1
|
Aravena C, Mehta AC. Rigid versus flexible bronchoscopy in interventional pulmonology: perspective from the master clinicians. Curr Opin Pulm Med 2025; 31:1-10. [PMID: 39492750 DOI: 10.1097/mcp.0000000000001136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
PURPOSE OF REVIEW The review explores the evolving roles and comparative effectiveness of rigid versus flexible bronchoscopy in interventional pulmonology. This topic is particularly timely due to recent technological advancements and the growing body of literature highlighting the strengths and limitations of each technique. RECENT FINDINGS Recent literature reveals significant advancements in rigid and flexible bronchoscopy, with studies comparing their efficacy, safety profiles, and clinical outcomes. Key themes include improved diagnostic and therapeutic capabilities, procedural innovations, and patient-centered outcomes. SUMMARY While rigid and flexible bronchoscopies have distinct advantages, their complementary use can enhance patient care. Future research should focus on developing minimally invasive, high-precision bronchoscopic tools, comparative studies to inform evidence-based practice, exploring hybrid approaches that combine the strengths of both techniques, and enhancing patient-centered outcomes through improved procedural protocols, education, and technologies.
Collapse
Affiliation(s)
- Carlos Aravena
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Duke University, Durham, North Carolina
| | - Atul C Mehta
- Department of Pulmonary, Allergy, and Critical Care Medicine, Respiratory Institute, Cleveland Clinic. Cleveland, Ohio, USA
| |
Collapse
|
2
|
Peeters S, Lau K, Stefanidis K, Yasufuku K, Ishiwata T, Rolfo C, Schneiter D, Hardavella G, Guckenberger M, Lauk O. New diagnostic and nonsurgical local treatment modalities for early stage lung cancer. Lung Cancer 2024; 196:107952. [PMID: 39236577 DOI: 10.1016/j.lungcan.2024.107952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
This paper highlights developments in diagnostic and nonsurgical local treatment modalities that have changed the management of early-stage lung cancer. These innovations aim to enhance diagnostic accuracy, minimize invasiveness, and improve patient outcomes. Liquid biopsies are emerging as promising tools for non-invasive diagnosis and monitoring, enabling earlier intervention without being standardized yet as well as not yet anchored in the guidelines. Endobronchial navigation has emerged as an innovative tool. By combining electromagnetic or GPS-like technology with 3D imaging and a steerable catheter, it enables accurate biopsy of small, peripheral lesions that were once challenging to sample, with a very low pneumothorax rate. Regarding nonsurgical treatments, stereotactic body radiotherapy (SBRT) continues to shine as a non-invasive local treatment modality for early-stage lung cancer and is the guideline-recommended standard-of-care for inoperable patients and patients refusing the risk of surgical resection. The low toxicity and excellent local control has made it an attractive alternative to surgery even in fitter patients. Percutaneous ablative techniques utilising energies such as microwave or pulse-field electroporation are options for patients who are not candidates for surgery or SBRT. Bronchoscopic ablation delivers the same energies but with a very lower pneumothorax rate and it is therefore also open to patients with multiple and bilateral lesions.
Collapse
Affiliation(s)
- Stephanie Peeters
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands.
| | - Kelvin Lau
- Barts Thorax Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | | | - Kazuhiro Yasufuku
- Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Tsukasa Ishiwata
- Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Didier Schneiter
- Department of Thoracic Surgery, University Hospital Zürich, Zurich, Switzerland
| | - Georgia Hardavella
- 9th Department of Respiratory Medicine, "Sotiria" Athens Chest Diseases Hospital, Athens, Greece
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Olivia Lauk
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Watson JM, Einsiedel PF, Antippa P, Rangamuwa K, Irving L, Steinfort DP. Effective Radiation Dose from Cone-Beam Computed Tomography Guidance during Bronchoscopic Tumour Ablation. Respiration 2024; 103:498-502. [PMID: 38885628 DOI: 10.1159/000539862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Endobronchial radiofrequency ablation (RFA) is a novel minimally invasive approach to management of peripheral non-small-cell lung cancer (NSCLC) in medically inoperable patients. Minimally invasive ablative techniques are generally delivered with cone-beam computed tomography (CBCT) guidance. CBCT requires a significant number of two dimensional imaging projections to be acquired which is then reconstructed as a three-dimensional cone-beam image. The objective of this study was to determine the radiation dosimetry consequent to use of CBCT guidance for bronchoscopic RFA. METHODS Post hoc analysis of data following bronchoscopic RFA of stage I biopsy-confirmed NSCLC performed with CBCT. Effective dose estimates for these patients were calculated using PCXMC2.0 software. RESULTS Ten patients underwent bronchoscopic RFA, with a median 3 (range 2-4) CBCT spins per procedure. Mean dose area product (DAP) per procedure was 7,778 μGy.m2 (±4,743) with an effective dose of 11.6 mSv (±7.4). The DAP per spin for these 10 patients varied from 83.8 to 8,625.6 μGy.m2 (effective dose range 0.15-13.81 mSv). CONCLUSION This is the first study to report radiation dosimetry consequent to CT guidance for bronchoscopic RFA procedures. Effective doses appear comparable to other CT fluoroscopic procedures.
