1
|
Zuo Y, Dang R, Peng H, Hu P, Yang Y. LL37-mtDNA regulates viability, apoptosis, inflammation, and autophagy in lipopolysaccharide-treated RLE-6TN cells by targeting Hsp90aa1. Open Life Sci 2024; 19:20220943. [PMID: 39220589 PMCID: PMC11365468 DOI: 10.1515/biol-2022-0943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
Sepsis-induced acute lung injury is associated with lung epithelial cell injury. This study analyzed the role of the antimicrobial peptide LL37 with mitochondrial DNA (LL37-mtDNA) and its potential mechanism of action in lipopolysaccharide (LPS)-treated rat type II alveolar epithelial cells (RLE-6TN cells). RLE-6TN cells were treated with LPS alone or with LL37-mtDNA, followed by transcriptome sequencing. Differentially expressed and pivotal genes were screened using bioinformatics tools. The effects of LL37-mtDNA on cell viability, inflammation, apoptosis, reactive oxygen species (ROS) production, and autophagy-related hallmark expression were evaluated in LPS-treated RLE-6TN cells. Additionally, the effects of Hsp90aa1 silencing following LL37-mtDNA treatment were investigated in vitro. LL37-mtDNA further suppressed cell viability, augmented apoptosis, promoted the release of inflammatory cytokines, increased ROS production, and elevated LC3B expression in LPS-treated RLE-6TN cells. Using transcriptome sequencing and bioinformatics, ten candidate genes were identified, of which three core genes were verified to be upregulated in the LPS + LL37-mtDNA group. Additionally, Hsp90aa1 downregulation attenuated the effects of LL37-mtDNA on LPS-treated RLE-6TN cells. Hsp90aa1 silencing possibly acted as a crucial target to counteract the effects of LL37-mtDNA on viability, apoptosis, inflammation, and autophagy activation in LPS-treated RLE-6TN cells.
Collapse
Affiliation(s)
- Yunlong Zuo
- Pediatric Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 318, Renmin Middle Road, Yuexiu District, Guangzhou, Guangdong, 510120, China
| | - Run Dang
- Pediatric Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 318, Renmin Middle Road, Yuexiu District, Guangzhou, Guangdong, 510120, China
| | - Hongyan Peng
- Pediatric Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 318, Renmin Middle Road, Yuexiu District, Guangzhou, Guangdong, 510120, China
| | - Peidan Hu
- Pediatric Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 318, Renmin Middle Road, Yuexiu District, Guangzhou, Guangdong, 510120, China
| | - Yiyu Yang
- Pediatric Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 318, Renmin Middle Road, Yuexiu District, Guangzhou, Guangdong, 510120, China
| |
Collapse
|
2
|
Pahar B, Madonna S, Das A, Albanesi C, Girolomoni G. Immunomodulatory Role of the Antimicrobial LL-37 Peptide in Autoimmune Diseases and Viral Infections. Vaccines (Basel) 2020; 8:E517. [PMID: 32927756 PMCID: PMC7565865 DOI: 10.3390/vaccines8030517] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial peptides (AMPs) are produced by neutrophils, monocytes, and macrophages, as well as epithelial cells, and are an essential component of innate immunity system against infection, including several viral infections. AMPs, in particular the cathelicidin LL-37, also exert numerous immunomodulatory activities by inducing cytokine production and attracting and regulating the activity of immune cells. AMPs are scarcely expressed in normal skin, but their expression increases when skin is injured by external factors, such as trauma, inflammation, or infection. LL-37 complexed to self-DNA acts as autoantigen in psoriasis and lupus erythematosus (LE), where it also induces production of interferon by plasmocytoid dendritic cells and thus initiates a cascade of autocrine and paracrine processes, leading to a disease state. In these disorders, epidermal keratinocytes express high amounts of AMPs, which can lead to uncontrolled inflammation. Similarly, LL-37 had several favorable and unfavorable roles in virus replication and disease pathogenesis. Targeting the antiviral and immunomodulatory functions of LL-37 opens a new approach to limit virus dissemination and the progression of disease.
Collapse
Affiliation(s)
- Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70118, USA
| | - Stefania Madonna
- IDI-IRCCS, Dermopathic Institute of the Immaculate IDI, 00167 Rome, Italy; (S.M.); (C.A.)
