1
|
Mulser L, Moreau D. Effect of Acute Cardiovascular Exercise on Cerebral Blood Flow: A Systematic Review. Brain Res 2023; 1809:148355. [PMID: 37003561 DOI: 10.1016/j.brainres.2023.148355] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
A single bout of cardiovascular exercise can have a cascade of physiological effects, including increased blood flow to the brain. This effect has been documented across multiple modalities, yet studies have reported mixed findings. Here, we systematically review evidence for the acute effect of cardiovascular exercise on cerebral blood flow across a range of neuroimaging techniques and exercise characteristics. Based on 52 studies and a combined sample size of 1,174 individuals, our results indicate that the acute effect of cardiovascular exercise on cerebral blood flow generally follows an inverted U-shaped relationship, whereby blood flow increases early on but eventually decreases as exercise continues. However, we also find that this effect is not uniform across studies, instead varying across a number of key variables including exercise characteristics, brain regions, and neuroimaging modalities. As the most comprehensive synthesis on the topic to date, this systematic review sheds light on the determinants of exercise-induced change in cerebral blood flow, a necessary step toward personalized interventions targeting brain health across a range of populations.
Collapse
Affiliation(s)
- Lisa Mulser
- School of Psychology The University of Auckland
| | - David Moreau
- School of Psychology and Centre for Brain Research The University of Auckland.
| |
Collapse
|
2
|
The benefits of regular aerobic exercise training on cerebrovascular function and cognition in older adults. Eur J Appl Physiol 2023; 123:1323-1342. [PMID: 36801969 PMCID: PMC9938957 DOI: 10.1007/s00421-023-05154-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
We compared the differences in cerebrovascular and cognitive function between 13 aerobic exercise trained, older adults and 13 age-, height- and sex-matched sedentary, untrained controls. We determined whether other measures accounted for differences in cerebrovascular and cognitive function between these groups and examined the associations between these functions. Participants undertook anthropometric, mood, cardiovascular, exercise performance, strength, cerebrovascular, and cognitive measurements, and a blood collection. Transcranial Doppler ultrasonography determined cerebrovascular responsiveness (CVR) to hypercapnia and cognitive stimuli. The trained group had a higher CVR to hypercapnia (80.3 ± 7.2 vs 35.1 ± 6.7%, P < 0.001), CVR to cognitive stimuli (30.1 ± 2.9 vs 17.8 ± 1.4%, P = 0.001) and total composite cognitive score (117 ± 2 vs 98 ± 4, P < 0.001) than the controls. These parameters no longer remained statistically different between the groups following adjustments for covariates. There were positive correlations between the total composite cognitive score and CVR to hypercapnia (r = 0.474, P = 0.014) and CVR to cognitive stimuli (r = 0.685, P < 0.001). We observed a relationship between cerebrovascular and cognitive function in older adults and an interaction between regular lifelong aerobic exercise training and cardiometabolic factors that may directly influence these functions.
Collapse
|
3
|
Campbell AK, Beaumont AJ, Hayes L, Herbert P, Gardner D, Ritchie L, Sculthorpe N. Habitual exercise influences carotid artery strain and strain rate, but not cognitive function in healthy middle-aged females. Eur J Appl Physiol 2023; 123:1051-1066. [PMID: 36637510 PMCID: PMC10119229 DOI: 10.1007/s00421-022-05123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023]
Abstract
PURPOSE Aging females are at risk of declining vascular and cognitive function. Exercise can augment both factors independently; however, the influence of exercise on their interdependence is less clearly understood. Ultrasound speckle tracking is a sensitive novel measure of arterial aging but has not previously been used in middle-aged females. We aimed to elucidate the potential interactions between vascular and cognitive variables in active aging females. METHODS Twelve active (56 ± 5 years; [Formula: see text]: 34.5 ± 6.1 ml.kg.min-1) and 13 inactive (57 ± 4 years; 22.8 ± 2.6 ml.kg.min-1) healthy middle-aged females were included. Ultrasound speckle tracking assessed short-axis common carotid artery (CCA) compliance via peak circumferential strain (PCS) and strain rate (PSR) at rest, during, and after 3-min isometric handgrip exercise. Flow-mediated dilation (FMD) of the brachial artery was assessed using ultrasound. Cognitive function was measured using Verbal Fluency, Trail Making, Stroop, and Digit Span tests. RESULTS PCS (P = 0.003) and PSR (P = 0.004), were higher in the active cohort. FMD was similar between groups (P > 0.05). Minimal differences in cognitive function existed between groups, although the inactive group performed better in one test of animal Verbal Fluency (P < 0.01). No associations were observed between PCS, PSR, or FMD with cognitive function (all P > 0.05). CONCLUSION This is the first study to assess PCS and PSR in middle-aged females and demonstrates that active middle-aged females exhibit a superior carotid artery profile compared to their inactive counterparts. However, PCS and PSR of the carotid artery may not be linked with cognitive function in middle-aged females.