Collapse
Affiliation(s)
- Jack Mitchell Watson
- Department of Respiratory and Sleep Medicine, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Paul F Einsiedel
- Department of Medical Imaging, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Phillip Antippa
- Cardiothoracic Surgery Unit, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Kanishka Rangamuwa
- Department of Respiratory and Sleep Medicine, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Louis Irving
- Department of Respiratory and Sleep Medicine, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Daniel P Steinfort
- Department of Respiratory and Sleep Medicine, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Yang R, Gu C, Xie F, Hong S, Herth FJF, Sun J. Potential of Thermal Ablation Combined with Immunotherapy in Peripheral Lung Tumors: A Review and Prospect. Respiration 2024; 103:295-316. [PMID: 38498991 DOI: 10.1159/000538383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Lung tumors are prevalent malignancies associated with a high mortality rate, imposing significant medical and societal burdens. Although immunotherapy shows promise in improving survival, response rates are relatively modest. Thermal ablation can not only eliminate tumor cells directly but also enhance antitumor immunity response, thus manifesting a remarkable propensity to synergize with immunotherapy. SUMMARY In this review, we provided a brief overview of the application of thermal ablation in peripheral lung tumors. We summarized the patient selection of thermal ablation. We highlighted the potential of thermal ablation to augment the antitumor immune response, offering a promising avenue for combined therapies. We summarized studies assessing the synergistic effects of thermal ablation and immunotherapy in preclinical and clinical settings. Lastly, we underscored the urgent issues that warrant in-depth exploration when applying thermal ablation and immunotherapy to lung tumor patients. KEY MESSAGES This review emphasized the prospects of using thermal ablation combined with immunotherapy in patients with peripheral lung tumors. However, further research is needed to enhance and optimize this treatment strategy.
Collapse
Affiliation(s)
- Rui Yang
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| | - Chuanjia Gu
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| | - Fangfang Xie
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| | - Siyuan Hong
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| | - Felix J F Herth
- Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Jiayuan Sun
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| |
Collapse
|
5
|
Zhang Q, Wu X, Yang H, Luo P, Wei N, Wang S, Zhao X, Wang Z, Herth FJF, Zhang X. Advances in the Treatment of Pulmonary Nodules. Respiration 2024; 103:134-145. [PMID: 38382478 DOI: 10.1159/000535824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/11/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Early detection and accurate diagnosis of pulmonary nodules are crucial for improving patient outcomes. While surgical resection of malignant nodules is still the preferred treatment option, it may not be feasible for all patients. We aimed to discuss the advances in the treatment of pulmonary nodules, especially stereotactic body radiotherapy (SBRT) and interventional pulmonology technologies, and provide a range of recommendations based on our expertise and experience. SUMMARY Interventional pulmonology is an increasingly important approach for the management of pulmonary nodules. While more studies are needed to fully evaluate its long-term outcomes and benefits, the available evidence suggests that this technique can provide a minimally invasive and effective alternative for treating small malignancies in selected patients. We conducted a systematic literature review in PubMed, designed a framework to include the advances in surgery, SBRT, and interventional pulmonology for the treatment of pulmonary nodules, and provided a range of recommendations based on our expertise and experience. KEY MESSAGES As such, alternative therapeutic options such as SBRT and ablation are becoming increasingly important and viable. With recent advancements in bronchoscopy techniques, ablation via bronchoscopy has emerged as a promising option for treating pulmonary nodules. This study reviewed the advances of interventional pulmonology in the treatment of peripheral lung cancer patients that are not surgical candidates. We also discussed the challenges and limitations associated with ablation, such as the risk of complications and the potential for incomplete nodule eradication. These advancements hold great promise for improving the efficacy and safety of interventional pulmonology in treating pulmonary nodules.
