1
|
Hung SC, Hou T, Jiang W, Wang N, Qiao SW, Chow IT, Liu X, van der Burg SH, Koelle DM, Kwok WW, Sollid LM, Mellins ED. Epitope Selection for HLA-DQ2 Presentation: Implications for Celiac Disease and Viral Defense. THE JOURNAL OF IMMUNOLOGY 2019; 202:2558-2569. [PMID: 30926644 DOI: 10.4049/jimmunol.1801454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/01/2019] [Indexed: 01/28/2023]
Abstract
We have reported that the major histocompatibility molecule HLA-DQ2 (DQA1*05:01/DQB1*02:01) (DQ2) is relatively resistant to HLA-DM (DM), a peptide exchange catalyst for MHC class II. In this study, we analyzed the role of DQ2/DM interaction in the generation of DQ2-restricted gliadin epitopes, relevant to celiac disease, or DQ2-restricted viral epitopes, relevant to host defense. We used paired human APC, differing in DM expression (DMnull versus DMhigh) or differing by expression of wild-type DQ2, versus a DM-susceptible, DQ2 point mutant DQ2α+53G. The APC pairs were compared for their ability to stimulate human CD4+ T cell clones. Despite higher DQ2 levels, DMhigh APC attenuated T cell responses compared with DMnull APC after intracellular generation of four tested gliadin epitopes. DMhigh APC expressing the DQ2α+53G mutant further suppressed these gliadin-mediated responses. The gliadin epitopes were found to have moderate affinity for DQ2, and even lower affinity for the DQ2 mutant, consistent with DM suppression of their presentation. In contrast, DMhigh APC significantly promoted the presentation of DQ2-restricted epitopes derived intracellularly from inactivated HSV type 2, influenza hemagglutinin, and human papillomavirus E7 protein. When extracellular peptide epitopes were used as Ag, the DQ2 surface levels and peptide affinity were the major regulators of T cell responses. The differential effect of DM on stimulation of the two groups of T cell clones implies differences in DQ2 presentation pathways associated with nonpathogen- and pathogen-derived Ags in vivo.
Collapse
Affiliation(s)
- Shu-Chen Hung
- Division of Human Gene Therapy, Department of Pediatrics, Stanford University, Stanford, CA 94305.,Program in Immunology, Stanford University, Stanford, CA 94305
| | - Tieying Hou
- Division of Human Gene Therapy, Department of Pediatrics, Stanford University, Stanford, CA 94305.,Program in Immunology, Stanford University, Stanford, CA 94305
| | - Wei Jiang
- Division of Human Gene Therapy, Department of Pediatrics, Stanford University, Stanford, CA 94305.,Program in Immunology, Stanford University, Stanford, CA 94305
| | - Nan Wang
- Division of Human Gene Therapy, Department of Pediatrics, Stanford University, Stanford, CA 94305.,Program in Immunology, Stanford University, Stanford, CA 94305
| | - Shuo-Wang Qiao
- Centre for Immune Regulation, Department of Immunology, University of Oslo and Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, 0424 Oslo, Norway
| | - I-Ting Chow
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | - Xiaodan Liu
- Division of Human Gene Therapy, Department of Pediatrics, Stanford University, Stanford, CA 94305.,Program in Immunology, Stanford University, Stanford, CA 94305
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA 98195.,Department of Laboratory Medicine, University of Washington, Seattle, WA 98195; and.,Department of Global Health, University of Washington, Seattle, WA 98195
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | - Ludvig M Sollid
- Centre for Immune Regulation, Department of Immunology, University of Oslo and Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, 0424 Oslo, Norway
| | - Elizabeth D Mellins
- Division of Human Gene Therapy, Department of Pediatrics, Stanford University, Stanford, CA 94305; .,Program in Immunology, Stanford University, Stanford, CA 94305
| |
Collapse
|
2
|
Heneberg P, Šimčíková D, Čecháková M, Rypáčková B, Kučera P, Anděl M. Autoantibodies against ZnT8 are rare in Central-European LADA patients and absent in MODY patients, including those positive for other autoantibodies. J Diabetes Complications 2019; 33:46-52. [PMID: 30377089 DOI: 10.1016/j.jdiacomp.2018.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/10/2018] [Accepted: 10/07/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Testing for autoantibodies against the zinc transporter ZnT8 (ZnTA) is becoming routine in pediatric diabetes. However, available data are inconclusive when focusing on adult-onset diabetes, including autoimmune diabetes, which does not require insulin at diagnosis (LADA). BASIC PROCEDURES We examined the ZnTA prevalence and titers and matched them with the clinical phenotype and PTPN22 genotypes of Czech LADA patients who were positive for GADA and/or IA2A and had a fasting C-peptide level >200 pmol/L at diagnosis as well as HNF4A-, GCK- or HNF1A-MODY patients and healthy controls. MAIN FINDINGS Most LADA patients were negative for ZnTA, and the sensitivity of the assay was only 18-20% for patients with LADA-like progression to insulinotherapy compared to healthy controls. In LADA patients, there was no association between the ZnTA and PTPN22 risk genotypes. LADA patients positive for ZnTA had a lower BMI than those positive for other autoantibodies alone. Importantly, MODY patients were completely negative for ZnTA, and the levels of ZnTA in MODY patients were similar to those in healthy controls. CONCLUSIONS ZnTA quantification did not improve LADA diagnosis. However, positivity for ZnTA can be used as a negative MODY pre-diagnostic criterion even in the region of Central and East Europe, where other islet cell autoantibodies are common in MODY patients.
