, Horn, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
- REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Emiel FM Wouters
- Department of Research and Education, CIRO, Horn, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - Bernd Schmeck
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
- Institute for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
21
|
Angata T. Possible Influences of Endogenous and Exogenous Ligands on the Evolution of Human Siglecs. Front Immunol 2018; 9:2885. [PMID: 30564250 PMCID: PMC6288428 DOI: 10.3389/fimmu.2018.02885] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/23/2018] [Indexed: 12/25/2022] Open
Abstract
Sialic acids, a group of acidic sugars abundantly expressed in the tissues of deuterostome animals but rarely found in microbes, serve as a "signature of self" for these animals. Cognate sensors for sialic acids include Siglecs, a family of transmembrane lectins of vertebrate immune systems that recognize glycans containing sialic acids. A type of sialic acid called N-glycolylneuraminic acid (Neu5Gc) is abundant in many mammalian lineages including great apes, the closest extant relatives of modern human, but was lost in the lineage leading to modern human via the pseudogenization of the CMAH gene encoding the enzyme that converts N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. Loss of Neu5Gc appears to have influenced the evolution of human Siglecs, such as the adjustment of sialic acid binding preferences and the inactivation of at least one Siglec. In addition, various mechanistic studies using model systems and genetic association studies have revealed that some human Siglecs interact with pathogens and influence the outcome of infections, and these pathogens in turn likely influence the evolution of these Siglecs. By understanding the evolutionary forces affecting Siglecs, we shall achieve a better appreciation of Siglec functions, and by understanding Siglec functions, we can obtain deeper insight into the evolutionary processes driving Siglec evolution.
Collapse
Affiliation(s)
- Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
22
|
Stanczak MA, Siddiqui SS, Trefny MP, Thommen DS, Boligan KF, von Gunten S, Tzankov A, Tietze L, Lardinois D, Heinzelmann-Schwarz V, von Bergwelt-Baildon M, Zhang W, Lenz HJ, Han Y, Amos CI, Syedbasha M, Egli A, Stenner F, Speiser DE, Varki A, Zippelius A, Läubli H. Self-associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T cells. J Clin Invest 2018; 128:4912-4923. [PMID: 30130255 DOI: 10.1172/jci120612] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/16/2018] [Indexed: 12/17/2022] Open
Abstract
First-generation immune checkpoint inhibitors, including anti-CTLA-4 and anti-programmed death 1 (anti-PD-1) antibodies, have led to major clinical progress, yet resistance frequently leads to treatment failure. Thus, new targets acting on T cells are needed. CD33-related sialic acid-binding immunoglobulin-like lectins (Siglecs) are pattern-recognition immune receptors binding to a range of sialoglycan ligands, which appear to function as self-associated molecular patterns (SAMPs) that suppress autoimmune responses. Siglecs are expressed at very low levels on normal T cells, and these receptors were not until recently considered as interesting targets on T cells for cancer immunotherapy. Here, we show an upregulation of Siglecs, including Siglec-9, on tumor-infiltrating T cells from non-small cell lung cancer (NSCLC), colorectal, and ovarian cancer patients. Siglec-9-expressing T cells coexpressed several inhibitory receptors, including PD-1. Targeting of the sialoglycan-SAMP/Siglec pathway in vitro and in vivo resulted in increased anticancer immunity. T cell expression of Siglec-9 in NSCLC patients correlated with reduced survival, and Siglec-9 polymorphisms showed association with the risk of developing lung and colorectal cancer. Our data identify the sialoglycan-SAMP/Siglec pathway as a potential target for improving T cell activation for immunotherapy.