Collapse
Affiliation(s)
- Quncheng Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xuan Wu
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China,
| | - Huizhen Yang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Peiyuan Luo
- Department of Respiratory and Critical Care Medicine, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Nan Wei
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shuai Wang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xingru Zhao
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ziqi Wang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Felix J F Herth
- Department of Pneumology and Respiratory Care Medicine, Thoraxklinik and Translational Lung Research Center, University of Heidelberg, Heidelberg, Germany
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
6
|
Sun W, Zhang Q, Wang X, Jin Z, Cheng Y, Wang G. Clinical Practice of Photodynamic Therapy for Non-Small Cell Lung Cancer in Different Scenarios: Who Is the Better Candidate? Respiration 2024; 103:193-204. [PMID: 38354707 PMCID: PMC10997268 DOI: 10.1159/000535270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/05/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a relatively safe and highly selectivity antitumor treatment, which might be increasingly used as a supplement to conventional therapies. A clinical overview and detailed comparison of how to select patients and lesions for PDT in different scenarios are urgently needed to provide a basis for clinical treatment. SUMMARY This review demonstrates the highlights and obstacles of applying PDT for lung cancer and underlines points worth considering when planning to initiate PDT. The aim was to make out the appropriate selection and help PDT develop efficacy and precision through a better understanding of its clinical use. KEY MESSAGES Increasing evidence supports the feasibility and safety of PDT in the treatment of non-small cell lung cancer. It is important to recognize the factors that influence the efficacy of PDT to develop individualized management strategies and implement well-designed procedures. These important issues should be worth considering in the present and further research.
Collapse
Affiliation(s)
- Wen Sun
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China,
| | - Qi Zhang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Xi Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Zhou Jin
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Yuan Cheng
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Guangfa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
7
|
Liu Q, Zhang C, Chen X, Han Z. Modern cancer therapy: cryoablation meets immune checkpoint blockade. Front Oncol 2024; 14:1323070. [PMID: 38384806 PMCID: PMC10881233 DOI: 10.3389/fonc.2024.1323070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
Cryoablation, as a minimally invasive technology for the treatment of tumors, destroys target tumors with lethal low temperatures. It simultaneously releases a large number of tumor-specific antigens, pro-inflammatory cytokines, and nucleoproteins, known as "danger signals", activating the body's innate and adaptive immune responses. However, tumor cells can promote the inactivation of immune effector cells by reprogramming immune checkpoints, leading to the insufficiency of these antigens to induce an immune response capable of eradicating the tumor. Immune checkpoint blockers rejuvenate exhausted T cells by blocking immune checkpoints that induce programmed death of T cells, and are therefore considered a promising therapeutic strategy to enhance the immune effects of cryoablation. In this review, we provide a detailed explanation of the immunological mechanisms of cryoablation and articulate the theoretical basis and research progress of the treatment of cancer with cryoablation combined with immune checkpoint blockers. Preliminary data indicates that this combined treatment strategy exhibits good synergy and has been proven to be safe and effective.
Collapse
Affiliation(s)
- Qi Liu
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Chunyang Zhang
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- College of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Xuxin Chen
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- College of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhihai Han
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
- College of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
8
|
Herth FJF, Kontogianni K, Brock JM. Interventional pneumology-Where we have come from and where we are going. Respirology 2023; 28:1098-1100. [PMID: 37706331 DOI: 10.1111/resp.14602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Affiliation(s)
- Felix J F Herth
- Department of Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center, University of Heidelberg, Heidelberg, Germany
| | - Konstantina Kontogianni
- Department of Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center, University of Heidelberg, Heidelberg, Germany
| | - Judith Maria Brock
- Department of Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
9
|
Vu LH, Yu Lee-Mateus A, Edell ES, Hartley C, Vierkant RA, Fernandez-Bussy S, Reisenauer J. Accuracy of Preliminary Pathology for Robotic Bronchoscopic Biopsy. Ann Thorac Surg 2023; 116:1028-1034. [PMID: 36470566 DOI: 10.1016/j.athoracsur.2022.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/24/2022] [Accepted: 11/11/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Diagnosis and treatment of peripheral pulmonary lesions (PPLs) currently require at least 2 procedures. An all-in-1 approach would require diagnosing malignancy with preliminary cytology results. This study investigated the concordance between preliminary cytology and final pathology results in biopsies of PPLs obtained by shape-sensing robotic-assisted bronchoscopy (ssRAB). METHODS This study was a retrospective, consecutive, single-arm, single-center study of 110 ssRABs for PPLs. Concordance was defined as agreement between preliminary cytology and final pathology results. Accuracy, sensitivity, specificity, positive and negative predictive values, and safety outcomes were examined. RESULTS The concordance was 89% for needle biopsies, 85% for forceps biopsies, and 92% overall, with substantial agreement. There was no significant association of concordance with patients' demographics or lesion characteristics. Preliminary cytology resulted in a malignant diagnosis in 70%, a nonmalignant diagnosis in 4%, and a nondiagnostic result in 26%, with accuracy of 86% and sensitivity of 84%. The total complication rate was 3.6%, with a pneumothorax rate of 1.8%. CONCLUSIONS This study compared the concordance of preliminary pathology results with final pathology results for ssRAB biopsies in PPLs. The results showed that preliminary samples have a high concordance with final pathology results and may enable management of PPLs with a single anesthetic procedure including biopsy, staging, and treatment.
