1
|
Zhang X, Teng Z, Geng X, Ma X, Chen WM. A fluoroscopic imaging-guided computational analyses to inform internal tissue loads within fat pad of the diabetic foot during gait. J Biomech 2023; 157:111744. [PMID: 37535986 DOI: 10.1016/j.jbiomech.2023.111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
To accurately predict internal tissue loads for early diagnostics of diabetic foot ulcerations, a novel data-driven computational analysis was conducted. A dedicated dual fluoroscopic system was combined with a pressure mat to simultaneously characterize foot motions and soft tissue's material properties during gait. Finite element (FE) models of the heel pad of a diabetic patient were constructed with 3D trajectories of the calcaneus applied as boundary conditions to simulate gait events. The tensile and compressive stresses occurring in the plantar tissue were computed. Predictions of the layered tissue FE model with anatomically-accurate heel pad structures (i.e., fat and skin) were compared with those of the traditional lumped tissue (i.e., homogeneous) models. The influence of different material properties (patient-specific versus generic) on internal tissue stresses was also investigated. The results showed the peak tensile stresses in the layered tissue model were predominantly found in the skin and distributed towards the circumferential regions of the heel, while peak compressive stresses in the fat tissue-bone interface were up to 51.4% lower than those seen in the lumped models. Performing FE analyses at four different phases of walking revealed that ignorance of layered tissue structures resulted in an unphysiological increase of peak-to-peak value of stress fluctuation in the fat and skin tissue components. Thus, to produce more clinical-relevant predictions, foot FE models are suggested to include layered tissue structures of the plantar tissue for an improved estimation of internal stresses in the diabetic foot in gait.
Collapse
Affiliation(s)
- Xingyu Zhang
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, 220 Handan Road, Shanghai, China
| | - Zhaolin Teng
- Department of Orthopaedics, Huashan Hospital affiliated to Fudan University, 12 Middle Wulumuqi Road, Shanghai, China
| | - Xiang Geng
- Department of Orthopaedics, Huashan Hospital affiliated to Fudan University, 12 Middle Wulumuqi Road, Shanghai, China
| | - Xin Ma
- Department of Orthopaedics, Huashan Hospital affiliated to Fudan University, 12 Middle Wulumuqi Road, Shanghai, China
| | - Wen-Ming Chen
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, 220 Handan Road, Shanghai, China.
| |
Collapse
|
2
|
Brady L, Pai S, Iaquinto JM, Wang YN, Ledoux WR. The compressive, shear, biochemical, and histological characteristics of diabetic and non-diabetic plantar skin are minimally different. J Biomech 2021; 129:110797. [PMID: 34688066 DOI: 10.1016/j.jbiomech.2021.110797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 01/30/2023]
Abstract
Diabetes is associated with lower limb co-morbidities, including ulceration and subsequent amputation. As a systemic disease, diabetes affects the microstructure of soft tissues, and material microstructural changes are known to affect the macroscale mechanics. However, the associations between diabetes-related disruptions to essential microstructural components and mechanical changes in plantar skin with diabetes has not been thoroughly characterized. Plantar skin specimens were collected from four diabetic and eight non-diabetic donors at six plantar locations (hallux; first, third, and fifth metatarsals; lateral midfoot; calcaneus) from matched pairs. Mechanical testing was performed on fresh frozen specimens from one foot, and histomorphological measurement and biochemical quantification were performed on specimens from the other foot. Mechanical (compressive and shear moduli and viscoelastic slopes) and biochemical/histological (total quantity of collagen and elastin; dermal and epidermal thickness) parameters were correlated using linear mixed effects regression. There were no significant differences by disease state. Skin thicknesses were positively correlated with initial compression modulus and all three shear moduli. The final compressive modulus was significantly lower at the third metatarsal than the fifth metatarsal, lateral midfoot, and calcaneus, while the final shear modulus was significantly higher at the calcaneus than at the hallux, first, and third metatarsals. Epidermal thickness was significantly higher at the calcaneus compared to all other locations. While differences were not significant by disease state, the strong differences by locations and significant but weak correlations between skin thickness and mechanics can inform future research to understand the mechanism of ulcer formation in the diabetic foot.
