1
|
Hachad M, Burnet JB, Sylvestre É, Duy SV, Villemur R, Sauvé S, Prévost M, Qiu JY, Pang X, Dorner S. β-D-glucuronidase activity triggered monitoring of fecal contamination using microbial and chemical source tracking markers at drinking water intakes. WATER RESEARCH 2024; 254:121374. [PMID: 38422696 DOI: 10.1016/j.watres.2024.121374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Intense rainfall and snowmelt events may affect the safety of drinking water, as large quantities of fecal material can be discharged from storm or sewage overflows or washed from the catchment into drinking water sources. This study used β-d-glucuronidase activity (GLUC) with microbial source tracking (MST) markers: human, bovine, porcine mitochondrial DNA markers (mtDNA) and human-associated Bacteroidales HF183 and chemical source tracking (CST) markers including caffeine, carbamazepine, theophylline and acetaminophen, pathogens (Giardia, Cryptosporidium, adenovirus, rotavirus and enterovirus), water quality indicators (Escherichia coli, turbidity) and hydrometeorological data (flowrate, precipitation) to assess the vulnerability of 3 drinking water intakes (DWIs) and identify sources of fecal contamination. Water samples were collected under baseline, snow and rain events conditions in urban and agricultural catchments (Québec, Canada). Dynamics of E. coli, HF183 and WWMPs were similar during contamination events, and concentrations generally varied over 1 order of magnitude during each event. Elevated human-associated marker levels during events demonstrated that urban DWIs were impacted by recent contamination from an upstream municipal water resource recovery facility (WRRF). In the agricultural catchment, mixed fecal pollution was observed with the occurrences and increases of enteric viruses, human bovine and porcine mtDNA during peak contaminating events. Bovine mtDNA qPCR concentrations were indicative of runoff of cattle-derived fecal pollutants to the DWI from diffuse sources following rain events. This study demonstrated that the suitability of a given MST or CST indicator depend on river and catchment characteristics. The sampling strategy using continuous online GLUC activity coupled with MST and CST markers analysis was a more reliable source indicator than turbidity to identify peak events at drinking water intakes.
Collapse
Affiliation(s)
- Mounia Hachad
- NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, QC, H3C 3A7, Canada; Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, QC, H3C 3A7, Canada.
| | - Jean-Baptiste Burnet
- NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, QC, H3C 3A7, Canada; Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, QC, H3C 3A7, Canada
| | - Émile Sylvestre
- NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, QC, H3C 3A7, Canada; Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, QC, H3C 3A7, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Succ, Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Richard Villemur
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Succ, Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Michèle Prévost
- NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, QC, H3C 3A7, Canada
| | - Judy Y Qiu
- Department of Laboratory Medicine and Pathology, University of Alberta, 116th & 85 Ave, Edmonton, AB T6G 2R3, Canada
| | - Xiaoli Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, 116th & 85 Ave, Edmonton, AB T6G 2R3, Canada
| | - Sarah Dorner
- Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, QC, H3C 3A7, Canada
| |
Collapse
|
2
|
Sylvestre É, Prévost M, Smeets P, Medema G, Burnet JB, Cantin P, Villion M, Robert C, Dorner S. Importance of Distributional Forms for the Assessment of Protozoan Pathogens Concentrations in Drinking-Water Sources. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:1396-1412. [PMID: 33103818 DOI: 10.1111/risa.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/18/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
The identification of appropriately conservative statistical distributions is needed to predict microbial peak events in drinking water sources explicitly. In this study, Poisson and mixed Poisson distributions with different upper tail behaviors were used for modeling source water Cryptosporidium and Giardia data from 30 drinking water treatment plants. Small differences (<0.5-log) were found between the "best" estimates of the mean Cryptosporidium and Giardia concentrations with the Poisson-gamma and Poisson-log-normal models. However, the upper bound of the 95% credibility interval on the mean Cryptosporidium concentrations of the Poisson-log-normal model was considerably higher (>0.5-log) than that of the Poisson-gamma model at four sites. The improper choice of a model may, therefore, mislead the assessment of treatment requirements and health risks associated with the water supply. Discrimination between models using the marginal deviance information criterion (mDIC) was unachievable because differences in upper tail behaviors were not well characterized with available data sets ( n<30 ). Therefore, the gamma and the log-normal distributions fit the data equally well but may predict different risk estimates when they are used as an input distribution in an exposure assessment. The collection of event-based monitoring data and the modeling of larger routine monitoring data sets are recommended to identify appropriately conservative distributions to predict microbial peak events.