Collapse
Affiliation(s)
- Linh H Vu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Alejandra Yu Lee-Mateus
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Jacksonville, Florida
| | - Eric S Edell
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Robert A Vierkant
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Sebastian Fernandez-Bussy
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Jacksonville, Florida
| | - Janani Reisenauer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota; Division of Thoracic Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
10
|
Mankidy BJ, Mohammad G, Trinh K, Ayyappan AP, Huang Q, Bujarski S, Jafferji MS, Ghanta R, Hanania AN, Lazarus DR. High risk lung nodule: A multidisciplinary approach to diagnosis and management. Respir Med 2023; 214:107277. [PMID: 37187432 DOI: 10.1016/j.rmed.2023.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
Pulmonary nodules are often discovered incidentally during CT scans performed for other reasons. While the vast majority of nodules are benign, a small percentage may represent early-stage lung cancer with the potential for curative treatments. With the growing use of CT for both clinical purposes and lung cancer screening, the number of pulmonary nodules detected is expected to increase substantially. Despite well-established guidelines, many nodules do not receive proper evaluation due to a variety of factors, including inadequate coordination of care and financial and social barriers. To address this quality gap, novel approaches such as multidisciplinary nodule clinics and multidisciplinary boards may be necessary. As pulmonary nodules may indicate early-stage lung cancer, it is crucial to adopt a risk-stratified approach to identify potential lung cancers at an early stage, while minimizing the risk of harm and expense associated with over investigation of low-risk nodules. This article, authored by multiple specialists involved in nodule management, delves into the diagnostic approach to lung nodules. It covers the process of determining whether a patient requires tissue sampling or continued surveillance. Additionally, the article provides an in-depth examination of the various biopsy and therapeutic options available for malignant lung nodules. The article also emphasizes the significance of early detection in reducing lung cancer mortality, especially among high-risk populations. Furthermore, it addresses the creation of a comprehensive lung nodule program, which involves smoking cessation, lung cancer screening, and systematic evaluation and follow-up of both incidental and screen-detected nodules.
Collapse
Affiliation(s)
- Babith J Mankidy
- Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, 1Baylor Plaza, Houston, TX, 77030, USA.
| | - GhasemiRad Mohammad
- Department of Radiology, Division of Vascular and Interventional Radiology, Baylor College of Medicine, USA.
| | - Kelly Trinh
- Texas Tech University Health Sciences Center, School of Medicine, USA.
| | - Anoop P Ayyappan
- Department of Radiology, Division of Thoracic Radiology, Baylor College of Medicine, USA.
| | - Quillan Huang
- Department of Oncology, Baylor College of Medicine, USA.
| | - Steven Bujarski
- Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, 1Baylor Plaza, Houston, TX, 77030, USA.
| | | | - Ravi Ghanta
- Department of Cardiothoracic Surgery, Baylor College of Medicine, USA.
| | | | - Donald R Lazarus
- Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, 1Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Endoscopic Technologies for Peripheral Pulmonary Lesions: From Diagnosis to Therapy. Life (Basel) 2023; 13:life13020254. [PMID: 36836612 PMCID: PMC9959751 DOI: 10.3390/life13020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Peripheral pulmonary lesions (PPLs) are frequent incidental findings in subjects when performing chest radiographs or chest computed tomography (CT) scans. When a PPL is identified, it is necessary to proceed with a risk stratification based on the patient profile and the characteristics found on chest CT. In order to proceed with a diagnostic procedure, the first-line examination is often a bronchoscopy with tissue sampling. Many guidance technologies have recently been developed to facilitate PPLs sampling. Through bronchoscopy, it is currently possible to ascertain the PPL's benign or malignant nature, delaying the therapy's second phase with radical, supportive, or palliative intent. In this review, we describe all the new tools available: from the innovation of bronchoscopic instrumentation (e.g., ultrathin bronchoscopy and robotic bronchoscopy) to the advances in navigation technology (e.g., radial-probe endobronchial ultrasound, virtual navigation, electromagnetic navigation, shape-sensing navigation, cone-beam computed tomography). In addition, we summarize all the PPLs ablation techniques currently under experimentation. Interventional pulmonology may be a discipline aiming at adopting increasingly innovative and disruptive technologies.
