1
|
Parent-Roberge H, Fontvieille A, Poirier L, Tai LH, Pavic M, Fülöp T, Riesco E. Acute natural killer cells response to a continuous moderate intensity and a work-matched high intensity interval exercise session in metastatic cancer patients treated with chemotherapy. Brain Behav Immun Health 2024; 40:100825. [PMID: 39155952 PMCID: PMC11327397 DOI: 10.1016/j.bbih.2024.100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
Background It has been suggested that the acute natural killer (NK) cell response to aerobic exercise might contribute to the tumor suppressor effect of regular exercise observed in preclinical studies. Moreover, because this response is modulated by exercise intensity, high-intensity intervals exercise (HIIE) might represent an interesting therapeutic approach in cancer patients. However, this immune response remains unstudied in cancer patients currently undergoing chemotherapy. Objective To characterize the acute NK cell response following a moderate-intensity continuous aerobic exercise session (MOD), and a HIIE session in metastatic cancer patients treated with chemotherapy. Methods Twelve cancer patients (45-65 years old) underwent a MOD and a duration and work-matched HIIE trial, in a block-randomized order. Peripheral blood mononuclear cells (PBMC) were isolated before, after and 1h after each trial. NK cell subsets were enumerated using flow cytometry and complete blood counts. The surface expression of the cytotoxic NK cell (cNK; CD56dimCD16+) subset was evaluated for its expression of the differentiation markers CD57 and CD158a, the activating receptor NKG2D, the immune checkpoints TIM-3 and PD-1, and the chemokine receptors CXCR3, CXCR4 and CCR2. Results cNK cell blood counts increased immediately following MOD (p < 0.001) and decreased back to pre-exercise values 1 h after exercise cessation (p < 0.001). The most responsive cNK cell subsets were expressing CD57, CD158a, NKG2D, TIM-3 and CXCR3. The HIIE trial elicited a similar biphasic response, without any difference between trials (all p ≥ 0.38). However, significant changes in the MFI values of CXCR4 and NKG2D were observed in the cNK cell subset following HIIE (all p ≤ 0.038), but not MOD. Conclusion In metastatic cancer patients undergoing chemotherapy, both MOD and HIIE can elicit an acute mobilisation and egress of NK cells exhibiting phenotypic characteristics associated with high cytotoxicity and tumor homing. Future longitudinal trials are needed to determine if combining aerobic exercise training and chemotherapy will translate towards favorable immune and clinical outcomes.
Collapse
Affiliation(s)
- Hugo Parent-Roberge
- University of Sherbrooke, Faculty of Physical Activity Sciences, 2500, boul. de l’Université, Sherbrooke, Qc, J1K 2R1, Canada
- Research Centre on Aging, affiliated with CIUSSS de l’Estrie - CHUS, 1036, rue Belvédère sud, Sherbrooke, Qc, J1H 4C4, Canada
| | - Adeline Fontvieille
- University of Sherbrooke, Faculty of Physical Activity Sciences, 2500, boul. de l’Université, Sherbrooke, Qc, J1K 2R1, Canada
- Research Centre on Aging, affiliated with CIUSSS de l’Estrie - CHUS, 1036, rue Belvédère sud, Sherbrooke, Qc, J1H 4C4, Canada
| | - Laurence Poirier
- University of Sherbrooke, Faculty of Physical Activity Sciences, 2500, boul. de l’Université, Sherbrooke, Qc, J1K 2R1, Canada
- Research Centre on Aging, affiliated with CIUSSS de l’Estrie - CHUS, 1036, rue Belvédère sud, Sherbrooke, Qc, J1H 4C4, Canada
