1
|
Miao Y, Ding T, Liu Y, Zhou X, Du J. The Yeast and Hypha Phases of Candida krusei Induce the Apoptosis of Bovine Mammary Epithelial Cells via Distinct Signaling Pathways. Animals (Basel) 2023; 13:3222. [PMID: 37893947 PMCID: PMC10603689 DOI: 10.3390/ani13203222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Infection with Candida spp. is a significant cause of bovine mastitis globally. We previously found that C. krusei was the main pathogen causing mycotic mastitis in dairy cows in Yinchuan, Ningxia, China. However, whether the infection of this pathogen could induce apoptosis in BMECs remained unclear. In this report, we explored the apoptosis and underlying mechanism of BMECs induced by C. krusei yeast and hypha phases using a pathogen/host cell co-culture model. Our results revealed that both the yeast and hypha phases of C. krusei could induce BMEC apoptosis; however, the yeast phase induced more cell apoptosis than the hypha phase, as assessed via electronic microscopy and flow cytometry assays. This finding was further corroborated via the measurement of the mitochondrial membrane potential (MMP) and the TUNEL test. Infection by both the yeast and hypha phases of C. krusei greatly induced the expression of proteins associated with cell death pathways and important components of toll-like receptor (TLR) signaling, including TLR2 and TLR4 receptors, as determined via a Western blotting assay. BMECs mainly underwent apoptosis after infection by the C. krusei yeast phase through a mitochondrial pathway. Meanwhile, BMEC apoptosis induced by the C. krusei hypha phase was regulated by a death ligand/receptor pathway. In addition, C. krusei-induced BMEC apoptosis was regulated by both the TLR2/ERK and JNK/ERK signaling pathways. These data suggest that the yeast phase and hypha phase of C. krusei induce BMEC apoptosis through distinct cell signaling pathways. This study represents a unique perspective on the molecular processes underlying BMEC apoptosis in response to C. krusei infection.
Collapse
Affiliation(s)
- Yuhang Miao
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| | - Tao Ding
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| | - Yang Liu
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| | - Xuezhang Zhou
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| | - Jun Du
- College of Life Science, Ningxia University, Yinchuan 750021, China; (Y.M.); (T.D.); (Y.L.)
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
2
|
Bucher K, Rodriguez-Bocanegra E, Fischer MD. Benefits and Shortcomings of Laboratory Model Systems in the Development of Genetic Therapies. Klin Monbl Augenheilkd 2022; 239:263-269. [PMID: 35316853 DOI: 10.1055/a-1757-9879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Gene therapeutic approaches promise treatment or even a cure of diseases that were previously untreatable. Retinal gene therapies tested in clinical trials comprise a wide range of different strategies, including gene supplementation therapies, in vivo gene editing, modulation of splicing mechanisms, or the suppression of gene expression. To guarantee efficient transfer of genetic material into the respective target cells while avoiding major adverse effects, the development of genetic therapies requires appropriate in vitro model systems that allow tests of efficacy and safety of the gene therapeutic approach. In this review, we introduce various in vitro models of different levels of complexity used in the development of genetic therapies and discuss their respective benefits and shortcomings using the example of adeno-associated virus-based retinal gene therapy.
Collapse
Affiliation(s)
- Kirsten Bucher
- University Eye Hospital, University Hospital Tübingen Clinic of Ophthalmology, Tubingen, Germany.,Institute for Ophthalmic Research, University Hospital Tübingen Clinic of Ophthalmology, Tubingen, Germany
| | | | - M Dominik Fischer
- University Eye Hospital, University Hospital Tübingen Clinic of Ophthalmology, Tubingen, Germany.,Institute for Ophthalmic Research, University Hospital Tübingen Clinic of Ophthalmology, Tubingen, Germany.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom of Great Britain and Northern Ireland.,Department of Clinical Neurosciences, University of Oxford Nuffield Laboratory of Ophthalmology, Oxford, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
3
|
Kawaguchi H, Sakamoto T, Koya T, Togi M, Date I, Watanabe A, Yoshida K, Kato T, Nakamura Y, Ishigaki Y, Shimodaira S. Quality Verification with a Cluster-Controlled Manufacturing System to Generate Monocyte-Derived Dendritic Cells. Vaccines (Basel) 2021; 9:vaccines9050533. [PMID: 34065520 PMCID: PMC8160655 DOI: 10.3390/vaccines9050533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022] Open
Abstract
Dendritic cell (DC) vaccines for cancer immunotherapy have been actively developed to improve clinical efficacy. In our previous report, monocyte−derived DCs induced by interleukin (IL)−4 with a low−adherence dish (low−adherent IL-4−DCs: la−IL-4−DCs) improved the yield and viability, as well as relatively prolonged survival in vitro, compared to IL-4−DCs developed using an adherent culture protocol. However, la−IL-4−DCs exhibit remarkable cluster formation and display heterogeneous immature phenotypes. Therefore, cluster formation in la−IL-4−DCs needs to be optimized for the clinical development of DC vaccines. In this study, we examined the effects of cluster control in the generation of mature IL-4−DCs, using cell culture vessels and measuring spheroid formation, survival, cytokine secretion, and gene expression of IL-4−DCs. Mature IL-4−DCs in cell culture vessels (cluster−controlled IL-4−DCs: cc−IL-4−DCs) displayed increased levels of CD80, CD86, and CD40 compared with that of la−IL-4−DCs. cc−IL-4−DCs induced antigen−specific cytotoxic T lymphocytes (CTLs) with a human leukocyte antigen (HLA)−restricted melanoma antigen recognized by T cells 1 (MART−1) peptide. Additionally, cc−IL-4−DCs produced higher levels of IFN−γ, possessing the CTL induction. Furthermore, DNA microarrays revealed the upregulation of BCL2A1, a pro−survival gene. According to these findings, the cc−IL-4−DCs are useful for generating homogeneous and functional IL-4−DCs that would be expected to promote long−lasting effects in DC vaccines.