Collapse
Affiliation(s)
- Amy K Campbell
- School of Science, Technology and Health, York St. John University, New York, UK
| | - Alexander J Beaumont
- School of Science, Technology and Health, York St. John University, New York, UK
| | - Lawrence Hayes
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, UK
| | - Peter Herbert
- School of Sport, Health and Outdoor Education, Trinity St. David, University of Wales, Carmarthen, UK
| | - David Gardner
- School of Sport, Health and Outdoor Education, Trinity St. David, University of Wales, Carmarthen, UK
| | - Louise Ritchie
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, UK
| | - Nicholas Sculthorpe
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, UK.
| |
Collapse
|
4
|
Barnes JN, Burns JM, Bamman MM, Billinger SA, Bodine SC, Booth FW, Brassard P, Clemons TA, Fadel PJ, Geiger PC, Gujral S, Haus JM, Kanoski SE, Miller BF, Morris JK, O’Connell KM, Poole DC, Sandoval DA, Smith JC, Swerdlow RH, Whitehead SN, Vidoni ED, van Praag H. Proceedings from the Albert Charitable Trust Inaugural Workshop on 'Understanding the Acute Effects of Exercise on the Brain'. Brain Plast 2022; 8:153-168. [PMID: 36721393 PMCID: PMC9837736 DOI: 10.3233/bpl-220146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
An inaugural workshop supported by "The Leo and Anne Albert Charitable Trust," was held October 4-7, 2019 in Scottsdale, Arizona, to focus on the effects of exercise on the brain and to discuss how physical activity may prevent or delay the onset of aging-related neurodegenerative conditions. The Scientific Program Committee (led by Dr. Jeff Burns) assembled translational, clinical, and basic scientists who research various aspects of the effects of exercise on the body and brain, with the overall goal of gaining a better understanding as to how to delay or prevent neurodegenerative diseases. In particular, research topics included the links between cardiorespiratory fitness, the cerebrovasculature, energy metabolism, peripheral organs, and cognitive function, which are all highly relevant to understanding the effects of acute and chronic exercise on the brain. The Albert Trust workshop participants addressed these and related topics, as well as how other lifestyle interventions, such as diet, affect age-related cognitive decline associated with Alzheimer's and other neurodegenerative diseases. This report provides a synopsis of the presentations and discussions by the participants, and a delineation of the next steps towards advancing our understanding of the effects of exercise on the aging brain.
Collapse
Affiliation(s)
- Jill N. Barnes
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeffrey M. Burns
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, USA
| | - Marcas M. Bamman
- UAB Center for Exercise Medicine, University of Alabama, Birmingham, AL, USA
| | | | - Sue C. Bodine
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Frank W. Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, and Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec city, QC, Canada
| | - Tameka A. Clemons
- Department of Professional and Medical Education, Meharry Medical College, Nashville, TN, USA
| | - Paul J. Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, USA
| | - Paige C. Geiger
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Swathi Gujral
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Jacob M. Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Scott E. Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsrife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Benjamin F. Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jill K. Morris
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, USA
| | | | - David C. Poole
- Departments of Kinesiology, Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | | | - J. Carson Smith
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | | | - Shawn N. Whitehead
- Vulnerable Brain Laboratory, Department Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, N6A 5C1, Canada
| | - Eric D. Vidoni
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, USA
| | - Henriette van Praag
- Stiles-Nicholson Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter FL, USA
| |
Collapse
|
5
|
Thomas HJ, Marsh CE, Naylor LH, Ainslie PN, Smith KJ, Carter HH, Green DJ. Resistance, but not endurance exercise training, induces changes in cerebrovascular function in healthy young subjects. Am J Physiol Heart Circ Physiol 2021; 321:H881-H892. [PMID: 34559581 DOI: 10.1152/ajpheart.00230.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is generally considered that regular exercise maintains brain health and reduces the risk of cerebrovascular diseases such as stroke and dementia. Since the benefits of different "types" of exercise are unclear, we sought to compare the impacts of endurance and resistance training on cerebrovascular function. In a randomized and crossover design, 68 young healthy adults were recruited to participate in 3 mo of resistance and endurance training. Cerebral hemodynamics through the internal carotid, vertebral, middle and posterior cerebral arteries were measured using Duplex ultrasound and transcranial Doppler at rest and during acute exercise, dynamic autoregulation, and cerebrovascular reactivity (to hypercapnia). Following resistance, but not endurance training, middle cerebral artery velocity and pulsatility index significantly decreased (P < 0.01 and P = 0.02, respectively), whereas mean arterial pressure and indices of cerebrovascular resistance in the middle, posterior, and internal carotid arteries all increased (P < 0.05). Cerebrovascular resistance indices in response to acute exercise and hypercapnia also