| | - Lee-Hwa Tai
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Qc, J1H 5N4, Canada
- University of Sherbrooke, Department of Immunology and Cell Biology, 3201 rue Jean-Mignault, J1E 4K8, Canada
| | - Michel Pavic
- University of Sherbrooke, Faculty of Medicine and Health Sciences, 3001, 12e avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Qc, J1H 5N4, Canada
- Institut de recherche sur le cancer de l’Université de Sherbrooke, Sherbrooke, Qc, Canada, J1H5N4
| | - Tamàs Fülöp
- Research Centre on Aging, affiliated with CIUSSS de l’Estrie - CHUS, 1036, rue Belvédère sud, Sherbrooke, Qc, J1H 4C4, Canada
- University of Sherbrooke, Faculty of Medicine and Health Sciences, 3001, 12e avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Qc, J1H 5N4, Canada
| | - Eléonor Riesco
- University of Sherbrooke, Faculty of Physical Activity Sciences, 2500, boul. de l’Université, Sherbrooke, Qc, J1K 2R1, Canada
- Research Centre on Aging, affiliated with CIUSSS de l’Estrie - CHUS, 1036, rue Belvédère sud, Sherbrooke, Qc, J1H 4C4, Canada
| |
Collapse
|
2
|
Hanson ED, Sakkal S, Bates-Fraser LC, Que S, Cho E, Spielmann G, Kadife E, Violet JA, Battaglini CL, Stoner L, Bartlett DB, McConell GK, Hayes A. Acute exercise induces distinct quantitative and phenotypical T cell profiles in men with prostate cancer. Front Sports Act Living 2023; 5:1173377. [PMID: 37325799 PMCID: PMC10266416 DOI: 10.3389/fspor.2023.1173377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Background Reduced testosterone levels can influence immune system function, particularly T cells. Exercise during cancer reduces treatment-related side effects and provide a stimulus to mobilize and redistribute immune cells. However, it is unclear how conventional and unconventional T cells (UTC) respond to acute exercise in prostate cancer survivors compared to healthy controls. Methods Age-matched prostate cancer survivors on androgen deprivation therapy (ADT) and those without ADT (PCa) along with non-cancer controls (CON) completed ∼45 min of intermittent cycling with 3 min at 60% of peak power interspersed by 1.5 min of rest. Fresh, unstimulated immune cell populations and intracellular perforin were assessed before (baseline), immediately following (0 h), 2 h, and 24 h post-exercise. Results At 0 h, conventional T cell counts increased by 45%-64% with no differences between groups. T cell frequency decreased by -3.5% for CD3+ and -4.5% for CD4+ cells relative to base at 0 h with CD8+ cells experiencing a delayed decrease of -4.5% at 2 h with no group differences. Compared to CON, the frequency of CD8+CD57+ cells was -18.1% lower in ADT. Despite a potential decrease in maturity, ADT increased CD8+perforin+ GMFI. CD3+Vα7.2+CD161+ counts, but not frequencies, increased by 69% post-exercise while CD3+CD56+ cell counts increased by 127% and were preferentially mobilized (+1.7%) immediately following the acute cycling bout. There were no UTC group differences. Cell counts and frequencies returned to baseline by 24 h. Conclusion Following acute exercise, prostate cancer survivors demonstrate normal T cell and UTC responses that were comparable to CON. Independent of exercise, ADT is associated with lower CD8+ cell maturity (CD57) and perforin frequency that suggests a less mature phenotype. However, higher perforin GMFI may attenuate these changes, with the functional implications of this yet to be determined.