Collapse
Affiliation(s)
- Lynda Brady
- VA RR&D Center for Limb Loss and MoBility (CLiMB), Seattle, WA 98108, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Shruti Pai
- VA RR&D Center for Limb Loss and MoBility (CLiMB), Seattle, WA 98108, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Joseph M Iaquinto
- VA RR&D Center for Limb Loss and MoBility (CLiMB), Seattle, WA 98108, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Yak-Nam Wang
- VA RR&D Center for Limb Loss and MoBility (CLiMB), Seattle, WA 98108, USA; Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA 98195, USA
| | - William R Ledoux
- VA RR&D Center for Limb Loss and MoBility (CLiMB), Seattle, WA 98108, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA; Department of Orthopaedics & Sports Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
3
|
Fontanella CG, Arduino A, Toniolo I, Zampieri C, Bortolan L, Carniel EL. Computational methods for the investigation of ski boots ergonomics. SPORTS ENGINEERING 2021. [DOI: 10.1007/s12283-021-00352-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractSki boots are known to cause vasoconstriction in the wearer’s lower limbs and, thus, cause a “cold leg” phenomenon. To address this problem, this work provides a computational framework for analysing interactions between the ski boot and the lower limb. The geometry of the lower limb was derived from magnetic resonance imaging and computed tomography techniques and anthropometric data. The geometry of the ski boot shell was obtained by means of three-dimensional computer aided design models from a manufacturer. Concerning the ski boot liner, laser scanning techniques were implemented to capture the geometry of each layer. The mechanical models of the ski boot and the lower limb were identified and validated by means of coupled experimental investigations and computational analyses. The computational models were exploited to simulate the buckling process and to investigate interaction phenomena between the boot and the lower limb. Similarly, experimental activities were performed to further analyse the buckling phenomena. The obtained computational and experimental results were compared regarding both interaction pressure and displacements between the buckle and the corresponding buckle hooks. These comparisons provided reasonable agreement (mean value of discrepancy between the model and mean experimental results in the tibial region: 20%), underlining the model’s capability to correctly interpret results from experimental measurements. Results identified the critical areas of the leg, such as the tibial region, the calcaneal region of the foot and the anterior sole, which may suffer the most due to the hydrostatic pressure and compressive strain exerted on them. The results highlight that computational methods allow investigation of the interaction phenomena between the lower leg and ski boot, potentially providing an effective framework for a more comfortable and ergonomic design of ski boots.
Collapse
|
4
|
Effects of Custom-Made Insole Materials on Frictional Stress and Contact Pressure in Diabetic Foot with Neuropathy: Results from a Finite Element Analysis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Offloading plantar pressure in a diabetic foot with neuropathy is challenging in conventional clinical practice. Custom-made insole (CMI) materials play an important role in plantar pressure reduction, but the assessment is costly and time-consuming. Finite element analysis (FEA) can provide an efficient evaluation of different insoles on the plantar pressure distribution. This study investigated the effect of CMI materials and their combinations on plantar pressure reduction for the diabetic foot with neuropathy using FEA. The study was conducted by constructing a three-dimensional foot model along with CMI to study the peak contact pressure between the foot and CMI. The softer material (E = 5 MPa) resulted in a better reduction of peak contact pressure compared with the stiffer material (E = 11 MPa). The plantar pressure was well redistributed with softer material compared with the stiffer material and its combination. In addition, the single softer material resulted in reduced frictional stress under the first metatarsal head compared with the stiffer material and the combination of materials. The softer material and its combination have a beneficial effect on plantar pressure reduction and redistribution for a diabetic foot with neuropathy. This study provided an effective approach for CMI material selection using FEA.
Collapse
|
5
|
Natali AN, Fontanella CG, Todros S, Pavan PG, Carmignato S, Zanini F, Carniel EL. Conformation and mechanics of the polymeric cuff of artificial urinary sphincter. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2020; 17:3894-3908. [PMID: 32987559 DOI: 10.3934/mbe.2020216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The surgical treatment of urinary incontinence is often performed by adopting an Artificial Urinary Sphincter (AUS). AUS cuff represents a fundamental component of the device, providing the mechanical action addressed to urethral occlusion, which can be investigated by computational approach. In this work, AUS cuff is studied with reference to both materials and structure, to develop a finite element model. Materials behavior is investigated using physicochemical and mechanical characterization, leading to the formulation of a constitutive model. Materials analysis shows that AUS cuff is composed by a silicone blister joined with a PET fiber-reinforced layer. A nonlinear mechanical behavior is found, with a higher stiffness in the outer layer due to fiber-reinforcement. The cuff conformation is acquired by Computer Tomography (CT) both in deflated and inflated conditions, for an accurate definition of the geometrical characteristics. Based on these data, the numerical model of AUS cuff is defined. CT images of the inflated cuff are compared with results of numerical analysis of the inflation process, for model validation. A relative error below 2.5% was found. This study is the first step for the comprehension of AUS mechanical behavior and allows the development of computational tools for the analysis of lumen occlusion process. The proposed approach could be adapted to further fluid-filled cuffs of artificial sphincters.