significantly increased following resistance (P = 0.02), but not endurance training. Our findings, which were consistent across multiple domains of cerebrovascular function, suggest that episodic increases in arterial pressure associated with resistance training may increase cerebrovascular resistance. The implications of long-term resistance training on brain health require future study, especially in populations with pre-existing cerebral hypoperfusion and/or hypotension.NEW & NOTEWORTHY Three months of endurance exercise did not elicit adaptation in any domain of cerebrovascular function in young healthy inactive volunteers. However, resistance training induced decreased pulsatility in the extracranial arteries and increased indices of cerebrovascular resistance in cerebral arteries. This increase in cerebrovascular resistance, apparent at baseline and in response to both hypercapnia and acute exercise, may reflect a protective response in the face of changes in arterial pressure during resistance exercise.
Collapse
Affiliation(s)
- Hannah J Thomas
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Channa E Marsh
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Louise H Naylor
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Kurt J Smith
- Integrative Physiology Laboratory, Department of Kinesiology and Nutrition, University of Illinois, Chicago, Illinois.,Department of Exercise Science, Physical and Health Education, Faculty of Education, University of Victoria, Victoria, British Columbia, Canada
| | - Howard H Carter
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Daniel J Green
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
6
|
Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev 2021; 101:1487-1559. [PMID: 33769101 PMCID: PMC8576366 DOI: 10.1152/physrev.00022.2020] [Citation(s) in RCA: 356] [Impact Index Per Article: 118.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Brain function critically depends on a close matching between metabolic demands, appropriate delivery of oxygen and nutrients, and removal of cellular waste. This matching requires continuous regulation of cerebral blood flow (CBF), which can be categorized into four broad topics: 1) autoregulation, which describes the response of the cerebrovasculature to changes in perfusion pressure; 2) vascular reactivity to vasoactive stimuli [including carbon dioxide (CO2)]; 3) neurovascular coupling (NVC), i.e., the CBF response to local changes in neural activity (often standardized cognitive stimuli in humans); and 4) endothelium-dependent responses. This review focuses primarily on autoregulation and its clinical implications. To place autoregulation in a more precise context, and to better understand integrated approaches in the cerebral circulation, we also briefly address reactivity to CO2 and NVC. In addition to our focus on effects of perfusion pressure (or blood pressure), we describe the impact of select stimuli on regulation of CBF (i.e., arterial blood gases, cerebral metabolism, neural mechanisms, and specific vascular cells), the interrelationships between these stimuli, and implications for regulation of CBF at the level of large arteries and the microcirculation. We review clinical implications of autoregulation in aging, hypertension, stroke, mild cognitive impairment, anesthesia, and dementias. Finally, we discuss autoregulation in the context of common daily physiological challenges, including changes in posture (e.g., orthostatic hypotension, syncope) and physical activity.
Collapse
Affiliation(s)
- Jurgen A H R Claassen
- Department of Geriatrics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- >National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Frank M Faraci
- Departments of Internal Medicine, Neuroscience, and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
7
|
Abstract
UNLABELLED Exercise is associated with higher cognitive function and is a promising intervention to reduce the risk of dementia. With advancing age, there are changes in the vasculature that have important clinical implications for brain health and cognition. Primary aging and vascular risk factors are associated with increases in arterial stiffness and pulse pressure, and reductions in peripheral vascular function. OBJECTIVE The purpose is to discuss the epidemiological, observational, and mechanistic evidence regarding the link between age-related changes in vascular health and brain health. METHODS We performed a literature review and integrated with our published data. RESULTS Epidemiological evidence suggests a link between age-related increases in arterial stiffness and lower cognitive function, which may be mediated by cerebral vascular function, including cerebral vasoreactivity and cerebral pulsatility. Age-associated impairments in central arterial stiffness and peripheral vascular function have been attenuated or reversed through lifestyle behaviors such as exercise. Greater volumes of habitual exercise and higher cardiorespiratory fitness are associated with beneficial effects on both peripheral vascular health and cognition. Yet, the extent to which exercise directly influences cerebral vascular function and brain health, as well as the associated mechanisms remains unclear. CONCLUSION Although there is evidence that exercise positively impacts cerebral vascular function, more research is necessary in humans to optimize experimental protocols and address methodological limitations and physiological considerations. Understanding the impact of exercise on cerebral vascular function is important for understanding the association between exercise and brain health and may inform future intervention studies that seek to improve cognition.