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA;
| | - Cristina Albanesi
- IDI-IRCCS, Dermopathic Institute of the Immaculate IDI, 00167 Rome, Italy; (S.M.); (C.A.)
| | - Giampiero Girolomoni
- Section of Dermatology, Department of Medicine, University of Verona, 37126 Verona, Italy;
| |
Collapse
|
3
|
Zhou X, Yan J, Lu Q, Zhou H, Fan L. The pathogenesis of cutaneous lupus erythematosus: The aberrant distribution and function of different cell types in skin lesions. Scand J Immunol 2020; 93:e12933. [PMID: 32654170 DOI: 10.1111/sji.12933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/01/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is an autoimmune disease with a broad range of cutaneous manifestations. In skin lesions of CLE, keratinocytes primarily undergo apoptosis. Interferon-κ(IFN-κ) is belonged to type I interferons (type I IFNs) and is selectively produced by keratinocytes. Recently, keratinocytes selectively produced IFN-κ is identified to be a key to trigger type I interferon responses in CLE. Other immune cells such as plasmacytoid dendritic cells (pDCs) are identified to be relevant origin of type I interferons (type I IFNs) which are central to the development of CLE lesions and responsible for mediating Th1 cell activity. Other types of cells such as neutrophils, B cells and Th17 cells also are involved in the development of this disease. The close interaction of those cells composes a comprehensive and complicated network in CLE. In this review, we discussed the aberrant distribution and function of different cells types involved in this disease and will offer a new direction for research and therapy in the near future.
Collapse
Affiliation(s)
- Xinyu Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Jinli Yan
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital of Central South University, Changsha, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Lan Fan
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| |
Collapse
|
4
|
Heil M, Vega-Muñoz I. Nucleic Acid Sensing in Mammals and Plants: Facts and Caveats. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 345:225-285. [PMID: 30904194 DOI: 10.1016/bs.ircmb.2018.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The accumulation of nucleic acids in aberrant compartments is a signal of danger: fragments of cytosolic or extracellular self-DNA indicate cellular dysfunctions or disruption, whereas cytosolic fragments of nonself-DNA or RNA indicate infections. Therefore, nucleic acids trigger immunity in mammals and plants. In mammals, endosomal Toll-like receptors (TLRs) sense single-stranded (ss) or double-stranded (ds) RNA or CpG-rich DNA, whereas various cytosolic receptors sense dsDNA. Although a self/nonself discrimination could favor targeted immune responses, no sequence-specific sensing of nucleic acids has been reported for mammals. Specific immune responses to extracellular self-DNA versus DNA from related species were recently reported for plants, but the underlying mechanism remains unknown. The subcellular localization of mammalian receptors can favor self/nonself discrimination based on the localization of DNA fragments. However, autoantibodies and diverse damage-associated molecular patterns (DAMPs) shuttle DNA through membranes, and most of the mammalian receptors share downstream signaling elements such as stimulator of interferon genes (STING) and the master transcription regulators, nuclear factor (NF)-κB, and interferon regulatory factor 3 (IRF3). The resulting type I interferon (IFN) response stimulates innate immunity against multiple threats-from infection to physical injury or endogenous DNA damage-all of which lead to the accumulation of eDNA or cytoplasmatic dsDNA. Therefore, no or only low selective pressures might have favored a strict self/nonself discrimination in nucleic acid sensing. We conclude that the discrimination between self- and nonself-DNA is likely to be less strict-and less important-than assumed originally.
Collapse
Affiliation(s)
- Martin Heil
- Departmento de Ingeniería Genética, CINVESTAV-Irapuato, Irapuato, Guanajuato, Mexico.
| | - Isaac Vega-Muñoz
- Departmento de Ingeniería Genética, CINVESTAV-Irapuato, Irapuato, Guanajuato, Mexico
| |
Collapse
|
5
|
Lee EY, Lee MW, Wong GCL. Modulation of toll-like receptor signaling by antimicrobial peptides. Semin Cell Dev Biol 2018; 88:173-184. [PMID: 29432957 DOI: 10.1016/j.semcdb.2018.02.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 02/06/2018] [Indexed: 01/05/2023]
Abstract
Antimicrobial peptides (AMPs) are typically thought of as molecular hole punchers that directly kill pathogens by membrane permeation. However, recent work has shown that AMPs are pleiotropic, multifunctional molecules that can strongly modulate immune responses. In this review, we provide a historical overview of the immunomodulatory properties of natural and synthetic antimicrobial peptides, with a special focus on human cathelicidin and defensins. We also summarize the various mechanisms of AMP immune modulation and outline key structural rules underlying the recently-discovered phenomenon of AMP-mediated Toll-like receptor (TLR) signaling. In particular, we describe several complementary studies demonstrating how AMPs self-assemble with nucleic acids to form nanocrystalline complexes that amplify TLR-mediated inflammation. In a broader scope, we discuss how this new conceptual framework allows for the prediction of immunomodulatory behavior in AMPs, how the discovery of hidden antimicrobial activity in known immune signaling proteins can inform these predictions, and how these findings reshape our understanding of AMPs in normal host defense and autoimmune disease.