Collapse
Affiliation(s)
- Haruhiko Kawaguchi
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
| | - Takuya Sakamoto
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
| | - Terutsugu Koya
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
| | - Misa Togi
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
| | - Ippei Date
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
| | - Asuka Watanabe
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
| | - Kenichi Yoshida
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
| | - Tomohisa Kato
- Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (T.K.J.); (Y.N.); (Y.I.)
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (T.K.J.); (Y.N.); (Y.I.)
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (T.K.J.); (Y.N.); (Y.I.)
| | - Shigetaka Shimodaira
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
- Correspondence: ; Tel.: +81-76-218-8304
| |
Collapse
|
4
|
Koya T, Date I, Kawaguchi H, Watanabe A, Sakamoto T, Togi M, Kato T, Yoshida K, Kojima S, Yanagisawa R, Koido S, Sugiyama H, Shimodaira S. Dendritic Cells Pre-Pulsed with Wilms' Tumor 1 in Optimized Culture for Cancer Vaccination. Pharmaceutics 2020; 12:pharmaceutics12040305. [PMID: 32231023 PMCID: PMC7238244 DOI: 10.3390/pharmaceutics12040305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022] Open
Abstract
With recent advances in cancer vaccination therapy targeting tumor-associated antigens (TAAs), dendritic cells (DCs) are considered to play a central role as a cell-based drug delivery system in the bioactive immune environment. Ex vivo generation of monocyte-derived DCs has been conventionally applied in adherent manufacturing systems with separate loading of TAAs before clinical use. We developed DCs pre-pulsed with Wilms’ tumor (WT1) peptides in low-adhesion culture maturation (WT1-DCs). Quality tests (viability, phenotype, and functions) of WT1-DCs were performed for process validation, and findings were compared with those for conventional DCs (cDCs). In comparative analyses, WT1-DCs showed an increase in viability and recovery of the DC/monocyte ratio, displaying lower levels of IL-10 (an immune suppressive cytokine) and a similar antigen-presenting ability in an in vitro cytotoxic T lymphocytes (CTLs) assay with cytomegalovirus, despite lower levels of CD80 and PD-L2. A clinical study revealed that WT1-specific CTLs (WT1-CTLs) were detected upon using the WT1-DCs vaccine in patients with cancer. A DC vaccine containing TAAs produced under an optimized manufacturing protocol is a potentially promising cell-based drug delivery system to induce acquired immunity.
Collapse
Affiliation(s)
- Terutsugu Koya
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Japan; (T.K.); (I.D.); (H.K.); (A.W.); (T.S.); (M.T.); (T.K.J.)
- Center for Regenerative medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku 920-0293, Japan;
| | - Ippei Date
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Japan; (T.K.); (I.D.); (H.K.); (A.W.); (T.S.); (M.T.); (T.K.J.)
| | - Haruhiko Kawaguchi
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Japan; (T.K.); (I.D.); (H.K.); (A.W.); (T.S.); (M.T.); (T.K.J.)
| | - Asuka Watanabe
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Japan; (T.K.); (I.D.); (H.K.); (A.W.); (T.S.); (M.T.); (T.K.J.)
| | - Takuya Sakamoto
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Japan; (T.K.); (I.D.); (H.K.); (A.W.); (T.S.); (M.T.); (T.K.J.)
- Center for Regenerative medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku 920-0293, Japan;
| | - Misa Togi
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Japan; (T.K.); (I.D.); (H.K.); (A.W.); (T.S.); (M.T.); (T.K.J.)