Collapse
|
8
|
Corkery AT, Howery AJ, Miller KB, Barnes JN. Influence of habitual aerobic and resistance exercise on cerebrovascular reactivity in healthy young adults. J Appl Physiol (1985) 2021; 130:1928-1935. [PMID: 33886384 DOI: 10.1152/japplphysiol.00823.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diminished cerebrovascular function is associated with reduced cognitive ability. Habitual exercise may maintain or improve cerebrovascular function; however, limited information exists regarding the optimal exercise prescription for cerebrovascular health. Although aerobic exercise is associated with improved systemic vascular function, the influence of resistance exercise on vascular health is unclear. Therefore, the purpose of this study was to examine the influence of habitual exercise training on cerebrovascular function in healthy young adults. We evaluated 13 untrained (age = 27 ± 5 yr; 11 men, 2 women), 13 aerobic-trained (age = 28 ± 5 yr; 10 men, 3 women), and 13 resistance-trained (age = 24 ± 4 yr; 11 men, 2 women) adults. Middle cerebral artery velocity (MCAv), mean arterial pressure (MAP), and end-tidal carbon dioxide were continuously measured at rest and in response to hypercapnia. At rest, there were no differences between groups for MCAv, however, resistance-trained adults had greater cerebrovascular conductance compared with aerobic-trained adults (0.79 ± 0.26 cm/s/mmHg vs. 0.56 ± 0.17 cm/s/mmHg; P < 0.05). In response to hypercapnia, cerebrovascular reactivity and MAP reactivity were not different between groups. There was no association between aerobic fitness or measures of exercise volume and any variable of cerebrovascular function in the combined or individual groups. Our results suggest that the mode of exercise training does not impact cerebrovascular reactivity in healthy young adults, however, it may influence resting cerebral hemodynamics. Future research could examine the influence of habitual exercise training on cerebrovascular function with aging.NEW & NOTEWORTHY Habitual exercise may influence cerebral hemodynamics, as it affects other variables of vascular health in this population. We report that habitual exercise training does not influence cerebrovascular reactivity in young adults, as there were no significant differences between aerobic-trained, resistance-trained, and untrained individuals. Despite this finding, the mode of habitual exercise training had a moderate influence on resting cerebral hemodynamics such that resistance-trained adults had greater cerebrovascular conductance compared with aerobic-trained adults.
Collapse
Affiliation(s)
- Adam T Corkery
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anna J Howery
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kathleen B Miller
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jill N Barnes
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin.,Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
9
|
Green DJ, Smith K, Maslen BA, Cox KL, Lautenschlager NT, Pestell CF, Naylor LH, Ainslie PN, Carter HH. The Impact of 6-Month Land versus Water Walking on Cerebrovascular Function in the Aging Brain. Med Sci Sports Exerc 2021; 53:2093-2100. [PMID: 33867500 DOI: 10.1249/mss.0000000000002685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION To examine the hypothesis that exercise training induces adaptation in cerebrovascular function, we recruited 63 older adults (62 ± 7 yr, 46 females) to undertake 24 wk of either land walking or water walking, or participate in a nonexercise control group. This is the first multi-interventional study to perform a comprehensive assessment of cerebrovascular function in response to longer term (6-month) training interventions, including water-based exercise, in older healthy individuals. METHODS Intracranial blood flow velocities (middle cerebral artery (MCAv) and posterior cerebral artery) were assessed at rest and in response to neurovascular coupling, hypercapnic reactivity, and cerebral autoregulation. RESULTS We observed no change in resting MCAv in response to either training intervention (pre vs post, mean (95% confidence interval), land walking: 65 (59-70) to 63 (57-68) cm·s-1, P = 0.33; water walking: 63 (58-69) to 61 (55-67) cm·s-1, P = 0.92) compared with controls and no change in neurovascular coupling (land walking: P = 0.18, water walking: P = 0.17). There was a significant but modest improvement in autoregulatory normalized gain after the intervention in the water-walking compared with the land-walking group (P = 0.03). Hypercapnic MCAv reactivity was not different based on exercise group (land: P = 087, water: P = 0.83); however, when data were pooled from the exercise groups, increases in fitness were correlated with decreases in hypercapnic reactivity (r2 = 0.25, P = 0.003). CONCLUSIONS Although exercise was not associated with systematic changes across multiple domains of cerebrovascular function, our data indicate that exercise may induce modest changes in autoregulation and CO2 reactivity. These findings should encourage further studies of the longer-term implications of exercise training on cerebrovascular health.