Collapse
Affiliation(s)
- Erik D. Hanson
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
- Human Movement Science Curriculum, University of North Carolina, Chapel Hill, NC, United States
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Lauren C. Bates-Fraser
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
- Human Movement Science Curriculum, University of North Carolina, Chapel Hill, NC, United States
| | - Shadney Que
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Eunhan Cho
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, United States
| | - Guillaume Spielmann
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, United States
| | - Elif Kadife
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - John A. Violet
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Claudio L. Battaglini
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
- Human Movement Science Curriculum, University of North Carolina, Chapel Hill, NC, United States
| | - Lee Stoner
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, United States
- Human Movement Science Curriculum, University of North Carolina, Chapel Hill, NC, United States
| | - David B. Bartlett
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Glenn K. McConell
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Alan Hayes
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, VIC, Australia
- Department of Medicine—Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Khosravi N, Hanson ED, Farajivafa V, Evans WS, Lee JT, Danson E, Wagoner CW, Harrell EP, Sullivan SA, Nyrop KA, Muss HB, Bartlett DB, Jensen BC, Haghighat S, Shamsi MM, Battaglini CL. Exercise-induced modulation of monocytes in breast cancer survivors. Brain Behav Immun Health 2021; 14:100216. [PMID: 34589753 PMCID: PMC8474256 DOI: 10.1016/j.bbih.2021.100216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/31/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
Background Exercise training reduces inflammation in breast cancer survivors; however, the mechanism is not fully understood. Objectives The effects of acute and chronic exercise on monocyte toll-like receptor (TLR2 and 4) expression and intracellular cytokine production were examined in sedentary breast cancer survivors. Methods Eleven women with stage I, II, or III breast cancer within one year of treatment completion performed an acute, intermittent aerobic exercise trial. Blood samples were obtained before, immediately, and 1 h after a 45-min acute exercise trial that was performed before and after 16 weeks of combined aerobic and resistance. LPS-stimulated intracellular IL-1ß, TNF, and IL-6 production, and TLR2 and TLR4 expression were evaluated in CD14+CD16- and CD14+CD16+ monocytes using flow cytometry. Results Exercise training decreased IL-1ß+CD14+CD16- proportion (24.6%, p=0.016), IL-1ß+CD14+CD16- mean fluorescence intensity (MFI) (-9989, p=0.014), IL-1ß+CD14+CD16+ MFI (-11101, p=0.02), and IL-6+CD14+CD16- proportion (16.9%, P=0.04). TLR2 and TLR4 expression did not change following exercise training but decreased 1 h after acute exercise in CD14+CD16- (-63, p=0.002) and CD14+CD16+ (-18, p=0.006) monocytes, respectively. Immediately after the acute exercise, both monocyte subgroup cell concentration increased, with CD14+CD16+ concentrations being decreased at 1 h post without changes in intracellular cytokine production. Conclusions Exercise training reduced monocyte intracellular pro-inflammatory cytokine production, especially IL-1ß, although these markers did not change acutely. While acute exercise downregulated the expression of TLR2 and TLR4 on monocytes, this was not sustained over the course of training. These results suggest that the anti-inflammatory effect of combined aerobic and resistance exercise training in breast cancer survivors may be, in part, due to reducing resting monocyte pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Nasim Khosravi
- Department of Exercise & Sport Science, Exercise Oncology Research Laboratory, University of North Carolina, Chapel Hill, NC, USA.,Physical Education & Sport Sciences Department, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - Erik D Hanson
- Department of Exercise & Sport Science, Exercise Oncology Research Laboratory, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Vahid Farajivafa
- Department of Exercise & Sport Science, Exercise Oncology Research Laboratory, University of North Carolina, Chapel Hill, NC, USA.,Physical Education & Sport Sciences Department, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - William S Evans
- Department of Exercise & Sport Science, Exercise Oncology Research Laboratory, University of North Carolina, Chapel Hill, NC, USA
| | - Jordan T Lee
- Department of Exercise & Sport Science, Exercise Oncology Research Laboratory, University of North Carolina, Chapel Hill, NC, USA
| | - Eli Danson
- Department of Exercise & Sport Science, Exercise Oncology Research Laboratory, University of North Carolina, Chapel Hill, NC, USA
| | - Chad W Wagoner
- Department of Exercise & Sport Science, Exercise Oncology Research Laboratory, University of North Carolina, Chapel Hill, NC, USA
| | - Elizabeth P Harrell
- Department of Exercise & Sport Science, Exercise Oncology Research Laboratory, University of North Carolina, Chapel Hill, NC, USA
| | - Stephanie A Sullivan
- Department of Exercise & Sport Science, Exercise Oncology Research Laboratory, University of North Carolina, Chapel Hill, NC, USA
| | - Kirsten A Nyrop
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.,Department of Hematology Oncology University of North Carolina, Chapel Hill, NC, USA
| | - Hyman B Muss
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.,Department of Hematology Oncology University of North Carolina, Chapel Hill, NC, USA
| | | | - Brian C Jensen
- Division of Cardiology, University of North Carolina, Chapel Hill, NC, USA
