1
|
Pimentel Neto J, Batista RD, Rocha-Braga LC, Chacur M, Camargo PO, Ciena AP. The telocytes relationship with satellite cells: Extracellular vesicles mediate the myotendinous junction remodeling. Microsc Res Tech 2024; 87:1733-1741. [PMID: 38501548 DOI: 10.1002/jemt.24549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
The peripheral nerve injury (PNI) affects the morphology of the whole locomotor apparatus, which can reach the myotendinous junction (MTJ) interface. In the injury condition, the skeletal muscle satellite cells (SC) are triggered, activated, and proliferated to repair their structure, and in the MTJ, the telocytes (TC) are associated to support the interface with the need for remodeling; in that way, these cells can be associated with SC. The study aimed to describe the SC and TC relationship after PNI at the MTJ. Sixteen adult Wistar rats were divided into Control Group (C, n = 8) and PNI Group (PNI, n = 8), PNI was performed by the constriction of the sciatic nerve. The samples were processed for transmission electron microscopy and immunostaining analysis. In the C group was evidenced the arrangement of sarcoplasmic evaginations and invaginations, the support collagen layer with a TC inside it, and an SC through vesicles internally and externally to then. In the PNI group were observed the disarrangement of invaginations and evaginations and sarcomeres degradation at MTJ, as the disposition of telopodes adjacent and in contact to the SC with extracellular vesicles and exosomes in a characterized paracrine activity. These findings can determine a link between the TCs and the SCs at the MTJ remodeling. RESEARCH HIGHLIGHTS: Peripheral nerve injury promotes the myotendinous junction (MTJ) remodeling. The telocytes (TC) and the satellite cells (SC) are present at the myotendinous interface. TC mediated the SC activity at MTJ.
Collapse
Affiliation(s)
- Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Rodrigo Daniel Batista
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Lara Caetano Rocha-Braga
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Marucia Chacur
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paula Oliveira Camargo
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Adriano Polican Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| |
Collapse
|
2
|
Schmidt L, Saynisch M, Hoegsbjerg C, Schmidt A, Mackey A, Lackmann JW, Müller S, Koch M, Brachvogel B, Kjaer M, Antczak P, Krüger M. Spatial proteomics of skeletal muscle using thin cryosections reveals metabolic adaptation at the muscle-tendon transition zone. Cell Rep 2024; 43:114374. [PMID: 38900641 DOI: 10.1016/j.celrep.2024.114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/05/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
Morphological studies of skeletal muscle tissue provide insights into the architecture of muscle fibers, the surrounding cells, and the extracellular matrix (ECM). However, a spatial proteomics analysis of the skeletal muscle including the muscle-tendon transition zone is lacking. Here, we prepare cryotome muscle sections of the mouse soleus muscle and measure each slice using short liquid chromatography-mass spectrometry (LC-MS) gradients. We generate 3,000 high-resolution protein profiles that serve as the basis for a network analysis to reveal the complex architecture of the muscle-tendon junction. Among the protein profiles that increase from muscle to tendon, we find proteins related to neuronal activity, fatty acid biosynthesis, and the renin-angiotensin system (RAS). Blocking the RAS in cultured mouse tenocytes using losartan reduces the ECM synthesis. Overall, our analysis of thin cryotome sections provides a spatial proteome of skeletal muscle and reveals that the RAS acts as an additional regulator of the matrix within muscle-tendon junctions.
Collapse
Affiliation(s)
- Luisa Schmidt
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Michael Saynisch
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Christian Hoegsbjerg
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Part of IOC Research Center Copenhagen and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Abigail Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Part of IOC Research Center Copenhagen and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan-Wilm Lackmann
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Stefan Müller
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty, University of Cologne, Cologne, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Part of IOC Research Center Copenhagen and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Philipp Antczak
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany.