Collapse
Affiliation(s)
- Michal A Stanczak
- Cancer Immunology Laboratory, Department of Biomedicine, and.,Division of Oncology, Department of Internal Medicine, University Hospital, Basel, Switzerland
| | - Shoib S Siddiqui
- Departments of Medicine and Cellular and Molecular Medicine, Glycobiology Research and Training Center, UCSD, La Jolla, California, USA
| | - Marcel P Trefny
- Cancer Immunology Laboratory, Department of Biomedicine, and.,Division of Oncology, Department of Internal Medicine, University Hospital, Basel, Switzerland
| | - Daniela S Thommen
- Cancer Immunology Laboratory, Department of Biomedicine, and.,Division of Oncology, Department of Internal Medicine, University Hospital, Basel, Switzerland
| | | | | | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | - Wu Zhang
- USC, Los Angeles, California, USA
| | | | | | | | | | - Adrian Egli
- Applied Microbiology Research, University Hospital, Basel, Switzerland
| | - Frank Stenner
- Cancer Immunology Laboratory, Department of Biomedicine, and.,Division of Oncology, Department of Internal Medicine, University Hospital, Basel, Switzerland
| | - Daniel E Speiser
- Ludwig Cancer Research Center, University of Lausanne, Lausanne, Switzerland
| | - Ajit Varki
- Departments of Medicine and Cellular and Molecular Medicine, Glycobiology Research and Training Center, UCSD, La Jolla, California, USA
| | - Alfred Zippelius
- Cancer Immunology Laboratory, Department of Biomedicine, and.,Division of Oncology, Department of Internal Medicine, University Hospital, Basel, Switzerland
| | - Heinz Läubli
- Cancer Immunology Laboratory, Department of Biomedicine, and.,Division of Oncology, Department of Internal Medicine, University Hospital, Basel, Switzerland
| |
Collapse
|
23
|
Benton MJ, Lim TK, Ko FWS, Kan-O K, Mak JCW. Year in review 2017: Chronic obstructive pulmonary disease and asthma. Respirology 2018; 23:538-545. [PMID: 29502339 DOI: 10.1111/resp.13285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Melissa J Benton
- Helen and Arthur E. Johnson Beth-El College of Nursing and Health Sciences, University of Colorado, Colorado Springs, CO, USA
| | - Tow Keang Lim
- Department of Medicine, National University Hospital, Singapore
| | - Fanny W S Ko
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Keiko Kan-O
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Judith C W Mak
- Department of Medicine, The University of Hong Kong, Hong Kong.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong
| |
Collapse
|
24
|
MicroRNA-9 and Cell Proliferation in Lipopolysaccharide and Dexamethasone-Treated Naïve and Desialylated A549 Cells Grown in Cigarette Smoke Conditioned Medium. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29492899 DOI: 10.1007/5584_2018_168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
In this study we assessed microRNA-9 (miR-9) levels (RT-PCR) and cell proliferation (flow cytometry) in naïve and desialylated human alveolar epithelial cells (A549 cells), grown for 24 h in cigarette smoke-conditioned medium. Cells were additionally treated with lipopolysaccharide (LPS) and/or dexamethasone. Proliferation positively correlated with miR-9 levels in both naïve and desialylated cells. Cigarette smoke decreased miR-9 levels in both cell types by about three-fold but there was no significant correlation between both parameters. Dexamethasone was without substantial effect on cigarette smoke-induced changes in proliferation of naïve cells, but some normalization was observed in desialylated cells. Dexamethasone increased miR-9 levels in both cell types grown in cigarette smoke-medium but the effect was stronger in desialylated cells. LPS increased cell proliferation and miR-9 by more than six-fold only in naïve cells, while correlation coefficient for both parameters in cigarette smoke-LPS group was 0.41. Herein we identify miR-9 as the cigarette smoke (decrease) and LPS-responsive but dexamethasone-unresponsive microRNA. It is possible that increased miR-9 levels in naïve A549 cells treated with LPS may be related to the activation of Toll-like receptor 4. Moreover, differences in cell response (both miR-9 and proliferation) to dexamethasone in naïve and desialylated cells may point to non-genomic dexamethasone effects.