- Center for Regenerative medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku 920-0293, Japan;
| | - Tomohisa Kato
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Japan; (T.K.); (I.D.); (H.K.); (A.W.); (T.S.); (M.T.); (T.K.J.)
| | - Kenichi Yoshida
- Center for Regenerative medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku 920-0293, Japan;
| | - Shunsuke Kojima
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto, Nagano 390-8621, Japan; (S.K.); (R.Y.)
| | - Ryu Yanagisawa
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto, Nagano 390-8621, Japan; (S.K.); (R.Y.)
| | - Shigeo Koido
- Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Kashiwa, Chiba 277-8567, Japan;
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan;
| | - Shigetaka Shimodaira
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Japan; (T.K.); (I.D.); (H.K.); (A.W.); (T.S.); (M.T.); (T.K.J.)
- Center for Regenerative medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku 920-0293, Japan;
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto, Nagano 390-8621, Japan; (S.K.); (R.Y.)
- Correspondence: ; Tel.: +81-76-218-8304
| |
Collapse
|
5
|
Sauter A, Yi DH, Li Y, Roersma S, Appel S. The Culture Dish Surface Influences the Phenotype and Cytokine Production of Human Monocyte-Derived Dendritic Cells. Front Immunol 2019; 10:2352. [PMID: 31632415 PMCID: PMC6783514 DOI: 10.3389/fimmu.2019.02352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Monocyte-derived dendritic cells (moDC) are an important scientific and clinical source of functional dendritic cells (DC). However, the optimization of the generation process has to date mainly been limited to the variation of soluble factors. In this study, we investigated the impact of the cell culture dish surface on phenotype and cytokine profile. We compared a standard cell culture dish to a non-adherent culture dish for two immunogenic maturation conditions, two tolerogenic conditions, and an unstimulated control. Phenotype, cytokine profile and T cell stimulatory capacity were determined after a 3-day culture. Light microscopy revealed an increase in homotypic cluster formation correlated with the use of non-adherent surfaces, which could be reduced by using blocking antibodies against CD18. All surface markers analyzed showed moderate to strong differences depending on the culture dish surface, including significantly decreased expression of key maturation markers such as CD80, CD86, and CCR7 as well as PD-L1 on cells stimulated with the Jonuleit cytokine cocktail cultured on a non-adherent surface. Significant differences in the secretion of many cytokines were observed, especially for cells stimulated with LPS, with over 10-fold decreased secretion of IL-10, IL12-p40, and TNF-α from the cells cultured on the non-adherent surface. All immunogenic moDC populations showed similar capacity to induce antigen-specific T cells. These results provide evidence that the DC phenotype depends on the surface used during moDC generation. This has important implications for the optimization of DC-based immunotherapy development and underlines that the local surrounding can interfere with the final DC population beyond the soluble factors.
Collapse
Affiliation(s)
| | - Dag Heiro Yi
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Yayan Li
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Sabine Roersma
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Silke Appel
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Wołkow PP, Gębska A, Korbut R. In vitro maturation of monocyte-derived dendritic cells results in two populations of cells with different surface marker expression, independently of applied concentration of interleukin-4. Int Immunopharmacol 2018; 57:165-171. [DOI: 10.1016/j.intimp.2018.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 11/30/2022]
|
7
|
Xie N, Zhang LC, Fu BM, Tang B, Li CM, Zhao Y, Hu MD, Zhang J. Effect of different concentrations of GM-CSF on biological behavior of dendritic cells cultured in vitro. Shijie Huaren Xiaohua Zazhi 2016; 24:2038-2044. [DOI: 10.11569/wcjd.v24.i13.2038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of granulocyte-macrophage colony stimulating factor (GM-CSF) with interleukin (IL)-4 on the morphology, purity, and number of mouse bone marrow-derived dendritic-like cells, in order to explore the optimal conditions for culturing dendritic cells.
METHODS: Mouse bone marrow mononuclear cells were dissociated and purified, and then different concentrations of GM-CSF with IL-4 were added. The morphology and phenotype of dendritic-like cells were assessed, and their ability to activate allogeneic lymphocytes was measured.
RESULTS: In a certain concentration range, with the increase of the concentration of GM-CSF, the number, purity and maturity of mouse bone marrow-derived dendritic cells increased, but high concentrations of GM-CSF had an inhibitory effect. The optimal GM-CSF concentration range was 10-20 ng/mL.
CONCLUSION: Optimal concentrations of GM-CSF and IL-4 can be combined to enhance the ability to induce murine bone marrow mononuclear cells to differentiate into dendritic cells. Rational use of these two factors can increase the number, purity and maturity of dendritic cells.
Collapse
|