Collapse
Affiliation(s)
- Petr Heneberg
- Charles University, Third Faculty of Medicine, Prague, Czech Republic.
| | - Daniela Šimčíková
- Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Marie Čecháková
- Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Blanka Rypáčková
- Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Petr Kučera
- Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Michal Anděl
- Charles University, Third Faculty of Medicine, Prague, Czech Republic
| |
Collapse
|
3
|
Cerqueiro Bybrant M, Grahnquist L, Örtqvist E, Andersson C, Forsander G, Elding Larsson H, Lernmark Å, Ludvigsson J, Marcus C, Carlsson A, Ivarsson SA. Tissue transglutaminase autoantibodies in children with newly diagnosed type 1 diabetes are related to human leukocyte antigen but not to islet autoantibodies: A Swedish nationwide prospective population-based cohort study. Autoimmunity 2018; 51:221-227. [PMID: 30444426 DOI: 10.1080/08916934.2018.1494160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVES This study explored the association between tissue transglutaminase autoantibody (tTGA), high-risk human leucocyte antigen (HLA) genotypes and islet autoantibodies in children with newly diagnosed type 1 diabetes (T1D). PATIENTS AND METHODS Dried blood spots and serum samples were taken at diagnosis from children <18 years of age participating in Better Diabetes Diagnosis (BDD), a Swedish nationwide prospective cohort study of children newly diagnosed with T1D. We analyzed tTGA, high-risk HLA DQ2 and DQ8 (DQX is neither DQ2 nor DQ8) and islet auto-antibodies (GADA, IA-2A, IAA, and three variants of Zinc transporter; ZnT8W, ZnT8R, and ZnT8QA). RESULTS Out of 2705 children diagnosed with T1D, 85 (3.1%) had positive tTGA and 63 (2.3%) had borderline values. The prevalence of tTGA was higher in children with the HLA genotypes DQ2/2, DQ2/X or DQ2/8 compared to those with DQ8/8 or DQ8/X (p = .00001) and those with DQX/X (p ≤ .00001). No significant differences were found in relation to islet autoantibodies or age at diagnosis, but the presence of tTGA was more common in girls than in boys (p = .018). CONCLUSION tTGA at T1D diagnosis (both positive and borderline values 5.4%) was higher in girls and in children homozygous for DQ2/2, followed by children heterozygous for DQ2. Only children with DQ2 and/or DQ8 had tTGA. HLA typing at the diagnosis of T1D can help to identify those without risk for CD.