Collapse
Affiliation(s)
- Arturo Nicola Natali
- Department of Industrial Engineering, University of Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Italy
| | - Chiara Giulia Fontanella
- Department of Industrial Engineering, University of Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Italy
| | - Silvia Todros
- Department of Industrial Engineering, University of Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Italy
| | - Piero G Pavan
- Department of Industrial Engineering, University of Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Italy
| | - Simone Carmignato
- Centre for Mechanics of Biological Materials, University of Padova, Italy
- Department of Management and Engineering, University of Padova, Italy
| | - Filippo Zanini
- Department of Management and Engineering, University of Padova, Italy
| | - Emanuele Luigi Carniel
- Department of Industrial Engineering, University of Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Italy
| |
Collapse
|
6
|
Natali AN, Carniel EL, Fontanella CG. Interaction phenomena between a cuff of an artificial urinary sphincter and a urethral phantom. Artif Organs 2019; 43:888-896. [DOI: 10.1111/aor.13455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/25/2019] [Accepted: 03/08/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Arturo Nicola Natali
- Department of Industrial Engineering University of Padova Padova Italy
- Centre for Mechanics of Biological Materials University of Padova Padova Italy
| | - Emanuele Luigi Carniel
- Department of Industrial Engineering University of Padova Padova Italy
- Centre for Mechanics of Biological Materials University of Padova Padova Italy
| | - Chiara Giulia Fontanella
- Centre for Mechanics of Biological Materials University of Padova Padova Italy
- Department of Biomedical Sciences University of Padova Padova Italy
| |
Collapse
|
7
|
Fontanella CG, Macchi V, Carniel EL, Frigo A, Porzionato A, Picardi EEE, Favero M, Ruggieri P, de Caro R, Natali AN. Biomechanical behavior of Hoffa’s fat pad in healthy and osteoarthritic conditions: histological and mechanical investigations. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2018; 41:657-667. [DOI: 10.1007/s13246-018-0661-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/18/2018] [Indexed: 12/30/2022]
|
8
|
Li S, Zhang Y, Gu Y, Ren J. Stress distribution of metatarsals during forefoot strike versus rearfoot strike: A finite element study. Comput Biol Med 2017; 91:38-46. [DOI: 10.1016/j.compbiomed.2017.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/24/2017] [Accepted: 09/24/2017] [Indexed: 11/25/2022]
|
9
|
FONTANELLA CHIARAGIULIA, NATALI ARTURONICOLA, CARNIEL EMANUELELUIGI. NUMERICAL ANALYSIS OF THE FOOT IN HEALTHY AND DEGENERATIVE CONDITIONS. J MECH MED BIOL 2017. [DOI: 10.1142/s0219519417500956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this work is the development of a 3D numerical model of the foot that allows evaluating the influence of degenerative phenomena on the foot mechanical functionality. Such degenerative phenomena induce histo-morphological alterations and significant modification of the plantar soft tissue mechanical properties, as stiffening and lower damping capabilities. The finite element model of the foot is developed starting from the analysis of biomedical images. Different constitutive models define the mechanical response of the biological tissues. Because of the major role of plantar soft tissue in the here proposed analysis, a specific visco-hyperelastic constitutive formulation is provided considering the typical features of the tissue mechanics, as geometric and material non linearity, almost incompressible behavior and time-dependent phenomena. Constitutive parameters are identified by the analysis of experimental data from in vitro and in vivo mechanical tests, leading to the identification of a range of constitutive parameters for healthy and degenerative conditions. Numerical analyses are developed to investigate the influence of the progression of the degeneration on the distribution of stress and of strain within foot tissues during static standing. Numerical results show the increase of stress values with the appearance of degenerative conditions, showing the typical stiffening phenomenon. The mechanical response of the plantar soft tissue during specific loading condition and the influence of degenerative phenomena on foot mechanics can be evaluated with numerical analysis.
Collapse
Affiliation(s)
- CHIARA GIULIA FONTANELLA
- Department of Biomedical Sciences, Centre for Mechanics of Biological Materials, University of Padova, Via Venezia 1, Padova I-35131, Italy
| | - ARTURO NICOLA NATALI
- Department of Industrial Engineering, Centre for Mechanics of Biological Materials, University of Padova, Via Venezia 1, Padova I-35131, Italy
| | - EMANUELE LUIGI CARNIEL
- Department of Industrial Engineering, Centre for Mechanics of Biological Materials, University of Padova, Via Venezia 1, Padova I-35131, Italy
| |
Collapse
|
10
|
Forestiero A, Carniel EL, Fontanella CG, Natali AN. Numerical model for healthy and injured ankle ligaments. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2017; 40:289-295. [DOI: 10.1007/s13246-017-0533-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
|
11
|
Dynamic measurement of surface strain distribution on the foot during walking. J Mech Behav Biomed Mater 2017; 69:249-256. [PMID: 28110181 DOI: 10.1016/j.jmbbm.2016.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/08/2016] [Accepted: 12/16/2016] [Indexed: 11/20/2022]
Abstract
To clarify the mechanism underlying the development of foot disorders such as diabetic ulcers and deformities, it is important to understand how the foot surface elongates and contracts during gait. Such information is also helpful for improving the prevention and treatment of foot disorders. We therefore measured temporal changes in the strain distribution on the foot surface during human walking. Five adult male participants walked across a glass platform placed over an angled mirror set in a wooden walkway at a self-selected speed and the dorsolateral and plantar surfaces of the foot were filmed using two pairs of synchronized high-speed cameras. Three-dimensional (3D) digital image correlation was used to quantify the spatial strain distribution on the foot surface with respect to that during quiet standing. Using the proposed method, we observed the 3D patterns of foot surface strain distribution during walking. Large strain was generated around the ball on the plantar surface of the foot throughout the entire stance phase, due to the windlass mechanism. The dorsal surface around the cuboid was stretched in the late stance phase, possibly due to lateral protruding movement of the cuboid. It may be possible to use this technique to non-invasively estimate movements of the foot bones under the skin using the surface strain distribution. The proposed technique may be an effective tool with which to analyze foot deformation in the fields of diabetology, clinical orthopedics, and ergonomics.