| | - Shahpar Haghighat
- Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mahdieh Molanouri Shamsi
- Physical Education & Sport Sciences Department, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - Claudio L Battaglini
- Department of Exercise & Sport Science, Exercise Oncology Research Laboratory, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Hanson ED, Stopforth CK, Alzer M, Carver J, Lucas AR, Whang YE, Milowsky MI, Bartlett DB, Harrison MR, Hayes A, Bitting RL, Deal AM, Hackney AC, Battaglini CL. Body composition, physical function and quality of life in healthy men and across different stages of prostate cancer. Prostate Cancer Prostatic Dis 2021; 24:725-732. [PMID: 33495569 PMCID: PMC8310529 DOI: 10.1038/s41391-020-00317-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/30/2020] [Accepted: 12/21/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Androgen deprivation therapy (ADT) for prostate cancer (PC) has detrimental effects on physical function and quality of life (QoL), but the addition of androgen receptor signalling inhibitors (ARSI) on these outcomes is unclear. PURPOSE To compare body composition, physical function, and QoL across progressive stages of PC and non-cancer controls (CON). METHODS In men with hormone sensitive PC (HSPC, n = 43) or metastatic castration-resistant PC (mCRPC, n = 22) or CON (n = 37), relative and absolute lean and fat mass, physical function (6 m walk, chair stands, timed up and go [TUG], stair climb), and QoL were determined. RESULTS Relative body composition differed amongst all groups, along with ~39% greater absolute fat mass in mCRPC vs. CON. TUG and chair stands were ~71% and ~33% slower in mCRPC compared to both CON and HSPC, whereas stair climb was ~29% and 6 m walk was ~18% slower in mCRPC vs. CON. Relative body composition was correlated with physical function (r = 0.259-0.385). Clinically relevant differences for mCRPC were observed for overall QoL and several subscales vs. CON, although body composition and physical function did not influence QoL. CONCLUSIONS PC progression is associated with deteriorations in body composition and physical function. As ADT length was similar between groups, ARSI use for mCRPC likely contributed in part to these changes. Given the difficulties of improving lean mass during ADT, interventions that reduce adiposity may lessen the side effects of hormone therapy.
Collapse
Affiliation(s)
- Erik D. Hanson
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC,Institute of Health and Sport, Victoria University, Melbourne, Vic, Australia
| | - Cameron K. Stopforth
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mohamdod Alzer
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jackson Carver
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Alexander R. Lucas
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC,Virginia Commonwealth University, Richmond, VA
| | - Young E. Whang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC,Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Matthew I. Milowsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC,Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David B. Bartlett
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Michael R. Harrison
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Alan Hayes
- Institute of Health and Sport, Victoria University, Melbourne, Vic, Australia,Australian Institute for Musculoskeletal Science, Victoria University, Melbourne, Vic, Australia
| | | | - Allison M. Deal
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Anthony C. Hackney
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC,Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Claudio L. Battaglini
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
5
|
Hanson ED, Bates LC, Harrell EP, Bartlett DB, Lee JT, Wagoner CW, Alzer MS, Amatuli DJ, Jensen BC, Deal AM, Muss HB, Nyrop KA, Battaglini CL. Exercise training partially rescues impaired mucosal associated invariant t-cell mobilization in breast cancer survivors compared to healthy older women. Exp Gerontol 2021; 152:111454. [PMID: 34146655 DOI: 10.1016/j.exger.2021.111454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/21/2022]
Abstract
Exercise may attenuate immunosenescence with aging that appears to be accelerated following breast cancer treatment, although limited data on specific cell types exists and acute and chronic exercise have been investigated independently in older adults. PURPOSE To determine the mucosal associated invariant T (MAIT) cell response to acute exercise before (PRE) and after (POST) 16 weeks of exercise training in breast cancer survivors (BCS) and healthy older women (CON). METHODS Age-matched BCS and CON performed 45 min of intermittent cycling at 60% peak power output wattage. Blood samples were obtained at rest, immediately (0 h) and 1 h after exercise to determine MAIT cell counts, frequency, and intracellular cytokine expression. RESULTS At PRE, MAIT cell counts were greater in CON (137%) than BCS at 0 h (46%, p < 0.001), with increased MAIT cell frequency in CON but not BCS. TNFα+ and IFNγ+ MAIT cell counts increased at 0 h by ~120% in CON (p < 0.001), while BCS counts and frequencies were unchanged. Similar deficits were observed in CD3+ and CD3+ CD8+ cells. At POST, exercise-induced mobilization and egress of MAIT cell counts and frequency showed trends towards improvement in BCS that approached levels in CON. Independent of group, TNFα frequency trended to improve (p = 0.053). CONCLUSIONS MAIT mobilization in older BCS following acute exercise was attenuated; however, exercise training may partially rescue these initial deficits, including greater sensitivity to mitogenic stimulation. Using acute exercise before and after interventions provides a unique approach to identify age- and cancer-related immuno-dysfunction that is less apparent at rest.