Collapse
|
25
|
Affiliation(s)
- Emily S Wan
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, VA Boston Health Care System Jamaica Plain Campus, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Increased expression of Siglec-9 in chronic obstructive pulmonary disease. Sci Rep 2017; 7:10116. [PMID: 28860481 PMCID: PMC5579055 DOI: 10.1038/s41598-017-09120-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/14/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common inflammatory lung disease. Sialic acid-binding immunoglobulin-type lectins 9 (Siglec-9) is predominantly expressed on innate immune cells and has been shown to exert regulatory effect on immune cells through glycan recognition. Soluble Siglec-9 (sSiglec-9), the extracellular region of Siglec-9, might fulfill its function partly by competitive inhibiting siglec-9 binding to its ligands; however, the role of Siglec-9 and sSiglec-9 in the pathogenesis COPD remain largely unknown. In this study, we showed that Siglec-9 expression in alveolar and peripheral blood neutrophil were increased in COPD patients by immunofluorescence and flow cytometry, respectively. Plasma levels of sSiglelc-9 were elevated in COPD patients by ELISA. In vitro, Siglec-9 expression and/or sSiglelc-9 levels were up-regulated by cigarette smoke extract (CSE), lipopolysaccharide (LPS), some cytokines, and dexamethasone (DEX). Recombinant sSiglce-9 increased oxidative burst in neutrophil and enhanced neutrophil chemotaxis toward IL-8 independent on CXCR1 and CXCR2 expression, but it did not affect neutrophil apoptosis or secretions of inflammatory cytokines. In conclusion, Siglec-9 was complementarily increased to induce a negative feedback loop to limit neutrophil activation in COPD, sSiglce-9 enhanced neutrophil ROS and chemotaxis toward IL-8 likely via competitively inhibiting ligands binding to Siglec-9.
Collapse
|
27
|
Varki A. Are humans prone to autoimmunity? Implications from evolutionary changes in hominin sialic acid biology. J Autoimmun 2017; 83:134-142. [PMID: 28755952 DOI: 10.1016/j.jaut.2017.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023]
Abstract
Given varied intrinsic and extrinsic challenges to the immune system, it is unsurprising that each evolutionary lineage evolves distinctive features of immunoreactivity, and that tolerance mechanisms fail, allowing autoimmunity. Humans appear prone to many autoimmune diseases, with mechanisms both genetic and environmental. Another rapidly evolving biological system involves sialic acids, a family of monosaccharides that are terminal caps on cell surface and secreted molecules of vertebrates, and play multifarious roles in immunity. We have explored multiple genomic changes in sialic acid biology that occurred in human ancestors (hominins), some with implications for enhanced immunoreactivity, and hence for autoimmunity. Human ancestors lost the enzyme synthesizing the common mammalian sialic acid Neu5Gc, with an accumulation of the precursor sialic acid Neu5Ac. Resulting changes include an enhanced reactivity by some immune cells and increased ability of macrophages to kill bacteria, at the cost of increased endotoxin sensitivity. There are also multiple human-specific evolutionary changes in inhibitory and activating Siglecs, immune cell receptors that recognize sialic acids as "self-associated molecular patterns" (SAMPs) to modulate immunity, but can also be hijacked by pathogen molecular mimicry of SAMPs. Altered expression patterns and fixed or polymorphic SIGLEC pseudogenization in humans has modulated both innate and adaptive immunity, sometimes favoring over-reactivity. Meanwhile, dietary intake of Neu5Gc (derived primarily from red meats) allows metabolic incorporation of this non-human molecule into human cells--apparently the first example of "xeno-autoimmunity" involving "xeno-autoantigen" interactions with circulating "xeno-autoantibodies". Taken together, some of these factors may contribute to the apparent human propensity for autoimmunity.
Collapse
Affiliation(s)
- Ajit Varki
- Departments of Medicine and Cellular and Molecular Medicine, Glycobiology Research and Training Center (GRTC) and Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA, 92093-0687, USA.
| |
Collapse
|