Collapse
Affiliation(s)
- Daniel J Green
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, WA, AUSTRALIA
| | - Kurt Smith
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, WA, AUSTRALIA
| | - Barbara A Maslen
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, WA, AUSTRALIA
| | | | | | - Carmela F Pestell
- School of Psychological Science, University of Western Australia, Perth, WA, AUSTRALIA
| | - Louise H Naylor
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, WA, AUSTRALIA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, CANADA
| | - Howard H Carter
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, WA, AUSTRALIA
| |
Collapse
|
10
|
Shoemaker LN, Wilson LC, Lucas SJE, Machado L, Walker RJ, Cotter JD. Indomethacin markedly blunts cerebral perfusion and reactivity, with little cognitive consequence in healthy young and older adults. J Physiol 2020; 599:1097-1113. [DOI: 10.1113/jp280118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- L. N. Shoemaker
- School of Physical Education, Sport and Exercise Sciences University of Otago Dunedin New Zealand
| | - L. C. Wilson
- Department of Medicine Otago Medical School ‐ Dunedin Campus University of Otago Dunedin New Zealand
| | - S. J. E. Lucas
- Department of Physiology University of Otago Dunedin New Zealand
- School of Sport, Exercise and Rehabilitation Sciences College of Life and Environmental Sciences University of Birmingham Birmingham UK
- Centre for Human Brain Health University of Birmingham Birmingham UK
| | - L. Machado
- Department of Psychology University of Otago Dunedin New Zealand
| | - R. J. Walker
- Department of Medicine Otago Medical School ‐ Dunedin Campus University of Otago Dunedin New Zealand
| | - J. D. Cotter
- School of Physical Education, Sport and Exercise Sciences University of Otago Dunedin New Zealand
| |
Collapse
|
11
|
Barnes JN, Charkoudian N. Integrative cardiovascular control in women: Regulation of blood pressure, body temperature, and cerebrovascular responsiveness. FASEB J 2020; 35:e21143. [PMID: 33151577 DOI: 10.1096/fj.202001387r] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Over the past several decades, it has become increasingly clear that women have distinct cardiovascular profiles compared to men. In this review, our goal is to provide an overview of the literature regarding the influences of female sex and reproductive hormones (primarily estradiol) on mechanisms of cardiovascular control relevant to regulation of blood pressure, body temperature, and cerebral blood flow. Young women tend to have lower resting blood pressure compared with men. This sex difference is reversed at menopause, when women develop higher sympathetic nerve activity and the risk of systemic hypertension increases sharply as postmenopausal women age. Vascular responses to thermal stress, including cutaneous vasodilation and vasoconstriction, are also affected by reproductive hormones in women, where estradiol appears to promote vasodilation and heat dissipation. The influence of reproductive hormones on cerebral blood flow and sex differences in the ability of the cerebral vasculature to increase its blood flow (cerebrovascular reactivity) are relatively new areas of investigation. Sex and hormonal influences on integrative blood flow regulation have further implications during challenges to physiological homeostasis, including exercise. We propose that increasing awareness of these sex-specific mechanisms is important for optimizing health care and promotion of wellness in women across the life span.