Collapse
Affiliation(s)
- Erik D Hanson
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
| | - Lauren C Bates
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Elizabeth P Harrell
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - David B Bartlett
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Jordan T Lee
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Chad W Wagoner
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Mohamdod S Alzer
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Dean J Amatuli
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Brian C Jensen
- Division of Cardiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Allison M Deal
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Hyman B Muss
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Hematology Oncology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Kirsten A Nyrop
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Hematology Oncology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Claudio L Battaglini
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
6
|
Natural Killer Cell Mobilization in Breast and Prostate Cancer Survivors: The Implications of Altered Stress Hormones Following Acute Exercise. ENDOCRINES 2021. [DOI: 10.3390/endocrines2020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Natural killer (NK) cells from the innate immune system are integral to overall immunity and also in managing the tumor burden during cancer. Breast (BCa) and prostate cancer (PCa) are the most common tumors in U.S. adults. Both BCa and PCa are frequently treated with hormone suppression therapies that are associated with numerous adverse effects including direct effects on the immune system. Regular exercise is recommended for cancer survivors to reduce side effects and improve quality of life. Acute exercise is a potent stimulus for NK cells in healthy individuals with current evidence indicating that NK mobilization in individuals with BCa and PCa is comparable. NK cell mobilization results from elevations in shear stress and catecholamine levels. Despite a normal NK cell response to exercise, increases in epinephrine are attenuated in BCa and PCa. The significance of this potential discrepancy still needs to be determined. However, alterations in adrenal hormone signaling are hypothesized to be due to chronic stress during cancer treatment. Additional compensatory factors induced by exercise are reviewed along with recommendations on standardized approaches to be used in exercise immunology studies involving oncology populations.
Collapse
|
7
|
Hanson ED, Bates LC, Bartlett DB, Campbell JP. Does exercise attenuate age- and disease-associated dysfunction in unconventional T cells? Shining a light on overlooked cells in exercise immunology. Eur J Appl Physiol 2021; 121:1815-1834. [PMID: 33822261 DOI: 10.1007/s00421-021-04679-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/28/2021] [Indexed: 02/06/2023]
Abstract
Unconventional T Cells (UTCs) are a unique population of immune cells that links innate and adaptive immunity. Following activation, UTCs contribute to a host of immunological activities, rapidly responding to microbial and viral infections and playing key roles in tumor suppression. Aging and chronic disease both have been shown to adversely affect UTC numbers and function, with increased inflammation, change in body composition, and physical inactivity potentially contributing to the decline. One possibility to augment circulating UTCs is through increased physical activity. Acute exercise is a potent stimulus leading to the mobilization of immune cells while the benefits of exercise training may include anti-inflammatory effects, reductions in fat mass, and improved fitness. We provide an overview of age-related changes in UTCs, along with chronic diseases that are associated with altered UTC number and function. We summarize how UTCs respond to acute exercise and exercise training and discuss potential mechanisms that may lead to improved frequency and function.