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
3
|
Paton BM, Read P, van Dyk N, Wilson MG, Pollock N, Court N, Giakoumis M, Head P, Kayani B, Kelly S, Kerkhoffs GMMJ, Moore J, Moriarty P, Murphy S, Plastow R, Stirling B, Tulloch L, Wood D, Haddad F. London International Consensus and Delphi study on hamstring injuries part 3: rehabilitation, running and return to sport. Br J Sports Med 2023; 57:278-291. [PMID: 36650032 DOI: 10.1136/bjsports-2021-105384] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/19/2023]
Abstract
Hamstring injuries (HSIs) are the most common athletic injury in running and pivoting sports, but despite large amounts of research, injury rates have not declined in the last 2 decades. HSI often recur and many areas are lacking evidence and guidance for optimal rehabilitation. This study aimed to develop an international expert consensus for the management of HSI. A modified Delphi methodology and consensus process was used with an international expert panel, involving two rounds of online questionnaires and an intermediate round involving a consensus meeting. The initial information gathering round questionnaire was sent to 46 international experts, which comprised open-ended questions covering decision-making domains in HSI. Thematic analysis of responses outlined key domains, which were evaluated by a smaller international subgroup (n=15), comprising clinical academic sports medicine physicians, physiotherapists and orthopaedic surgeons in a consensus meeting. After group discussion around each domain, a series of consensus statements were prepared, debated and refined. A round 2 questionnaire was sent to 112 international hamstring experts to vote on these statements and determine level of agreement. Consensus threshold was set a priori at 70%. Expert response rates were 35/46 (76%) (first round), 15/35 (attendees/invitees to meeting day) and 99/112 (88.2%) for final survey round. Statements on rehabilitation reaching consensus centred around: exercise selection and dosage (78.8%-96.3% agreement), impact of the kinetic chain (95%), criteria to progress exercise (73%-92.7%), running and sprinting (83%-100%) in rehabilitation and criteria for return to sport (RTS) (78.3%-98.3%). Benchmarks for flexibility (40%) and strength (66.1%) and adjuncts to rehabilitation (68.9%) did not reach agreement. This consensus panel recommends individualised rehabilitation based on the athlete, sporting demands, involved muscle(s) and injury type and severity (89.8%). Early-stage rehab should avoid high strain loads and rates. Loading is important but with less consensus on optimum progression and dosage. This panel recommends rehabilitation progress based on capacity and symptoms, with pain thresholds dependent on activity, except pain-free criteria supported for sprinting (85.5%). Experts focus on the demands and capacity required for match play when deciding the rehabilitation end goal and timing of RTS (89.8%). The expert panellists in this study followed evidence on aspects of rehabilitation after HSI, suggesting rehabilitation prescription should be individualised, but clarified areas where evidence was lacking. Additional research is required to determine the optimal load dose, timing and criteria for HSI rehabilitation and the monitoring and testing metrics to determine safe rapid progression in rehabilitation and safe RTS. Further research would benefit optimising: prescription of running and sprinting, the application of adjuncts in rehabilitation and treatment of kinetic chain HSI factors.
Collapse
Affiliation(s)
- Bruce M Paton
- Institute of Sport Exercise and Health (ISEH), University College London, London, UK .,Physiotherapy Department, University College London Hospitals NHS Foundation Trust, London, UK.,Division of Surgery and Intervention Science, University College London, London, UK
| | - Paul Read
- Institute of Sport Exercise and Health (ISEH), University College London, London, UK.,Division of Surgery and Intervention Science, University College London, London, UK.,School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| | - Nicol van Dyk
- High Performance Unit, Irish Rugby Football Union, Dublin, Ireland.,Section Sports Medicine, University of Pretoria, Pretoria, South Africa
| | - Mathew G Wilson
- Division of Surgery and Intervention Science, University College London, London, UK.,Princess Grace Hospital, London, UK
| | - Noel Pollock
- Institute of Sport Exercise and Health (ISEH), University College London, London, UK.,British Athletics, London, UK
| | | | | | - Paul Head
- School of Sport, Health and Applied Science, St. Mary's University, London, UK
| | - Babar Kayani
- Trauma and Orthopaedic Surgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sam Kelly
- Salford City Football Club, Salford, UK.,Blackburn Rovers Football Club, Blackburn, UK
| | - Gino M M J Kerkhoffs
- Orthopaedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Amsterdam Collaboration for Health and Safety in Sports (ACHSS), Amsterdam IOC Research Center, Amsterdam, The Netherlands
| | - James Moore
- Sports & Exercise Medicine, Centre for Human Health and Performance, London, UK
| | - Peter Moriarty
- Trauma and Orthopaedic Surgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Simon Murphy
- Medical Services, Arsenal Football Club, London, UK
| | - Ricci Plastow
- Trauma and Orthopaedic Surgery, University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | - David Wood
- Trauma & Orthopaedic Surgery, North Sydney Orthopaedic and Sports Medicine Centre, Sydney, New South Wales, Australia
| | - Fares Haddad
- Institute of Sport Exercise and Health (ISEH), University College London, London, UK.,Division of Surgery and Intervention Science, University College London, London, UK.,Princess Grace Hospital, London, UK.,Trauma and Orthopaedic Surgery, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
4
|
Viggars MR, Owens DJ, Stewart C, Coirault C, Mackey AL, Jarvis JC. PCM1 labeling reveals myonuclear and nuclear dynamics in skeletal muscle across species. Am J Physiol Cell Physiol 2023; 324:C85-C97. [PMID: 36409178 DOI: 10.1152/ajpcell.00285.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Myonuclei transcriptionally regulate muscle fibers during homeostasis and adaptation to exercise. Their subcellular location and quantity are important when characterizing phenotypes of myopathies, the effect of treatments, and understanding the roles of satellite cells in muscle adaptation and muscle "memory." Difficulties arise in identifying myonuclei due to their proximity to the sarcolemma and closely residing interstitial cell neighbors. We aimed to determine to what extent (pericentriolar material-1) PCM1 is a specific marker of myonuclei in vitro and in vivo. Single isolated myofibers and cross sections from mice and humans were studied from several models including wild-type and Lamin A/C mutant mice after functional overload and damage and recovery in humans following forced eccentric contractions. Fibers were immunolabeled for PCM1, Pax7, and DNA. C2C12 myoblasts were also studied to investigate changes in PCM1 localization during myogenesis. PCM1 was detected at not only the nuclear envelope of myonuclei in mature myofibers and in newly formed myotubes but also centrosomes in proliferating myogenic precursors, which may or may not fuse to join the myofiber syncytium. PCM1 was also detected in nonmyogenic nuclei near the sarcolemma, especially in regenerating areas of the Lmna+/ΔK32 mouse and damaged human muscle. Although PCM1 is not completely specific to myonuclei, the impact that PCM1+ macrophages and interstitial cells have on myonuclei counts would be small in healthy muscle. PCM1 may prove useful as a marker of satellite cell dynamics due to the distinct change in localization during differentiation, revealing satellite cells in their quiescent (PCM1-), proliferating (PCM1+ centrosome), and prefusion states (PCM1+ nuclear envelope).