Collapse
|
12
|
Guibert N, Dutau H, Escarguel B, Egenod T, Fournier C, Legodec J, Trosini-Desert V, Lorut C, Lachkar S, Vergnon JM. L’essor de la pneumologie interventionnelle : une série spéciale coordonnée par le GETIF. Rev Mal Respir 2022; 39:409-410. [DOI: 10.1016/j.rmr.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 11/27/2022]
|
13
|
Furumoto H, Kato T, Wakiyama H, Furusawa A, Choyke PL, Kobayashi H. Endoscopic Applications of Near-Infrared Photoimmunotherapy (NIR-PIT) in Cancers of the Digestive and Respiratory Tracts. Biomedicines 2022; 10:846. [PMID: 35453596 PMCID: PMC9027987 DOI: 10.3390/biomedicines10040846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed and promising therapy that specifically destroys target cells by irradiating antibody-photo-absorber conjugates (APCs) with NIR light. APCs bind to target molecules on the cell surface, and when exposed to NIR light, cause disruption of the cell membrane due to the ligand release reaction and dye aggregation. This leads to rapid cell swelling, blebbing, and rupture, which leads to immunogenic cell death (ICD). ICD activates host antitumor immunity, which assists in killing still viable cancer cells in the treated lesion but is also capable of producing responses in untreated lesions. In September 2020, an APC and laser system were conditionally approved for clinical use in unresectable advanced head and neck cancer in Japan, and are now routine in appropriate patients. However, most tumors have been relatively accessible in the oral cavity or neck. Endoscopes offer the opportunity to deliver light deeper within hollow organs of the body. In recent years, the application of endoscopic therapy as an alternative to surgery for the treatment of cancer has expanded, providing significant benefits to inoperable patients. In this review, we will discuss the potential applications of endoscopic NIR-PIT, especially in thoracic and gastrointestinal cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (H.F.); (T.K.); (H.W.); (A.F.); (P.L.C.)
| |
Collapse
|
14
|
Steinfort DP, Rangamuwa K. A glimpse of the future?-bronchoscopic ablation of peripheral early stage lung cancer. Transl Lung Cancer Res 2021; 10:3861-3864. [PMID: 34858776 PMCID: PMC8577971 DOI: 10.21037/tlcr-21-763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022]
Affiliation(s)
- Daniel P Steinfort
- Department of Respiratory, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Melbourne, Australia
| | - Kanishka Rangamuwa
- Department of Respiratory, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
15
|
Kramer T, Annema JT. Advanced bronchoscopic techniques for the diagnosis and treatment of peripheral lung cancer. Lung Cancer 2021; 161:152-162. [PMID: 34600406 DOI: 10.1016/j.lungcan.2021.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 12/14/2022]
Abstract
Lung cancer is the leading cause of cancer related deaths worldwide. As a result of the increasing use of chest CT scans and lung cancer screening initiatives, there is a rapidly increasing need for lung lesion analysis and - in case of confirmed cancer - treatment. A desirable future concept is the one-stop outpatient bronchoscopic approach including navigation to the tumor, malignancy confirmation and immediate treatment. Several novel bronchoscopic diagnostic and treatment concepts are currently under evaluation contributing to this concept. As the majority of suspected malignant lung lesions develop in the periphery of the lungs, improved bronchoscopic navigation to the target lesion is of key importance. Fortunately, the field of interventional pulmonology is evolving rapidly and several advanced bronchoscopic navigation techniques are clinically available, allowing an increasingly accurate tissue diagnosis of peripheral lung lesions. Additionally, multiple bronchoscopic treatment modalities are currently under investigation. This review will provide a concise overview of advanced bronchoscopic techniques to diagnose and treat peripheral lung cancer by describing their working mechanisms, strengths and weaknesses, identifying knowledge gaps and indicating future developments. The desired one-step concept of bronchoscopic 'diagnose and treat' peripheral lung cancer is on the horizon.
Collapse
Affiliation(s)
- Tess Kramer
- Department of Respiratory Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jouke T Annema
- Department of Respiratory Medicine, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
[Expert Consensus on Technical Specifications of Domestic Electromagnetic Navigation Bronchoscopy System in Diagnosis, Localization and Treatment (2021 Edition)]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:529-537. [PMID: 34412766 PMCID: PMC8387647 DOI: 10.3779/j.issn.1009-3419.2021.101.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electromagnetic navigation bronchoscopy (ENB) is a novel type of bronchoscopy based on electromagnetic positioning technique combined with virtual bronchoscopy, three-dimensional computed tomography (CT) imaging and respiratory gating technique, which has been widely applied in clinic practice. In recent years, the domestic electromagnetic navigation system has also been developed rapidly, and its effectiveness and safety in the diagnosis, localization, and treatment of peripheral pulmonary lesions have been initially verified. In order to optimize and standardize the technical specifications of domestic ENB and guide its application in clinical practice, the consensus statement has been organized and written in a collaborative effort by the Professional Committee on Respiratory Equipment Technology of Chinese Medical Equipment Association and the Expert Group on Technical of Domestic Electromagnetic Navigation Bronchoscopy.