Collapse
Affiliation(s)
- Erik D Hanson
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27517, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Lauren C Bates
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27517, USA.,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David B Bartlett
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, USA
| | | |
Collapse
|
8
|
Hanson ED, Sakkal S, Que S, Cho E, Spielmann G, Kadife E, Violet JA, Battaglini CL, Stoner L, Bartlett DB, McConell GK, Hayes A. Natural killer cell mobilization and egress following acute exercise in men with prostate cancer. Exp Physiol 2020; 105:1524-1539. [PMID: 32715550 DOI: 10.1113/ep088627] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/29/2020] [Indexed: 01/19/2023]
Abstract
NEW FINDINGS What is the central question of this study? What are the characteristics of the NK cell response following acute moderate-intensity aerobic exercise in prostate cancer survivors and is there a relationship between stress hormones and NK cell mobilization? What is the main finding and its importance? NK cell numbers and proportions changed similarly between prostate cancer survivors and controls following acute exercise. Consecutive training sessions can likely be used without adverse effects on the immune system during prostate cancer treatment. ABSTRACT Prostate cancer treatment affects multiple physiological systems, although the immune response during exercise has been minimally investigated. The objective was to characterize the natural killer (NK) cell response following acute exercise in prostate cancer survivors. Prostate cancer survivors on androgen deprivation therapy (ADT) and those without (PCa) along with non-cancer controls (CON) completed a moderate intensity cycling bout. NK cells were phenotyped before and 0, 2 and 24 h after acute exercise using flow cytometry. CD56 total NK cell frequency increased by 6.2% at 0 h (P < 0.001) and decreased by 2.5% at 2 h (P < 0.01) with similar findings in CD56dim cells. NK cell counts also exhibited a biphasic response. Independent of exercise, ADT had intracellular interferon γ (IFNγ) expression that was nearly twofold higher than CON (P < 0.01). PCa perforin expression was reduced by 11.4% (P < 0.05), suggesting these cells may be more prone to degranulation. CD57- NK cells demonstrated increased perforin and IFNγ frequencies after exercise with no change within the CD57+ populations. All NK and leukocyte populations returned to baseline by 24 h. NK cell mobilization and egress with acute exercise appear normal, as cell counts and frequencies in prostate cancer survivors change similarly to CON. However, lower perforin proportions (PCa) and higher IFNγ expression (ADT) may alter NK cytotoxicity and require further investigation. The return of NK cell proportions to resting levels overnight suggests that consecutive training sessions can be used without adverse effects on the immune system during prostate cancer treatment.
Collapse
Affiliation(s)
- Erik D Hanson
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, USA.,Institute for Health and Sport, Victoria University, Melbourne, Vic, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, Vic, Australia
| | - Shadney Que
- Institute for Health and Sport, Victoria University, Melbourne, Vic, Australia
| | - Eunhan Cho
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA
| | | | - Elif Kadife
- Institute for Health and Sport, Victoria University, Melbourne, Vic, Australia
| | - John A Violet
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Claudio L Battaglini
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Lee Stoner
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - David B Bartlett
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Glenn K McConell
- Institute for Health and Sport, Victoria University, Melbourne, Vic, Australia
| | - Alan Hayes
- Institute for Health and Sport, Victoria University, Melbourne, Vic, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, Vic, Australia.,Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
9
|
Hanns P, Paczulla AM, Medinger M, Konantz M, Lengerke C. Stress and catecholamines modulate the bone marrow microenvironment to promote tumorigenesis. Cell Stress 2019; 3:221-235. [PMID: 31338489 PMCID: PMC6612892 DOI: 10.15698/cst2019.07.192] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High vascularization and locally secreted factors make the bone marrow (BM) microenvironment particularly hospitable for tumor cells and bones to a preferred metastatic site for disseminated cancer cells of different origins. Cancer cell homing and proliferation in the BM are amongst other regulated by complex interactions with BM niche cells (e.g. osteoblasts, endothelial cells and mesenchymal stromal cells (MSCs)), resident hematopoietic stem and progenitor cells (HSPCs) and pro-angiogenic cytokines leading to enhanced BM microvessel densities during malignant progression. Stress and catecholamine neurotransmitters released in response to activation of the sympathetic nervous system (SNS) reportedly modulate various BM cells and may thereby influence cancer progression. Here we review the role of catecholamines during tumorigenesis with particular focus on pro-tumorigenic effects mediated by the BM niche.
Collapse
Affiliation(s)
- Pauline Hanns
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Anna M Paczulla
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Michael Medinger
- Division of Clinical Hematology, University Hospital Basel, Basel, Switzerland
| | - Martina Konantz
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Claudia Lengerke
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland.,Division of Clinical Hematology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|