Collapse
Affiliation(s)
- Jill N Barnes
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nisha Charkoudian
- US Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|
12
|
Maxa KM, Hoffman C, Rivera-Rivera LA, Motovylyak A, Turski PA, Mitchell CKC, Ma Y, Berman SE, Gallagher CL, Bendlin BB, Asthana S, Sager MA, Hermann BP, Johnson SC, Cook DB, Wieben O, Okonkwo OC. Cardiorespiratory Fitness Associates with Cerebral Vessel Pulsatility in a Cohort Enriched with Risk for Alzheimer's Disease. Brain Plast 2020; 5:175-184. [PMID: 33282680 PMCID: PMC7685671 DOI: 10.3233/bpl-190096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND There is increasing evidence that vascular disease risk factors contribute to evolution of the dementia syndrome of Alzheimer's disease (AD). One important measure of cerebrovascular health is pulsatility index (PI) which is thought to represent distal vascular resistance, and has previously been reported to be elevated in AD clinical syndrome. Physical inactivity has emerged as an independent risk factor for cardiovascular disease. OBJECTIVE This study aims to examine the relationship between a measure of habitual physical activity, cardiorespiratory fitness (CRF), and PI in the large cerebral vessels. METHODS Ninety-two cognitively-healthy adults (age = 65.34±5.95, 72% female) enrolled in the Wisconsin Registry for Alzheimer's Prevention participated in this study. Participants underwent 4D flow brain MRI to measure PI in the internal carotid artery (ICA), basilar artery, middle cerebral artery (MCA), and superior sagittal sinus. Participants also completed a self-report physical activity questionnaire. CRF was calculated using a previously-validated equation that incorporates sex, age, body-mass index, resting heart rate, and self-reported physical activity. A series of linear regression models adjusted for age, sex, APOE4 status, and 10-year atherosclerotic cardiovascular disease risk were used to analyze the relationship between CRF and PI. RESULTS Inverse associations were found between CRF and mean PI in the inferior ICA (p = .001), superior ICA (p = .035), and basilar artery (p = .040). No other cerebral vessels revealed significant associations between CRF and PI (p≥.228). CONCLUSIONS Higher CRF was associated with lower PI in several large cerebral vessels. Since increased pulsatility has been associated with poor brain health and reported in persons with AD, this suggests that aerobic fitness might provide protection against cerebrovascular changes related to the progression of AD clinical syndrome.
Collapse
Affiliation(s)
- Kaitlin M. Maxa
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Carson Hoffman
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Leonardo A. Rivera-Rivera
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alice Motovylyak
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Patrick A. Turski
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Carol K. C. Mitchell
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Yue Ma
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sara E. Berman
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- UW-Madison Medical Scientist and Neuroscience Training Programs, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Catherine L. Gallagher
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial VA Hospital, Madison, WI, USA
| | - Barbara B. Bendlin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial VA Hospital, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial VA Hospital, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mark A. Sager
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bruce P. Hermann
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial VA Hospital, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial VA Hospital, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Dane B. Cook
- Department of Kinesiology, University of Wisconsin School of Education, Madison, WI, USA
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ozioma C. Okonkwo
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial VA Hospital, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
13
|
Intzandt B, Sabra D, Foster C, Desjardins-Crépeau L, Hoge RD, Steele CJ, Bherer L, Gauthier CJ. Higher cardiovascular fitness level is associated with lower cerebrovascular reactivity and perfusion in healthy older adults. J Cereb Blood Flow Metab 2020; 40:1468-1481. [PMID: 31342831 PMCID: PMC7308519 DOI: 10.1177/0271678x19862873] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/02/2019] [Indexed: 01/01/2023]
Abstract
Aging is accompanied by vascular and structural changes in the brain, which include decreased grey matter volume (GMV), cerebral blood flow (CBF), and cerebrovascular reactivity (CVR). Enhanced fitness in aging has been related to preservation of GMV and CBF, and in some cases CVR, although there are contradictory relationships reported between CVR and fitness. To gain a better understanding of the complex interplay between fitness and GMV, CBF and CVR, the present study assessed these factors concurrently. Data from 50 participants, aged 55 to 72, were used to derive GMV, CBF, CVR and VO2peak. Results revealed that lower CVR was associated with higher VO2peak throughout large areas of the cerebral cortex. Within these regions lower fitness was associated with higher CBF and a faster hemodynamic response to hypercapnia. Overall, our results indicate that the relationships between age, fitness, cerebral health and cerebral hemodynamics are complex, likely involving changes in chemosensitivity and autoregulation in addition to changes in arterial stiffness. Future studies should collect other physiological outcomes in parallel with quantitative imaging, such as measures of chemosensitivity and autoregulation, to further understand the intricate effects of fitness on the aging brain, and how this may bias quantitative measures of cerebral health.