.
Collapse
|
17
|
Robin M, Mhanna L, Chaltiel L, Plat G, Héluain V, Basset C, Meilleroux J, Filleron T, Mazières J, Hermant C, Guibert N. Feasibility of comprehensive genotyping specimens from radial endobronchial ultrasonography and electromagnetic navigation bronchoscopy. ERJ Open Res 2021; 7:00942-2020. [PMID: 34291111 PMCID: PMC8287134 DOI: 10.1183/23120541.00942-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/12/2021] [Indexed: 11/06/2022] Open
Abstract
Introduction Mini-invasive bronchoscopic techniques (such as radial endobronchial ultrasonography (rEBUS) and electromagnetic navigation (EMN)) have been developed to reach the peripheral lung but result in small samples. The feasibility of an adequate molecular testing from these specimens has been very little studied. Methods We retrospectively reviewed EMN and rEBUS procedures performed in patients diagnosed with lung cancer in our institution in 2017 and 2018. We analysed the sensitivity for rEBUS and EMN and each sampling method, and the feasibility of a comprehensive molecular testing. Results In total, 317 rEBUS and 14 EMN were performed. Median sizes of tumours were 16 and 32 mm for EMN and rEBUS, respectively. Overall sensitivity for rEBUS and EMN was 84.3%. Cytology was found to be complementary with biopsies, with 13.3% of cancer diagnosed on cytology while biopsies were negative. Complication rate was 2.4% (pneumothorax 1.5%, mild haemoptysis 0.9%). Genotyping (immunohistochemistry for ROS1 and ALK followed by fluorescence in situ hybridisation if positive and hybrid capture next-generation sequencing covering 48 genes), when ordered (n=188), was feasible in 69.1% (EGFR 17.7%, KRAS 31.7%, BRAF 4.8%, ALK 1.2%, MET 3.1%, HER2 0.8%). PD-L1 (programmed death-ligand 1) expression, when ordered (n=232), could be analysed in 94% of cases. Overall, 56.9% (33 out of 58) of patients for whom genotyping was not feasible underwent a second sampling (12 pretreatment, 21 at progression), allowing for the detection of six actionable genotypes (five EGFR, one MET). Conclusion rEBUS and EMN are sensitive and safe procedures that result in limited samples, often not suitable for genotyping, highlighting the importance of integrating liquid biopsy in routine testing. Radial EBUS and EMN bronchoscopies are safe and sensitive procedures for lung cancer diagnosis. Cytology is highly complementary with histology. These small samples are, however, not suitable for an exhaustive molecular testing in 30% of cases.https://bit.ly/3eZ7Xn0
Collapse
Affiliation(s)
- Maxime Robin
- Pulmonology Dept, Larrey University Hospital, Toulouse, France
| | - Laurent Mhanna
- Pulmonology Dept, Larrey University Hospital, Toulouse, France
| | - Leonor Chaltiel
- Biostatistics Dept, Institut Claudius Regaud, Toulouse University Cancer Institute (IUCT-O), Toulouse, France
| | - Gavin Plat
- Pulmonology Dept, Larrey University Hospital, Toulouse, France
| | | | - Céline Basset
- Cytology Dept, IUCT-O, Toulouse, France.,Université de Toulouse III Paul Sabatier, Toulouse, France
| | | | - Thomas Filleron
- Biostatistics Dept, Institut Claudius Regaud, Toulouse University Cancer Institute (IUCT-O), Toulouse, France
| | - Julien Mazières
- Pulmonology Dept, Larrey University Hospital, Toulouse, France.,Université de Toulouse III Paul Sabatier, Toulouse, France.,Cancer Research Centre of Toulouse (CRCT), Inserm, Toulouse, France
| | | | - Nicolas Guibert
- Pulmonology Dept, Larrey University Hospital, Toulouse, France.,Université de Toulouse III Paul Sabatier, Toulouse, France.,Cancer Research Centre of Toulouse (CRCT), Inserm, Toulouse, France
| |
Collapse
|
18
|
Olive G, Yung R, Marshall H, Fong KM. Alternative methods for local ablation-interventional pulmonology: a narrative review. Transl Lung Cancer Res 2021; 10:3432-3445. [PMID: 34430378 PMCID: PMC8350102 DOI: 10.21037/tlcr-20-1185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/22/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To discuss and summarise the background and recent advances in the approach to bronchoscopic ablative therapies for lung cancer, focusing on focal parenchymal lesions. BACKGROUND This series focusses on the challenges highlighted by increasing recognition of the prognostically more favourable oligometastatic disease rather than the more frequent, but prognostically poor, high tumour burden metastatic disease. While