Collapse
Affiliation(s)
- Mark R Viggars
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Department of Physiology and Aging, University of Florida, Gainesville, Florida.,Myology Institute, University of Florida, Gainesville, Florida
| | - Daniel J Owens
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Sorbonne Université, INSERM, Myology Research Center, Paris, France
| | - Claire Stewart
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Abigail L Mackey
- Department of Orthopaedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Center for Healthy Aging, Xlab, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan C Jarvis
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
5
|
Nestin and osteocrin mRNA increases in human semitendinosus myotendinous junction 7 days after a single bout of eccentric exercise. Histochem Cell Biol 2022; 158:49-64. [DOI: 10.1007/s00418-022-02101-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2022] [Indexed: 11/26/2022]
|
6
|
Soendenbroe C, Dahl CL, Meulengracht C, Tamáš M, Svensson RB, Schjerling P, Kjaer M, Andersen JL, Mackey AL. Preserved stem cell content and innervation profile of elderly human skeletal muscle with lifelong recreational exercise. J Physiol 2022; 600:1969-1989. [PMID: 35229299 PMCID: PMC9315046 DOI: 10.1113/jp282677] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract Muscle fibre denervation and declining numbers of muscle stem (satellite) cells are defining characteristics of ageing skeletal muscle. The aim of this study was to investigate the potential for lifelong recreational exercise to offset muscle fibre denervation and compromised satellite cell content and function, both at rest and under challenged conditions. Sixteen elderly lifelong recreational exercisers (LLEX) were studied alongside groups of age‐matched sedentary (SED) and young subjects. Lean body mass and maximal voluntary contraction were assessed, and a strength training bout was performed. From muscle biopsies, tissue and primary myogenic cell cultures were analysed by immunofluorescence and RT‐qPCR to assess myofibre denervation and satellite cell quantity and function. LLEX demonstrated superior muscle function under challenged conditions. When compared with SED, the muscle of LLEX was found to contain a greater content of satellite cells associated with type II myofibres specifically, along with higher mRNA levels of the beta and gamma acetylcholine receptors (AChR). No difference was observed between LLEX and SED for the proportion of denervated fibres or satellite cell function, as assessed in vitro by myogenic cell differentiation and fusion index assays. When compared with inactive counterparts, the skeletal muscle of lifelong exercisers is characterised by greater fatigue resistance under challenged conditions in vivo, together with a more youthful tissue satellite cell and AChR profile. Our data suggest a little recreational level exercise goes a long way in protecting against the emergence of classic phenotypic traits associated with the aged muscle. Key points The detrimental effects of ageing can be partially offset by lifelong self‐organized recreational exercise, as evidence by preserved type II myofibre‐associated satellite cells, a beneficial muscle innervation status and greater fatigue resistance under challenged conditions. Satellite cell function (in vitro), muscle fibre size and muscle fibre denervation determined by immunofluorescence were not affected by recreational exercise. Individuals that are recreationally active are far more abundant than master athletes, which sharply increases the translational perspective of the present study. Future studies should further investigate recreational activity in relation to muscle health, while also including female participants.
Collapse
Affiliation(s)
- Casper Soendenbroe
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark
| | - Christopher L Dahl
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark
| | - Christopher Meulengracht
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark
| | - Michal Tamáš
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark
| | - Rene B Svensson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark
| | - Jesper L Andersen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark
| |
Collapse
|
7
|
Karlsen A, Gonzalez-Franquesa A, Jakobsen JR, Krogsgaard MR, Koch M, Kjaer M, Schiaffino S, Mackey AL, Deshmukh AS. The proteomic profile of the human myotendinous junction. iScience 2022; 25:103836. [PMID: 35198892 PMCID: PMC8851264 DOI: 10.1016/j.isci.2022.103836] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Abstract
Proteomics analysis of skeletal muscle has recently progressed from whole muscle tissue to single myofibers. Here, we further focus on a specific myofiber domain crucial for force transmission from muscle to tendon, the myotendinous junction (MTJ). To overcome the anatomical constraints preventing the isolation of pure MTJs, we performed in-depth analysis of the MTJ by progressive removal of the muscle component in semitendinosus muscle-tendon samples. Using detergents with increasing stringency, we quantified >3000 proteins across all samples, and identified 112 significantly enriched MTJ proteins, including 24 known MTJ-enriched proteins. Of the 88 novel MTJ markers, immunofluorescence analysis confirmed the presence of tetraspanin-24 (CD151), kindlin-2 (FERMT2), cartilage intermediate layer protein 1 (CILP), and integrin-alpha10 (ITGA10), at the human MTJ. Together, these human data constitute the first detailed MTJ proteomics resource that will contribute to advance understanding of the biology of the MTJ and its failure in pathological conditions.