Collapse
Affiliation(s)
- Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Michelle W Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
6
|
Scholtissek B, Zahn S, Maier J, Klaeschen S, Braegelmann C, Hoelzel M, Bieber T, Barchet W, Wenzel J. Immunostimulatory Endogenous Nucleic Acids Drive the Lesional Inflammation in Cutaneous Lupus Erythematosus. J Invest Dermatol 2017; 137:1484-1492. [PMID: 28351661 DOI: 10.1016/j.jid.2017.03.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 11/17/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is a photosensitive autoimmune disease characterized by a strong type I IFN-associated inflammation. Keratinocytes are known to determine the interface dermatitis pattern in CLE by production of proinflammatory cytokines in the lower epidermis. These cytokines drive a cytotoxic anti-epithelial immune response resulting in keratinocytic cell death and release of endogenous nucleic acids. We hypothesized that these endogenous nucleic acids (RNA and DNA motifs) have the capacity to activate innate immune pathways in keratinocytes via pathogen recognition receptors. Gene expression analyses showed an excessive activation of innate immune response pathways with strong expression of IFN-regulated cytokines in CLE skin lesions. Cultured keratinocytes produce large amounts of these cytokines in response to stimulation of PRR with endogenous nucleic acids. UV stimulation enhances the immunogenicity of endogenous nucleic acids and induces CLE-like skin lesions in knockout mice lacking the cytosolic DNase TREX1. Our results provide evidence for a pathogenetic role of endogenous nucleic acids in CLE. They are released within the cytotoxic inflammation along the dermo-epidermal junction and have the capacity to drive the CLE-typical inflammation. UV irradiation supports this inflammation by generation of highly immunostimulatory DNA motifs (8-hydroxyguanosine). These findings explain the photosensitivity of patients with lupus and identify pathways of the innate immune system as targets for future therapies.
Collapse
Affiliation(s)
| | - Sabine Zahn
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Judith Maier
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Sophie Klaeschen
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | | | - Michael Hoelzel
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Thomas Bieber
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Winfried Barchet
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Joerg Wenzel
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
7
|
Pinegin BV, Pashenkov MV, Kulakov VV, Murugin VV, Zhmak MN. Complexes of DNA with the Antimicrobial Peptide LL37 Augment NK Cell Functions by Inducing Type I Interferon Production from Circulating Monocytes and Plasmacytoid Predendritic Cells. J Interferon Cytokine Res 2015; 35:850-8. [PMID: 26258404 DOI: 10.1089/jir.2014.0203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The cationic antimicrobial peptide, LL37, forms electrostatic complexes with DNA (LL37-DNA), which are potent activators of circulating plasmacytoid predendritic cells (ppDCs) and monocytes. However, the effects of LL37-DNA on other immune cell types, such as NK cells, are poorly characterized. In this study, we show that complexes of human genomic DNA (hgDNA) or synthetic double-stranded oligodeoxynucleotides with LL37 strongly enhance natural cytotoxicity of human peripheral blood mononuclear cells (PBMCs) upon an overnight culture, whereas hgDNA alone has no effect, and LL37 alone is moderately active. LL37-DNA complexes potentiate degranulation of, and interferon (IFN)-γ production by, NK cells upon subsequent encounter of K562 target cells. The complexes do not influence percentages of NK cells among PBMCs or the expression of cytotoxic proteins by NK cells. Using neutralizing anticytokine antibodies and immunomagnetic depletion of different subpopulations of PBMCs, we found that the effect of LL37-DNA on NK cells is indirect and mediated by type I IFNs produced by monocytes and, to a lesser extent, by ppDCs. We discuss possible roles of LL37-DNA complexes in the regulation of NK cell functions and in the treatment of cancer.
Collapse
Affiliation(s)
- Boris V Pinegin
- 1 Laboratory of Clinical Immunology, National Research Center-Institute of Immunology of the Federal Medical-Biological Agency , Moscow, Russia
| | - Mikhail V Pashenkov
- 1 Laboratory of Clinical Immunology, National Research Center-Institute of Immunology of the Federal Medical-Biological Agency , Moscow, Russia
| | - Vladimir V Kulakov
- 1 Laboratory of Clinical Immunology, National Research Center-Institute of Immunology of the Federal Medical-Biological Agency , Moscow, Russia
| | - Vladimir V Murugin
- 1 Laboratory of Clinical Immunology, National Research Center-Institute of Immunology of the Federal Medical-Biological Agency , Moscow, Russia
| | - Maxim N Zhmak
- 2 Laboratory of Ligand-Receptor Interactions, M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bio-Organic Chemistry of the Russian Academy of Sciences , Moscow, Russia
| |
Collapse
|