Collapse
Affiliation(s)
- Mara Cerqueiro Bybrant
- a Department of Women's and Children's Health , Karolinska Institutet , Stockholm , Sweden
| | - Lena Grahnquist
- a Department of Women's and Children's Health , Karolinska Institutet , Stockholm , Sweden.,b Hepatology and Nutrition , Astrid Lindgren Children's Hospital, Karolinska University Hospital , Stockholm , Sweden
| | - Eva Örtqvist
- a Department of Women's and Children's Health , Karolinska Institutet , Stockholm , Sweden.,c Pediatric Diabetes Clinic, Astrid Lindgren Children's Hospital , Karolinska University Hospital , Stockholm , Sweden
| | - Cecilia Andersson
- d Department of clinical sciences , Lund University, Skåne University hospital , Malmö , Sweden
| | - Gun Forsander
- f The Queen Silvia Children's hospital , Sahlgrenska University hospital and The Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Helena Elding Larsson
- d Department of clinical sciences , Lund University, Skåne University hospital , Malmö , Sweden
| | - Åke Lernmark
- d Department of clinical sciences , Lund University, Skåne University hospital , Malmö , Sweden
| | - Johnny Ludvigsson
- g Division of Pediatrics, Department of Clinical and Experimental Medicine , Linko¨ping University , Linko¨ping , Sweden
| | - Claude Marcus
- h Division of Pediatrics, Department of Clinical Science , Intervention and Technology Karolinska Institutet , Stockholm , Sweden
| | | | - Sten A Ivarsson
- d Department of clinical sciences , Lund University, Skåne University hospital , Malmö , Sweden
| |
Collapse
|
4
|
Elding Larsson H, Lynch KF, Lönnrot M, Haller MJ, Lernmark Å, Hagopian WA, She JX, Simell O, Toppari J, Ziegler AG, Akolkar B, Krischer JP, Rewers MJ, Hyöty H. Pandemrix® vaccination is not associated with increased risk of islet autoimmunity or type 1 diabetes in the TEDDY study children. Diabetologia 2018; 61:193-202. [PMID: 28990147 PMCID: PMC5774660 DOI: 10.1007/s00125-017-4448-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 08/14/2017] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS During the A/H1N1 2009 (A/California/04/2009) pandemic, mass vaccination with a squalene-containing vaccine, Pandemrix®, was performed in Sweden and Finland. The vaccination was found to cause narcolepsy in children and young adults with the HLA-DQ 6.2 haplotype. The aim of this study was to investigate if exposure to Pandemrix® similarly increased the risk of islet autoimmunity or type 1 diabetes. METHODS In The Environmental Determinants of Diabetes in the Young (TEDDY) study, children are followed prospectively for the development of islet autoimmunity and type 1 diabetes. In October 2009, when the mass vaccination began, 3401 children at risk for islet autoimmunity and type 1 diabetes were followed in Sweden and Finland. Vaccinations were recorded and autoantibodies against insulin, GAD65 and insulinoma-associated protein 2 were ascertained quarterly before the age of 4 years and semi-annually thereafter. RESULTS By 5 August 2010, 2413 of the 3401 (71%) children observed as at risk for an islet autoantibody or type 1 diabetes on 1 October 2009 had been vaccinated with Pandemrix®. By 31 July 2016, 232 children had at least one islet autoantibody before 10 years of age, 148 had multiple islet autoantibodies and 96 had developed type 1 diabetes. The risk of islet autoimmunity was not increased among vaccinated children. The HR (95% CI) for the appearance of at least one islet autoantibody was 0.75 (0.55, 1.03), at least two autoantibodies was 0.85 (0.57, 1.26) and type 1 diabetes was 0.67 (0.42, 1.07). In Finland, but not in Sweden, vaccinated children had a lower risk of islet autoimmunity (0.47 [0.29, 0.75]), multiple autoantibodies (0.50 [0.28, 0.90]) and type 1 diabetes (0.38 [0.20, 0.72]) compared with those who did not receive Pandemrix®. The analyses were adjusted for confounding factors. CONCLUSIONS/INTERPRETATION Children with an increased genetic risk for type 1 diabetes who received the Pandemrix® vaccine during the A/H1N1 2009 pandemic had no increased risk of islet autoimmunity, multiple islet autoantibodies or type 1 diabetes. In Finland, the vaccine was associated with a reduced risk of islet autoimmunity and type 1 diabetes.
Collapse
Affiliation(s)
- Helena Elding Larsson
- Department of Clinical Sciences Malmö, Lund University CRC, Skåne University Hospital SUS, Jan Waldenströms gata 35; 60:11, 20502, Malmö, Sweden.