Collapse
Affiliation(s)
- Anders Karlsen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Denmark and Part of IOC Research Center, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Alba Gonzalez-Franquesa
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens R Jakobsen
- Section for Sports Traumatology M51, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Denmark and Part of IOC Research Center, Copenhagen, Denmark
| | - Michael R Krogsgaard
- Section for Sports Traumatology M51, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Denmark and Part of IOC Research Center, Copenhagen, Denmark
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Denmark and Part of IOC Research Center, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Denmark and Part of IOC Research Center, Copenhagen, Denmark.,Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Murach KA, Fry CS, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Fusion and beyond: Satellite cell contributions to loading-induced skeletal muscle adaptation. FASEB J 2021; 35:e21893. [PMID: 34480776 PMCID: PMC9293230 DOI: 10.1096/fj.202101096r] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Satellite cells support adult skeletal muscle fiber adaptations to loading in numerous ways. The fusion of satellite cells, driven by cell-autonomous and/or extrinsic factors, contributes new myonuclei to muscle fibers, associates with load-induced hypertrophy, and may support focal membrane damage repair and long-term myonuclear transcriptional output. Recent studies have also revealed that satellite cells communicate within their niche to mediate muscle remodeling in response to resistance exercise, regulating the activity of numerous cell types through various mechanisms such as secretory signaling and cell-cell contact. Muscular adaptation to resistance and endurance activity can be initiated and sustained for a period of time in the absence of satellite cells, but satellite cell participation is ultimately required to achieve full adaptive potential, be it growth, function, or proprioceptive coordination. While significant progress has been made in understanding the roles of satellite cells in adult muscle over the last few decades, many conclusions have been extrapolated from regeneration studies. This review highlights our current understanding of satellite cell behavior and contributions to adaptation outside of regeneration in adult muscle, as well as the roles of satellite cells beyond fusion and myonuclear accretion, which are gaining broader recognition.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Christopher S Fry
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Esther E Dupont-Versteegden
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA.,Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
9
|
Jakobsen JR, Schjerling P, Svensson RB, Buhl R, Carstensen H, Koch M, Krogsgaard MR, Kjær M, Mackey AL. RNA sequencing and immunofluorescence of the myotendinous junction of mature horses and humans. Am J Physiol Cell Physiol 2021; 321:C453-C470. [PMID: 34260300 DOI: 10.1152/ajpcell.00218.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The myotendinous junction (MTJ) is a specialized interface for transmitting high forces between the muscle and tendon and yet the MTJ is a common site of strain injury with a high recurrence rate. The aim of this study was to identify previously unknown MTJ components in mature animals and humans. Samples were obtained from the superficial digital flexor (SDF) muscle-tendon interface of 20 horses, and the tissue was separated through a sequential cryosectioning approach into muscle, MTJ (muscle tissue enriched in myofiber tips attached to the tendon), and tendon fractions. RT-PCR was performed for genes known to be expressed in the three tissue fractions and t-distributed stochastic neighbor embedding (t-SNE) plots were used to select the muscle, MTJ, and tendon samples from five horses for RNA sequencing. The expression of previously known and unknown genes identified through RNA sequencing was studied by immunofluorescence on human hamstring MTJ tissue. The main finding was that RNA sequencing identified the expression of a panel of 61 genes enriched at the MTJ. Of these, 48 genes were novel for the MTJ and 13 genes had been reported to be associated with the MTJ in earlier studies. The expression of known [COL22A1 (collagen XXII), NCAM (neural cell adhesion molecule), POSTN (periostin), NES (nestin), OSTN (musclin/osteocrin)] and previously undescribed [MNS1 (meiosis-specific nuclear structural protein 1), and LCT (lactase)] MTJ genes was confirmed at the protein level by immunofluorescence on tissue sections of human MTJ. In conclusion, in muscle-tendon interface tissue enriched with myofiber tips, we identified the expression of previously unknown MTJ genes representing diverse biological processes, which may be important in the maintenance of the specialized MTJ.