surgery, stereotactic body radiation therapy (SBRT), and trans-thoracic percutaneous ablative techniques such as microwave (MWA) and radiofrequency ablation (RFA) are well recognised options for selected cases of pulmonary oligometastasis, bronchoscopic approaches to pulmonary tumour ablation are becoming realistic alternatives. An underlying tenet driving research and implementation in this domain is that percutaneous ablative techniques are obliged to traverse the pleura leading to a high rate of pneumothorax, and risks also goes up for peri-vascular lesions. Historically low yield bronchoscopic targeting of isolated peripheral tumors have significantly improved by incorporating multi-modality high resolution imaging and processing, including navigation planning and real-time image guidances (ultrasound, electromagnetic navigation, cone-beam CT). Combining advanced image guidance with ablative technology adaptations for bronchoscopic delivery opens up the options for high dose local ablative therapies that may reduce transthoracic complications and provide palliative to curative options for limited stage primary and oligometastatic diseases. METHODS We conduct a narrative review of the literature summarizing the history of bronchoscopic tumor ablation approaches, technical details including biologic rational for their uses, and current evidence for each modality, as well as investigations into future applications. Because of the relative paucity of prospective studies, we have been very inclusive in our inclusion of experiences from the published clinical databases. CONCLUSIONS Whilst surgical resection and SBRT remain the current mainstay of curative therapies for peripheral cancers, in the foreseeable future, developments and further research will see bronchoscopic ablative therapies become viable lung sparing alternatives in those deemed suitable. The future is bright.
Collapse
Affiliation(s)
- Gerard Olive
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
- University of Queensland Thoracic Research Centre, Queensland, Australia
| | - Rex Yung
- Chief Medical Officer – IONIQ (ProLung) Inc., Salt Lake City, UT, USA
| | - Henry Marshall
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
- University of Queensland Thoracic Research Centre, Queensland, Australia
| | - Kwun M. Fong
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
- University of Queensland Thoracic Research Centre, Queensland, Australia
| |
Collapse
|
19
|
Rangamuwa K, Leong T, Weeden C, Asselin-Labat ML, Bozinovski S, Christie M, John T, Antippa P, Irving L, Steinfort D. Thermal ablation in non-small cell lung cancer: a review of treatment modalities and the evidence for combination with immune checkpoint inhibitors. Transl Lung Cancer Res 2021; 10:2842-2857. [PMID: 34295682 PMCID: PMC8264311 DOI: 10.21037/tlcr-20-1075] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide, with approximately 1.6 million cancer related deaths each year. Prognosis is best in patients with early stage disease, though even then five-year survival is only 55% in some groups. Median survival for advanced non-small cell lung cancer (NSCLC) is 8–12 months with conventional treatment. Immune checkpoint inhibitor (ICI) therapy has revolutionised the treatment of NSCLC with significant long-term improvements in survival demonstrated in some patients with advanced NSCLC. However, only a small proportion of patients respond to ICI, suggesting the need for further techniques to harness the potential of ICI therapy. Thermal ablation utilizes the extremes of temperature to cause tumour destruction. Commonly used modalities are radiofrequency ablation (RFA), cryoablation and microwave ablation (MWA). At present thermal ablation is reserved for curative-intent therapy in patients with localized NSCLC who are unable to undergo surgical resection or stereotactic ablative body radiotherapy (SABR). Limited evidence suggests that thermal ablative modalities can upregulate an anticancer immune response in NSCLC. It is postulated that thermal ablation can increase tumour antigen release, which would initiate and upregulated steps in the cancer immunity cycle required to elicit an anticancer immune response. This article will review the current thermal ablative techniques and their ability to modulate an anti-cancer immune response with a view of using thermal ablation in conjunction with ICI therapy.