Collapse
Affiliation(s)
- Brittany Intzandt
- INDI Department, Concordia University,
Montreal, Canada
- PERFORM Centre, Concordia University,
Montreal, Canada
- Centre de Recherche de l'Institut
Universitaire de Gériatrie de Montréal, Montreal, Canada
| | - Dalia Sabra
- Départment de Médecine, Université de
Montréal, Canada
| | - Catherine Foster
- PERFORM Centre, Concordia University,
Montreal, Canada
- Physics Department, Concordia
University, Montreal, Canada
| | - Laurence Desjardins-Crépeau
- Centre de Recherche de l'Institut
Universitaire de Gériatrie de Montréal, Montreal, Canada
- Centre de Recherche de l'Institut de
Cardiologie de Montréal, Montréal, Canada
| | - Richard D Hoge
- Department of Neurology and
Neurosurgery, McGill University, Canada
| | - Christopher J Steele
- Department of Psychology, Concordia
University, Montreal, Canada
- Department of Neurology, Max Planck
Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Louis Bherer
- PERFORM Centre, Concordia University,
Montreal, Canada
- Centre de Recherche de l'Institut
Universitaire de Gériatrie de Montréal, Montreal, Canada
- Départment de Médecine, Université de
Montréal, Canada
- Centre de Recherche de l'Institut de
Cardiologie de Montréal, Montréal, Canada
| | - Claudine J Gauthier
- PERFORM Centre, Concordia University,
Montreal, Canada
- Physics Department, Concordia
University, Montreal, Canada
- Centre de Recherche de l'Institut de
Cardiologie de Montréal, Montréal, Canada
| |
Collapse
|
14
|
Craighead DH, Freeberg KA, Seals DR. The protective role of regular aerobic exercise on vascular function with aging. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Drapeau A, Labrecque L, Imhoff S, Paquette M, Le Blanc O, Malenfant S, Brassard P. Six weeks of high-intensity interval training to exhaustion attenuates dynamic cerebral autoregulation without influencing resting cerebral blood velocity in young fit men. Physiol Rep 2019; 7:e14185. [PMID: 31373166 PMCID: PMC6675921 DOI: 10.14814/phy2.14185] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 06/12/2019] [Accepted: 06/30/2019] [Indexed: 12/22/2022] Open
Abstract
Elevated cardiorespiratory fitness (CRF) is associated with reduced dynamic cerebral autoregulation (dCA), but the impact of exercise training per se on dCA remains equivocal. In addition, resting cerebral blood flow (CBF) and dCA after high-intensity interval training (HIIT) in individuals with already high CRF remains unknown. We examined to what extent 6 weeks of HIIT affect resting CBF and dCA in cardiorespiratory fit men and explored if potential changes are intensity-dependent. Endurance-trained men were assigned to group HIIT85 (85% of maximal aerobic power, 1-7 min effort bouts, n = 8) and HIIT115 (115% of maximal aerobic power, 30 sec to 1 min effort bouts, n = 9). Training sessions were completed until exhaustion 3 times/week over 6 weeks. Mean arterial pressure (MAP) and middle cerebral artery mean blood velocity (MCAvmean ) were measured continuously at rest and during repeated squat-stands (0.05 and 0.10 Hz). Transfer function analysis (TFA) was used to characterize dCA on driven blood pressure oscillations during repeated squat-stands. Neither training nor intensity had an effect on resting MAP and MCAvmean (both P > 0.05). TFA phase during 0.10 Hz squat-stands decreased after HIIT irrespective of intensity (HIIT85 : 0.77 ± 0.22 vs. 0.67 ± 0.18 radians; HIIT115 : pre: 0.62 ± 0.19 vs. post: 0.59 ± 0.13 radians, time effect P = 0.048). These results suggest that HIIT over 6 weeks have no apparent benefits on resting CBF, but a subtle attenuation in dCA is seen posttraining irrespective of intensity training in endurance-trained men.