Collapse
Affiliation(s)
- Jens R Jakobsen
- Section for Sports Traumatology M51, Department of Orthopaedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rene B Svensson
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helena Carstensen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Michael R Krogsgaard
- Section for Sports Traumatology M51, Department of Orthopaedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michael Kjær
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Soendenbroe C, Andersen JL, Mackey AL. Muscle-nerve communication and the molecular assessment of human skeletal muscle denervation with aging. Am J Physiol Cell Physiol 2021; 321:C317-C329. [PMID: 34161153 DOI: 10.1152/ajpcell.00174.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Muscle fiber denervation is a major contributor to the decline in physical function observed with aging. Denervation can occur through breakdown of the neuromuscular junctions (NMJ) itself, affecting only that particular fiber, or through the death of a motor neuron, which can lead to a loss of all the muscle fibers in that motor unit. In this review, we discuss the muscle-nerve relationship, where signaling from both the motor neuron and the muscle fiber is required for maximal preservation of neuromuscular function in old age. Physical activity is likely to be the most important single factor that can contribute to this preservation. Furthermore, we propose that inactivity is not an innocent bystander, but plays an active role in denervation through the production of signals hostile to neuron survival. Investigating denervation in human muscle tissue samples is challenging due to the shared protein profile of regenerating and denervated muscle fibers. In this review, we provide a detailed overview of the key traits observed in immunohistochemical preparations of muscle biopsies from healthy, young, and elderly individuals. Overall, a combination of assessing tissue samples, circulating biomarkers, and electrophysiological assessments in humans will prove fruitful in the quest to gain more understanding of denervation of skeletal muscle. In addition, cell culture models represent a valuable tool in the search for key signaling factors exchanged between muscle and nerve, and which exercise has the capacity to alter.
Collapse
Affiliation(s)
- Casper Soendenbroe
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Jesper L Andersen
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Abigail L Mackey
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Kanamoto H, Orita S, Inage K, Shiga Y, Abe K, Eguchi Y, Ohtori S. Effect of Ultrasound-Guided Hydrorelease of the Multifidus Muscle on Acute Low Back Pain. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:981-987. [PMID: 32840876 PMCID: PMC8247302 DOI: 10.1002/jum.15473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 05/13/2023]
Abstract
OBJECTIVES To examine improvement in acute low back pain (LBP) using ultrasound-guided hydrorelease of the multifidus muscle. METHODS This prognostic cohort study was conducted in a private clinic on samples of 75 patients with acute LBP diagnosed based on physical and imaging findings. Hydrorelease of the multifidus muscle was performed at the L4/5 level. The LBP visual analog scale (VAS) scores (cm) before and 5 minutes after hydrorelease were statistically evaluated. We defined improvement rate (%) as {LBP VAS scores (cm) immediately before hydrorelease - LBP VAS scores (cm) 5 minutes after hydrorelease} × 100 / LBP VAS scores (cm) immediately before hydrorelease and examined the correlation of the Heckmatt score and average age with the improvement rate. RESULTS LBP VAS scores (cm) before and 5 minutes after hydrorelease were 7.19 ± 1.01 (mean ± SD) and 2.85 ± 1.25, respectively (p < 0.05). No significant correlations were noted between the LBP improvement rate and the Heckmatt score or age. There were no gender variations in the improvement rate. CONCLUSIONS Ultrasound-guided hydrorelease of the multifidus muscle led to considerable LBP VAS score improvement at the outpatient level. The improvement rate showed no correlations with the Heckmatt score or age, and there were no significant gender variations in the improvement rate. Therefore, fatty degeneration of muscles and change in muscle echogenicity due to age and gender may not be associated with muscular LBP. These findings suggest that multifidus muscle hydrorelease could be useful in the diagnosis and treatment of acute LBP.
Collapse
Affiliation(s)
- Hirohito Kanamoto
- Department of Orthopaedic SurgeryKanamoto Orthopaedic Clinic760‐7 Matsunaga, Numazu, Shizuoka410‐0874Japan
- Department of Orthopaedic SurgeryGraduate School of Medicine, Chiba University1‐8‐1 Inohana, Chuo‐ku, Chiba260‐8670Japan
| | - Sumihisa Orita
- Department of Orthopaedic SurgeryGraduate School of Medicine, Chiba University1‐8‐1 Inohana, Chuo‐ku, Chiba260‐8670Japan
| | - Kazuhide Inage
- Department of Orthopaedic SurgeryGraduate School of Medicine, Chiba University1‐8‐1 Inohana, Chuo‐ku, Chiba260‐8670Japan
| | - Yasuhiro Shiga
- Department of Orthopaedic SurgeryGraduate School of Medicine, Chiba University1‐8‐1 Inohana, Chuo‐ku, Chiba260‐8670Japan
| | - Koki Abe
- Department of Orthopaedic SurgeryGraduate School of Medicine, Chiba University1‐8‐1 Inohana, Chuo‐ku, Chiba260‐8670Japan
| | - Yawara Eguchi
- Department of Orthopaedic SurgeryGraduate School of Medicine, Chiba University1‐8‐1 Inohana, Chuo‐ku, Chiba260‐8670Japan
| | - Seiji Ohtori
- Department of Orthopaedic SurgeryGraduate School of Medicine, Chiba University1‐8‐1 Inohana, Chuo‐ku, Chiba260‐8670Japan
| |
Collapse
|
12
|
Baumert P, Temple S, Stanley JM, Cocks M, Strauss JA, Shepherd SO, Drust B, Lake MJ, Stewart CE, Erskine RM. Neuromuscular fatigue and recovery after strenuous exercise depends on skeletal muscle size and stem cell characteristics. Sci Rep 2021; 11:7733. [PMID: 33833326 PMCID: PMC8032692 DOI: 10.1038/s41598-021-87195-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Hamstring muscle injury is highly prevalent in sports involving repeated maximal sprinting. Although neuromuscular fatigue is thought to be a risk factor, the mechanisms underlying the fatigue response to repeated maximal sprints are unclear. Here, we show that repeated maximal sprints induce neuromuscular fatigue accompanied with a prolonged strength loss in hamstring muscles. The immediate hamstring strength loss was linked to both central and peripheral fatigue, while prolonged strength loss was associated with indicators of muscle damage. The kinematic changes immediately after sprinting likely protected fatigued hamstrings from excess elongation stress, while larger hamstring muscle physiological cross-sectional area and lower myoblast:fibroblast ratio appeared to protect against fatigue/damage and improve muscle recovery within the first 48 h after sprinting. We have therefore identified novel mechanisms that likely regulate the fatigue/damage response and initial recovery following repeated maximal sprinting in humans.