Collapse
|
12
|
Mildren RL, Strzalkowski NDJ, Bent LR. Foot sole skin vibration perceptual thresholds are elevated in a standing posture compared to sitting. Gait Posture 2016; 43:87-92. [PMID: 26669957 DOI: 10.1016/j.gaitpost.2015.10.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/19/2015] [Accepted: 10/29/2015] [Indexed: 02/02/2023]
Abstract
Foot sole sensitivity is commonly assessed while individuals are seated or prone; however the primary role of foot sole cutaneous feedback is for the control of upright stance and gait. The aim of this study was to compare vibration perceptual thresholds across the foot sole between sitting and standing postures. Vibration perceptual thresholds were measured in sitting and standing postures in 18 healthy participants (8 male) using a custom vibration device. Two foot sole locations (heels and metatarsals) were tested at four vibration frequencies (3, 15, 40, and 250Hz) selected to target different cutaneous afferent populations. At each frequency, perceptual thresholds across the foot sole were significantly higher in the standing posture compared to the sitting posture; this is indicative of lower sensitivity while standing. In addition, threshold differences between the heels and metatarsals for lower frequency vibratory stimuli were more pronounced while standing, with higher thresholds observed at the heels. Our results demonstrate that standing significantly alters sensitivity across the foot sole. Therefore, conducting perceptual tests at the foot sole during stance could potentially provide more direct information about the ability of cutaneous afferents to signal tactile information in a state where this feedback can contribute to postural control.
Collapse
Affiliation(s)
- Robyn L Mildren
- University of Guelph, Department of Human Health and Nutritional Sciences, N1G2W1 Ontario, Canada.
| | | | - Leah R Bent
- University of Guelph, Department of Human Health and Nutritional Sciences, N1G2W1 Ontario, Canada.
| |
Collapse
|
13
|
Fontanella CG, Forestiero A, Carniel EL, Natali AN. Investigation of the mechanical behaviour of the plantar soft tissue during gait cycle: Experimental and numerical activities. Proc Inst Mech Eng H 2015; 229:713-20. [PMID: 26405096 DOI: 10.1177/0954411915601702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this work is to investigate the mechanical response of the plantar soft tissue from the heel strike to the midstance, developing both experimental and numerical activities. Using force plates and motion tracking system, the dynamic and kinematic data of 10 subjects are evaluated. The average kinematics data obtained from the experimental tests are assumed as boundary and loading conditions for the computational analyses. A three-dimensional virtual solid model of the foot is developed from the analysis of Digital Imaging and Communications in Medicine images from computed tomography and magnetic resonance. Constitutive formulations that interpret the mechanical response of the biological tissues are defined. Because of the major role of plantar soft tissue in the proposed analysis, a specific visco-hyperelastic constitutive formulation is provided considering the typical features of the tissue mechanics. The three-dimensional numerical model permits to evaluate the capability of the plantar soft tissue to redistribute the deformations, especially during the midstance, and to define quantitative aspects related to the energy absorption. The numerical results highlight the stress distribution from the heel strike to the midstance. The values of stress and strain reached are more intensive during the midstance, when there is a single support of the foot.
Collapse
Affiliation(s)
- Chiara G Fontanella
- Department of Biomedical Sciences, University of Padova, Padova, Italy Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| | - Antonella Forestiero
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Emanuele L Carniel
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Arturo N Natali
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy Department of Industrial Engineering, University of Padova, Padova, Italy
| |
Collapse
|
14
|
Fontanella CG, Nalesso F, Carniel EL, Natali AN. Biomechanical behavior of plantar fat pad in healthy and degenerative foot conditions. Med Biol Eng Comput 2015; 54:653-61. [DOI: 10.1007/s11517-015-1356-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/13/2015] [Indexed: 11/29/2022]
|