Collapse
Affiliation(s)
- Audrey Drapeau
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébecCanada
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébecCanada
| | - Sarah Imhoff
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébecCanada
| | - Myriam Paquette
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébecCanada
| | - Olivier Le Blanc
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébecCanada
| | - Simon Malenfant
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébecCanada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébecCanada
| |
Collapse
|
16
|
Hoiland RL, Fisher JA, Ainslie PN. Regulation of the Cerebral Circulation by Arterial Carbon Dioxide. Compr Physiol 2019; 9:1101-1154. [DOI: 10.1002/cphy.c180021] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Nowak-Flück D, Ainslie PN, Bain AR, Ahmed A, Wildfong KW, Morris LE, Phillips AA, Fisher JP. Effect of healthy aging on cerebral blood flow, CO2 reactivity, and neurovascular coupling during exercise. J Appl Physiol (1985) 2018; 125:1917-1930. [DOI: 10.1152/japplphysiol.00050.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We sought to make the first comparisons of duplex Doppler ultrasonography-derived measures of cerebral blood flow during exercise in young and older individuals and to assess whether healthy aging influences the effect of exercise on neurovascular coupling (NVC) and cerebral vascular reactivity to changes in carbon dioxide (CVRco2). In 10 healthy young (23 ± 2 yr; mean ± SD) and 9 healthy older (66 ± 3 yr) individuals, internal carotid artery (ICA) and vertebral artery (VA) blood flows were concurrently measured, along with middle and posterior cerebral artery mean blood velocity (MCAvmean and PCAvmean). Measures were made at rest and during leg cycling (75 W and 35% maximum aerobic workload). ICA and VA blood flow during dynamic exercise, undertaken at matched absolute (ICA: young 336 ± 95, older 352 ± 155; VA: young 95 ± 43, older 100 ± 30 ml/min) and relative (ICA: young 355 ± 125, older 323 ± 153; VA: young 115 ± 48, older 110 ± 32 ml/min) intensities, were not different between groups ( P > 0.670). The PCAvmean responses to visual stimulation (NVC) were blunted in older versus younger group at rest (16 ± 6% vs. 23 ± 7%, P < 0.026) and exercise; however, these responses were not changed from rest to exercise in either group. The ICA and VA CVRco2 were comparable in both groups and unaltered during exercise. Collectively, our findings suggest that 1) ICA and VA blood flow responses to dynamic exercise are similar in healthy young and older individuals, 2) NVC is blunted in healthy older individuals at rest and exercise but is not different between rest to exercise in either group, and 3) CVRco2 is similar during exercise in healthy young and older groups. NEW & NOTEWORTHY Internal carotid artery and vertebral artery blood flow responses to dynamic exercise are similar in healthy young and older individuals. Neurovascular coupling and cerebrovascular carbon dioxide reactivity, two key mechanisms mediating the cerebral blood flow responses to exercise, are generally unaffected by exercise in both healthy young and older individuals.
Collapse
Affiliation(s)
- Daniela Nowak-Flück
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Philip N. Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Anthony R. Bain
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Amar Ahmed
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Kevin W. Wildfong
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Laura E. Morris
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Aaron A. Phillips
- Departments of Physiology and Pharmacology and Clinical Neurosciences, Libin Cardiovascular Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - James P. Fisher
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
18
|
Association between aerobic fitness and cerebrovascular function with neurocognitive functions in healthy, young adults. Exp Brain Res 2018. [PMID: 29536150 DOI: 10.1007/s00221-018-5230-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Studies of the effects of physical activity on cognition suggest that aerobic fitness can improve cognitive abilities. However, the physiological mechanisms for the cognitive benefit of aerobic fitness are less well understood. We examined the association between aerobic fitness and cerebrovascular function with neurocognitive functions in healthy, young adults. Participants aged 18-29 years underwent measurements of cerebral vasomotor reactivity (CVMR) in response to rebreathing-induced hypercapnia, maximal oxygen uptake (VO2max) during cycle ergometry to voluntary exhaustion, and simple- and complex-neurocognitive assessments at rest. Ten subjects were identified as having low-aerobic fitness (LF < 15th fitness percentile), and twelve subjects were identified as having high-aerobic fitness (HF > 80th fitness percentile). There were no LF versus HF group differences in cerebrovascular hemodynamics during the baseline condition. Changes in middle cerebral artery blood velocity and CVMR during hypercapnia were elevated more in the HF than the LF group. Compared to the LF, the HF performed better on a complex-cognitive task assessing fluid reasoning, but not on simple attentional abilities. Statistical modeling showed that measures of VO2max, CVMR, and fluid reasoning were positively inter-correlated. The relationship between VO2max and fluid reasoning, however, did not appear to be reliably mediated by CVMR. In conclusion, a high capacity for maximal oxygen uptake among healthy, young adults was associated with greater CVMR and better fluid reasoning, implying that high-aerobic fitness may promote cerebrovascular and cognitive functioning abilities.
Collapse
|