Collapse
Affiliation(s)
- Philipp Baumert
- Exercise Biology Group, Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany. .,Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK.
| | - S Temple
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - J M Stanley
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - M Cocks
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - J A Strauss
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - S O Shepherd
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - B Drust
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - M J Lake
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - C E Stewart
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - R M Erskine
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute of Sport, Exercise & Health, University College London, London, UK
| |
Collapse
|
13
|
Jakobsen JR, Krogsgaard MR. The Myotendinous Junction-A Vulnerable Companion in Sports. A Narrative Review. Front Physiol 2021; 12:635561. [PMID: 33841171 PMCID: PMC8032995 DOI: 10.3389/fphys.2021.635561] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/15/2021] [Indexed: 01/17/2023] Open
Abstract
The incidence of strain injuries continues to be high in many popular sports, especially hamstring strain injuries in football, despite a documented important effect of eccentric exercise to prevent strains. Studies investigating the anatomical properties of these injuries in humans are sparse. The majority of strains are seen at the interface between muscle fibers and tendon: the myotendinous junction (MTJ). It has a unique morphology with a highly folded muscle membrane filled with invaginations of collagen fibrils from the tendon, establishing an increased area of force transmission between muscle and tendon. There is a very high rate of remodeling of the muscle cells approaching the MTJ, but little is known about how the tissue adapts to exercise and which structural changes heavy eccentric exercise may introduce. This review summarizes the current knowledge about the anatomy, composition and adaptability of the MTJ, and discusses reasons why strain injuries can be prevented by eccentric exercise.
Collapse
Affiliation(s)
- Jens Rithamer Jakobsen
- Section of Sports Traumatology, M51, A Part of IOC Research Center, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | | |
Collapse
|
14
|
B. Knudsen A, Mackey AL, Jakobsen JR, Krogsgaard MR. No demonstrable ultrastructural adaptation of the human myotendinous junction to immobilization or 4 weeks of heavy resistance training. TRANSLATIONAL SPORTS MEDICINE 2021. [DOI: 10.1002/tsm2.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andreas B. Knudsen
- Department of Sports Traumatology M51 Bispebjerg and Frederiksberg HospitalIOC Research Center Copenhagen Copenhagen Denmark
| | - Abigail Louise Mackey
- Institute of Sports Medicine Department of Orthopedic Surgery M Bispebjerg and Frederiksberg HospitalIOC Research Center Copenhagen Copenhagen Denmark
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Jens Rithamer Jakobsen
- Department of Sports Traumatology M51 Bispebjerg and Frederiksberg HospitalIOC Research Center Copenhagen Copenhagen Denmark
| | - Michael Rindom Krogsgaard
- Department of Sports Traumatology M51 Bispebjerg and Frederiksberg HospitalIOC Research Center Copenhagen Copenhagen Denmark
| |
Collapse
|
15
|
May CA, Bramke S. In the human, true myocutaneous junctions of skeletal muscle fibers are limited to the face. J Anat 2021; 239:445-450. [PMID: 33641167 PMCID: PMC8273604 DOI: 10.1111/joa.13419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/22/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Within the panniculus carnosus‐associated skeletal muscles in the human, the palmaris brevis and the platysma showed myotendinous/myofascial junctions with clear distance to the corium and the specific connection collagen type XXII. The orbicularis oris muscle, in contrast, contained bundles of striated muscle fibers reaching the corium at two distinct levels: the predominant inner ending was connected to the elastic network of the inner corium and the outer ending was within the more superficial collagen network. At both locations, the striated muscle fibers showed brush‐like cytoplasmic protrusions connecting a network which was not oriented toward the muscle fibers. Collagen type XXII was not present.