Collapse
Affiliation(s)
- Kanishka Rangamuwa
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| | - Tracy Leong
- Department of Respiratory Medicine, Austin Hospital, Heidelberg, Victoria, Australia
| | - Clare Weeden
- Personalised Oncology Division, Walter Eliza Hall institute, Melbourne, Australia
| | | | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Michael Christie
- Department of Pathology, Royal Melbourne Hospital, Melbourne, Australia
| | - Tom John
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Phillip Antippa
- Department of Thoracic Surgery, Royal Melbourne Hospital, Melbourne, Australia
| | - Louis Irving
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Daniel Steinfort
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| |
Collapse
|
20
|
Viatgé T, Villeneuve T, D'Aure D, Mazières J, Plat G, Hermant C, Guibert N. Confocal laser endomicroscopy to guide sampling of a pure ground-glass opacity. ERJ Open Res 2021; 7:00910-2020. [PMID: 33834056 PMCID: PMC8021808 DOI: 10.1183/23120541.00910-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/19/2021] [Indexed: 11/25/2022] Open
Abstract
Confocal laser endomicroscopy imaging of lepidic adenocarcinomas is feasible. This technique should be further evaluated as a realtime guiding tool during virtual electromagnetic navigation bronchoscopy for ground-glass opacities https://bit.ly/3uzTcMU.
Collapse
Affiliation(s)
- Thibault Viatgé
- Pulmonology Dept, Larrey University Hospital, Toulouse, France
- These authors contributed equally to this work
| | - Thomas Villeneuve
- Pulmonology Dept, Larrey University Hospital, Toulouse, France
- These authors contributed equally to this work
| | - Dominique D'Aure
- Pathology Dept, Cancer University Institute of Toulouse, Oncopole, Toulouse, France
| | - Julien Mazières
- Pulmonology Dept, Larrey University Hospital, Toulouse, France
| | - Gavin Plat
- Pulmonology Dept, Larrey University Hospital, Toulouse, France
| | | | - Nicolas Guibert
- Pulmonology Dept, Larrey University Hospital, Toulouse, France
| |
Collapse
|
21
|
Steinfort DP, Christie M, Antippa P, Rangamuwa K, Padera R, Müller MR, Irving LB, Valipour A. Bronchoscopic Thermal Vapour Ablation for Localized Cancer Lesions of the Lung: A Clinical Feasibility Treat-and-Resect Study. Respiration 2021; 100:432-442. [PMID: 33730740 DOI: 10.1159/000514109] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/23/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Bronchoscopic thermal vapour ablation (BTVA) is an established and approved modality for minimally invasive lung volume reduction in severe emphysema. Preclinical data suggest potential for BTVA in minimally invasive ablation of lung cancer lesions. OBJECTIVES The objective of this study is to establish the safety, feasibility, and ablative efficacy of BTVA for minimally invasive ablation of lung cancers. METHODS Single arm treat-and-resect clinical feasibility study of patients with biopsy-confirmed lung cancer. A novel BTVA for lung cancer (BTVA-C) system for minimally invasive treatment of peripheral pulmonary tumours was used to deliver 330 Cal thermal vapour energy via bronchoscopy to target lesion. Patients underwent planned lobectomy to complete oncologic care. Pre-surgical CT chest and post-resection histologic analysis were performed to evaluate ablative efficacy. RESULTS Six patients underwent BTVA-C, and 5 progressed to planned lobectomy. Median procedure duration was 12 min. No major procedure-related complications occurred. All 5 resected lesions were part-solid lung adenocarcinomas with median solid component size 1.32±0.36 cm. Large uniform ablation zones were seen in 4 patients where thermal dose exceeded 3 Cal/mL, with complete/near-complete necrosis of target lesions seen in 2 patients. Tumour positioned within ablation zones demonstrated necrosis in >99% of cross-sectional area examined. CONCLUSION BTVA of lung tumours is feasible and well tolerated, with preliminary evidence suggesting high potential for effective ablation of tumours. Thermal injury is well demarcated, and uniform tissue necrosis is observed within ablation zones receiving sufficient thermal dose per volume of lung. Treatment of smaller volumes and ensuring adequate thermal dose may be important for ablative efficacy.
Collapse
Affiliation(s)
- Daniel P Steinfort
- Department Respiratory Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia, .,Department of Medicine, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, Victoria, Australia,
| | - Michael Christie
- Department of Pathology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Phillip Antippa
- Department of Cardiothoracic Surgery, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Kanishka Rangamuwa
- Department Respiratory Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Robert Padera
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Michael Rolf Müller
- Department of Thoracic Surgery, North Clinic Vienna, Karl-Landsteiner-Institute of Thoracic Oncology, Sigmund-Freud-University Medical Faculty, Vienna, Austria
| | - Louis B Irving
- Department Respiratory Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Arschang Valipour
- Department of Respiratory and Critical Care Medicine, Karl-Landsteiner-Institute for Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| |
Collapse
|
22
|
[The GELF is over, long live the GETIF!!]. Rev Mal Respir 2021; 38:131-133. [PMID: 33581984 DOI: 10.1016/j.rmr.2021.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/22/2022]
|