| | - Kristian F Lynch
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Maria Lönnrot
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Department of Dermatology, Tampere University Hospital, Tampere, Finland
| | - Michael J Haller
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Åke Lernmark
- Department of Clinical Sciences Malmö, Lund University CRC, Skåne University Hospital SUS, Jan Waldenströms gata 35; 60:11, 20502, Malmö, Sweden
| | | | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Olli Simell
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Forschergruppe Diabetes e.V., Neuherberg, Germany
| | - Beena Akolkar
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, MD, USA
| | - Jeffrey P Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Marian J Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA
| | - Heikki Hyöty
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| |
Collapse
|
5
|
Tavira B, Cheramy M, Axelsson S, Åkerman L, Ludvigsson J, Casas R. Effect of simultaneous vaccination with H1N1 and GAD-alum on GAD 65-induced immune response. Diabetologia 2017; 60:1276-1283. [PMID: 28357504 PMCID: PMC5487599 DOI: 10.1007/s00125-017-4263-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/01/2017] [Indexed: 01/10/2023]
Abstract
AIMS/HYPOTHESIS A European Phase III trial of GAD formulated with aluminium hydroxide (GAD-alum) failed to reach its primary endpoint (preservation of stimulated C-peptide secretion from baseline to 15 months in type 1 diabetes patients), but subgroup analysis showed a clinical effect when participants from Nordic countries were excluded, raising concern as to whether the mass vaccination of the Swedish and Finnish populations with the Pandemrix influenza vaccine could have influenced the study outcomes. In the current study, we aimed to assess whether Pandemrix vaccination affects the specific immune responses induced by GAD-alum and the C-peptide response. METHODS In this secondary analysis, we analysed data acquired from the Swedish participants in the Phase III GAD-alum trial who received subcutaneous GAD-alum vaccination (two doses, n = 43; four doses, n = 46) or placebo (n = 48). GAD autoantibodies (GADA) and H1N1 autoantibodies, GAD65-induced cytokine secretion and change in fasting and stimulated C-peptide levels from baseline to 15 months were analysed with respect to the relative time between H1N1 vaccination and the first injection of GAD-alum. RESULTS GADA levels at 15 months were associated with the relative time between GAD-alum and Pandemrix administration in participants who received two doses of the GAD-alum vaccine (p = 0.015, r = 0.4). Both in participants treated with two doses and four doses of GAD-alum, GADA levels were higher when the relative time between vaccines was ≥210 days (p < 0.05). In the group that received two doses of GAD-alum, levels of several GAD65-induced cytokines were higher in participants who received the H1N1 vaccination and the first GAD-alum injection at least 150 days apart, and the change in fasting and stimulated C-peptide at 15 months was associated with the relative time between vaccines. Neither of these effects were observed in individuals who received four doses of GAD-alum. CONCLUSIONS/INTERPRETATION In individuals who received two doses of GAD-alum, receiving the Pandemrix vaccine closer to the first GAD-alum injection, i.e. <150 days, seemed to affect both GAD65-induced immune response and C-peptide preservation. TRIAL REGISTRATION ClinicalTrials.gov NCT00723411.
Collapse
Affiliation(s)
- Beatriz Tavira
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 581 85, Linköping, Sweden.
| | - Mikael Cheramy
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 581 85, Linköping, Sweden
| | - Stina Axelsson
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 581 85, Linköping, Sweden
| | - Linda Åkerman
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 581 85, Linköping, Sweden
| | - Johnny Ludvigsson
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 581 85, Linköping, Sweden
| | - Rosaura Casas
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 581 85, Linköping, Sweden
| |
Collapse
|
6
|
Nilsson AL, Vaziri-Sani F, Broberg P, Elfaitouri A, Pipkorn R, Blomberg J, Ivarsson SA, Elding Larsson H, Lernmark Å. Serological evaluation of possible exposure to Ljungan virus and related parechovirus in autoimmune (type 1) diabetes in children. J Med Virol 2015; 87:1130-40. [DOI: 10.1002/jmv.24127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2014] [Indexed: 12/14/2022]
Affiliation(s)
- A-L. Nilsson
- Department of Paediatrics; Östersund Hospital; Östersund Sweden
- Department of Clinical Sciences, Skåne University Hospital; Lund University/CRC; Malmö Sweden
| | - F. Vaziri-Sani
- Department of Clinical Sciences, Skåne University Hospital; Lund University/CRC; Malmö Sweden
| | - P. Broberg
- Department of Oncology and Cancer Epidemiology Clinical Sciences; Lund University; Lund Sweden
| | - A. Elfaitouri
- Section of Clinical Microbiology, Department of Medical Sciences; Uppsala University; Uppsala Sweden
| | - R. Pipkorn
- Deutsches Krebsforschungszentrum; Heidelberg Germany
| | - J. Blomberg
- Section of Clinical Microbiology, Department of Medical Sciences; Uppsala University; Uppsala Sweden
| | - S-A. Ivarsson
- Department of Clinical Sciences, Skåne University Hospital; Lund University/CRC; Malmö Sweden
| | - H. Elding Larsson
- Department of Clinical Sciences, Skåne University Hospital; Lund University/CRC; Malmö Sweden
| | - Å. Lernmark
- Department of Clinical Sciences, Skåne University Hospital; Lund University/CRC; Malmö Sweden
| |
Collapse
|