Collapse
Affiliation(s)
| | - Silvia Bramke
- Department of Anatomy, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
16
|
Narayanan N, Calve S. Extracellular matrix at the muscle - tendon interface: functional roles, techniques to explore and implications for regenerative medicine. Connect Tissue Res 2021; 62:53-71. [PMID: 32856502 PMCID: PMC7718290 DOI: 10.1080/03008207.2020.1814263] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The muscle-tendon interface is an anatomically specialized region that is involved in the efficient transmission of force from muscle to tendon. Due to constant exposure to loading, the interface is susceptible to injury. Current treatment methods do not meet the socioeconomic demands of reduced recovery time without compromising the risk of reinjury, requiring the need for developing alternative strategies. The extracellular matrix (ECM) present in muscle, tendon, and at the interface of these tissues consists of unique molecules that play significant roles in homeostasis and repair. Better, understanding the function of the ECM during development, injury, and aging has the potential to unearth critical missing information that is essential for accelerating the repair at the muscle-tendon interface. Recently, advanced techniques have emerged to explore the ECM for identifying specific roles in musculoskeletal biology. Simultaneously, there is a tremendous increase in the scope for regenerative medicine strategies to address the current clinical deficiencies. Advancements in ECM research can be coupled with the latest regenerative medicine techniques to develop next generation therapies that harness ECM for treating defects at the muscle-tendon interface. The current work provides a comprehensive review on the role of muscle and tendon ECM to provide insights about the role of ECM in the muscle-tendon interface and discusses the latest research techniques to explore the ECM to gathered information for developing regenerative medicine strategies.
Collapse
Affiliation(s)
- Naagarajan Narayanan
- Paul M. Rady Department of Mechanical Engineering, University of Colorado – Boulder, 1111 Engineering Drive, Boulder, Colorado 80309 – 0427
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado – Boulder, 1111 Engineering Drive, Boulder, Colorado 80309 – 0427
| |
Collapse
|
17
|
Jakobsen JR, Jakobsen NR, Mackey AL, Knudsen AB, Hannibal J, Koch M, Kjaer M, Krogsgaard MR. Adipocytes are present at human and murine myotendinous junctions. TRANSLATIONAL SPORTS MEDICINE 2020. [DOI: 10.1002/tsm2.212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jens R. Jakobsen
- Department of Sports Traumatology M51 Bispebjerg and Frederiksberg Hospital Copenhagen Denmark
| | - Niels R. Jakobsen
- Department of Sports Traumatology M51 Bispebjerg and Frederiksberg Hospital Copenhagen Denmark
| | - Abigail L. Mackey
- Institute of Sports Medicine M81 Department of Orthopaedic Surgery M Bispebjerg and Frederiksberg Hospital Copenhagen Denmark
- Center for Healthy Aging Xlab Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Andreas B. Knudsen
- Department of Sports Traumatology M51 Bispebjerg and Frederiksberg Hospital Copenhagen Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry Bispebjerg and Frederiksberg Hospital Copenhagen Denmark
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, and Center for Biochemistry Medical Faculty University of Cologne Cologne Germany
| | - Michael Kjaer
- Institute of Sports Medicine M81 Department of Orthopaedic Surgery M Bispebjerg and Frederiksberg Hospital Copenhagen Denmark
| | - Michael R. Krogsgaard
- Department of Sports Traumatology M51 Bispebjerg and Frederiksberg Hospital Copenhagen Denmark
| |
Collapse
|
18
|
Gastrocnemius Medialis Architectural Properties in Flexibility Trained and Not Trained Child Female Athletes: A Pilot Study. Sports (Basel) 2020; 8:sports8030029. [PMID: 32143331 PMCID: PMC7183070 DOI: 10.3390/sports8030029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 11/16/2022] Open
Abstract
Gastrocnemius medialis (GM) architecture and ankle angle were compared between flexibility trained (n = 10) and not trained (n = 6) female athletes, aged 8–10 years. Ankle angle, fascicle length, pennation angle and muscle thickness were measured at the mid-belly and the distal part of GM, at rest and at the end of one min of static stretching. Flexibility trained (FT) and not trained athletes (FNT) had similar fascicle length at the medial (4.19 ± 0.37 vs. 4.24 ± 0.54 cm, respectively, p = 0.841) and the distal part of GM (4.25 ± 0.35 vs. 4.18 ± 0.65 cm, respectively, p = 0.780), similar pennation angles, and muscle thickness (p > 0.216), and larger ankle angle at rest (120.9 ± 4.2 vs. 110.9 ± 5.8°, respectively, p = 0.001). During stretching, FT displayed greater fascicle elongation compared to FNT at the medial (+1.67 ± 0.37 vs. +1.28 ± 0.22 cm, respectively, p = 0.048) and the distal part (+1.84 ± 0.67 vs. +0.97 ± 0.97 cm, respectively, p = 0.013), larger change in joint angle and muscle tendon junction displacement (MTJ) (p < 0.001). Muscle thickness was similar in both groups (p > 0.053). Ankle dorsiflexion angle significantly correlated with fascicle elongation at the distal part of GM (r = −0.638, p < 0.01) and MTJ displacement (r = −0.610, p < 0.05). Collectively, FT had greater fascicle elongation at the medial and distal part of GM and greater MTJ displacement during stretching than FNT of similar age.