Collapse
Affiliation(s)
- Émile Sylvestre
- NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
- Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Michèle Prévost
- NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Patrick Smeets
- KWR Water Research Institute, Groningenhaven 7, Nieuwegein, 3433 PE, The Netherlands
| | - Gertjan Medema
- KWR Water Research Institute, Groningenhaven 7, Nieuwegein, 3433 PE, The Netherlands
- Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, Delft, 2600GA, The Netherlands
| | - Jean-Baptiste Burnet
- NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
- Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Philippe Cantin
- Ministère de l'Environnement et de la Lutte contre les changements climatiques, Québec, Canada
| | - Manuela Villion
- Centre d'expertise en analyse environnementale du Québec, Ministère de l'Environnement et de la Lutte contre les changements climatiques, Québec, Canada
| | - Caroline Robert
- Ministère de l'Environnement et de la Lutte contre les changements climatiques, Québec, Canada
| | - Sarah Dorner
- Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| |
Collapse
|
3
|
Automated Targeted Sampling of Waterborne Pathogens and Microbial Source Tracking Markers Using Near-Real Time Monitoring of Microbiological Water Quality. WATER 2021. [DOI: 10.3390/w13152069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Waterborne pathogens are heterogeneously distributed across various spatiotemporal scales in water resources, and representative sampling is therefore crucial for accurate risk assessment. Since regulatory monitoring of microbiological water quality is usually conducted at fixed time intervals, it can miss short-term fecal contamination episodes and underestimate underlying microbial risks. In the present paper, we developed a new automated sampling methodology based on near real-time measurement of a biochemical indicator of fecal pollution. Online monitoring of β-D-glucuronidase (GLUC) activity was used to trigger an automated sampler during fecal contamination events in a drinking water supply and at an urban beach. Significant increases in protozoan parasites, microbial source tracking markers and E. coli were measured during short-term (<24 h) fecal pollution episodes, emphasizing the intermittent nature of their occurrence in water. Synchronous triggering of the automated sampler with online GLUC activity measurements further revealed a tight association between the biochemical indicator and culturable E. coli. The proposed event sampling methodology is versatile and in addition to the two triggering modes validated here, others can be designed based on specific needs and local settings. In support to regulatory monitoring schemes, it should ultimately help gathering crucial data on waterborne pathogens more efficiently during episodic fecal pollution events.
Collapse
|
4
|
Sylvestre É, Prévost M, Burnet JB, Pang X, Qiu Y, Smeets P, Medema G, Hachad M, Dorner S. Demonstrating the reduction of enteric viruses by drinking water treatment during snowmelt episodes in urban areas. WATER RESEARCH X 2021; 11:100091. [PMID: 33598650 PMCID: PMC7868990 DOI: 10.1016/j.wroa.2021.100091] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/21/2020] [Accepted: 01/20/2021] [Indexed: 05/25/2023]
Abstract
This study investigates short-term fluctuations in virus concentrations in source water and their removal by full-scale drinking water treatment processes under different source water conditions. Transient peaks in raw water faecal contamination were identified using in situ online β-d-glucuronidase activity monitoring at two urban drinking water treatment plants. During these peaks, sequential grab samples were collected at the source and throughout the treatment train to evaluate concentrations of rotavirus, adenovirus, norovirus, enterovirus, JC virus, reovirus, astrovirus and sapovirus by reverse transcription and real-time quantitative PCR. Virus infectivity was assessed through viral culture by measurement of cytopathic effect and integrated cell culture qPCR. Virus concentrations increased by approximately 0.5-log during two snowmelt/rainfall episodes and approximately 1.0-log following a planned wastewater discharge upstream of the drinking water intake and during a β-d-glucuronidase activity peak in dry weather conditions. Increases in the removal of adenovirus and rotavirus by coagulation/flocculation processes were observed during peak virus concentrations in source water, suggesting that these processes do not operate under steady-state conditions but dynamic conditions in response to source water conditions. Rotavirus and enterovirus detected in raw and treated water samples were predominantly negative in viral culture. At one site, infectious adenoviruses were detected in raw water and water treated by a combination of ballasted clarification, ozonation, GAC filtration, and UV disinfection operated at a dose of 40 mJ cm-2. The proposed sampling strategy can inform the understanding of the dynamics associated with virus concentrations at drinking water treatment plants susceptible to de facto wastewater reuse.
Collapse
Affiliation(s)
- Émile Sylvestre
- NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
- Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Michèle Prévost
- NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Jean-Baptiste Burnet
- NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
- Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Xiaoli Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, 116th & 85 Ave, Edmonton, AB, T6G 2R3, Canada
- Public Health Laboratory, Alberta Precision Laboratories, 8440-112nd, Edmonton, AB, T6G 2J2, Canada
| | - Yuanyuan Qiu
- Department of Laboratory Medicine and Pathology, University of Alberta, 116th & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Patrick Smeets
- KWR Water Research Institute, Groningenhaven 7, 3433 PE, Nieuwegein, the Netherlands
| | - Gertjan Medema
- KWR Water Research Institute, Groningenhaven 7, 3433 PE, Nieuwegein, the Netherlands
- Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600GA, Delft, the Netherlands
| | - Mounia Hachad
- NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
- Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Sarah Dorner
- Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| |
Collapse
|