Collapse
|
19
|
Bechshøft CJL, Schjerling P, Kjaer M, Mackey AL. The influence of direct and indirect fibroblast cell contact on human myogenic cell behavior and gene expression in vitro. J Appl Physiol (1985) 2019; 127:342-355. [PMID: 31120810 DOI: 10.1152/japplphysiol.00215.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Underpinning skeletal muscle plasticity is the interplay between many cell types, of which fibroblasts are emerging as potent players, both negatively in the development of fibrosis but also positively in stimulating muscle repair through enhancing myogenesis. The mechanisms behind this interaction however remain unknown. To investigate this, waste hamstring muscle tissue was obtained from eight healthy young men undergoing reconstructive anterior cruciate ligament surgery and primary myoblasts and fibroblasts were isolated. Myoblasts were cultured alone or with fibroblasts, either in direct or indirect contact (separated by an insert with a permeable membrane). The myogenesis parameters proliferation, differentiation, and fusion were determined from immunostained cells, while, in replicate samples, gene expression levels of GAPDH, Ki67, Pax7, MyoD, myogenin, myomaker, MHC-Iβ, TCF7L2, COL1A1, and p16 were determined by RT-PCR. We found only trends for an influence of skeletal muscle fibroblasts on myogenic cell proliferation and differentiation. While greater mRNA levels of GAPDH, Pax7, MyoD, myogenin, and MHC-Iβ were observed in myogenic cells in indirect contact with fibroblasts (insert) when compared with cells cultured alone, a similar effect of an empty insert was also observed. In conclusion we find very little influence of skeletal muscle fibroblasts on myoblasts derived from the same tissue, although it cannot be excluded that a different outcome would be seen under less optimal myogenic growth conditions.NEW & NOTEWORTHY Using passage one primary myoblasts and fibroblasts isolated from human skeletal muscle, we found only a trend for an effect of skeletal muscle fibroblasts on myogenic cell proliferation and differentiation. This is contrary to previous reports and raises the possibility that fibroblasts of different tissue origins exert distinct roles.
Collapse
Affiliation(s)
- Cecilie J L Bechshøft
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Donti O, Panidis I, Terzis G, Bogdanis GC. Gastrocnemius Medialis Architectural Properties at Rest and During Stretching in Female Athletes with Different Flexibility Training Background. Sports (Basel) 2019; 7:sports7020039. [PMID: 30781768 PMCID: PMC6410170 DOI: 10.3390/sports7020039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/01/2019] [Accepted: 02/10/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND This study examined gastrocnemius medialis (GM) architectural properties and ankle joint range of motion (ROM) between female athletes with different flexibility training background. METHODS Elite rhythmic gymnasts (n = 10) were compared to national level volleyball athletes (n = 10). Fascicle length, pennation angle and muscle thickness at the medial and the distal part of GM, and ankle ROM were measured at rest and during 1 min of static stretching. RESULTS At rest, rhythmic gymnasts displayed longer fascicles compared to volleyball athletes, at the medial (5.93 ± 0.27 vs. 4.74 ± 0.33 mm, respectively, p = 0.001) and the distal part of GM (5.63 ± 0.52 vs. 4.57 ± 0.51 mm, respectively, p = 0.001), smaller pennation angle at the medial part (22.4 ± 2.5 vs. 25.8 ± 2.4°; respectively, p = 0.001) and greater ankle angle (121.7 ± 4.1 vs. 113.2 ± 3.7°, respectively, p = 0.001). During the 1 min of static stretching, gymnasts displayed greater fascicle elongation at the distal part (p = 0.026), greater maximal ankle dorsiflexion (p < 0.001) and muscle tendon junction displacement (p < 0.001) with no difference between groups in pennation angles (p > 0.145), muscle thickness (p > 0.105), and fascicle elongation at mid-belly (p = 0.063). CONCLUSIONS Longer muscle fascicles at rest and greater fascicle elongation at the distal part of GM may contribute to the greater ankle ROM observed in rhythmic gymnasts.
Collapse
Affiliation(s)
- Olyvia Donti
- Sports Performance Laboratory, School of Physical Education & Sport Science, National and Kapodistrian University of Athens, Athens 17237, Greece.
| | - Ioli Panidis
- Sports Performance Laboratory, School of Physical Education & Sport Science, National and Kapodistrian University of Athens, Athens 17237, Greece.
| | - Gerasimos Terzis
- Sports Performance Laboratory, School of Physical Education & Sport Science, National and Kapodistrian University of Athens, Athens 17237, Greece.
| | - Gregory C Bogdanis
- Sports Performance Laboratory, School of Physical Education & Sport Science, National and Kapodistrian University of Athens, Athens 17237, Greece.
| |
Collapse
|