1
|
Ye Z, Wen Q, Liu Y, Zhou K, Shang Y, Wang F, Lian C, Liu H. Microscopic Origin of Surfactant Irritation: An Experimental and Computational Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23102-23110. [PMID: 39415458 DOI: 10.1021/acs.langmuir.4c03521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Surfactants, which are widely used in skin care products and cleansers, can cause skin irritation. The skin irritation potential of surfactants is fundamentally determined by their molecular structure and is directly related to their microscopic aggregation structure and specific interactions with the skin. The microscopic origin of the irritation of the surfactants remains unknown. In this work, irritation properties of four surfactant solutions were measured, and their microscopic aggregation behavior was systematically analyzed. The results indicate that the surfactants self-assembled in aqueous solution to form aggregates with different morphologies, where the head groups of surfactants were closer to each other. Furthermore, surfactants that can form larger and more stable aggregate structures in aqueous solutions will exhibit less irritation. These findings hold significant implications for the design and expanded applications of mild surfactants.
Collapse
Affiliation(s)
- Zhicheng Ye
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Wen
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kangfu Zhou
- Yunnan Yunke Characteristic Plant Extraction Laboratory Company, Limited, Kunming, Yunnan 650106, China
- Yunnan Botanee Bio-technology Group Company, Limited, Kunming, Yunnan 650106, China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Feifei Wang
- Yunnan Yunke Characteristic Plant Extraction Laboratory Company, Limited, Kunming, Yunnan 650106, China
- Yunnan Botanee Bio-technology Group Company, Limited, Kunming, Yunnan 650106, China
| | - Cheng Lian
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Choe C, Schleusener J, Ri J, Choe S, Kim P, Lademann J, Darvin ME. Quantitative determination of concentration profiles of skin components and topically applied oils by tailored multivariate curve resolution-alternating least squares using in vivo confocal Raman micro-spectroscopy. JOURNAL OF BIOPHOTONICS 2023; 16:e202200219. [PMID: 36106843 DOI: 10.1002/jbio.202200219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
The main components of the stratum corneum (SC), water, lipids, and proteins, are non-homogeneously distributed throughout the depth. The quantitative determination of their concentration profiles and penetration depth of topically applied substances are urgent topics of dermatological and cosmetic research. Confocal Raman micro-spectroscopy has distinct advantages when determining semi-quantitative concentrations of SC components and topically applied substances non-invasively and in vivo. In this work, we applied a tailored multivariate curve resolution-alternating least squares (tMCR-ALS) method to analyze Raman spectra of the SC in the 2000-4000 cm-1 region for quantitatively determining the concentrations of water, lipids, proteins, and topically applied oils using substance-related spectral loadings which were allowed to change depth-dependently from the SC's surface toward its bottom. tMCR-ALS makes matching of depth-dependent signal attenuation, that is, the normalization on keratin, unnecessary and requires only a few additional experiments for calibration - Raman spectra of the pure materials and their densities.
Collapse
Affiliation(s)
- ChunSik Choe
- Biomedical Materials Division, Faculty of Material Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Johannes Schleusener
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - JinSong Ri
- Biomedical Materials Division, Faculty of Material Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - SeHyok Choe
- Biomedical Materials Division, Faculty of Material Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
- Clinical Research Division, Pyongyang Cosmetic Research Institute, Pyongyang, Democratic People's Republic of Korea
| | - PokSil Kim
- Clinical Research Division, Pyongyang Cosmetic Research Institute, Pyongyang, Democratic People's Republic of Korea
| | - Jürgen Lademann
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maxim E Darvin
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Amount of cholesterol in intercellular lipid models inversely correlates with hexagonal structure ratio in packing structures. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Darvin ME, Schleusener J, Lademann J, Choe CS. Current views on non-invasive in vivo determination of physiological parameters of the stratum corneum using confocal Raman microspectroscopy. Skin Pharmacol Physiol 2022; 35:125-136. [PMID: 35008092 DOI: 10.1159/000521416] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022]
Abstract
Confocal Raman microspectroscopy is widely used in dermatology and cosmetology for analysis of the concentration of skin components (lipids, natural moisturizing factor molecules, water) and the penetration depth of cosmetic/medical formulations in the human stratum corneum (SC) in vivo. In recent years, it was shown that confocal Raman microspectroscopy can also be used for non-invasive in vivo depth-dependent determination of the physiological parameters of the SC, such as lamellar and lateral organization of intercellular lipids, folding properties of keratin, water mobility and hydrogen bonding states. The results showed that the strongest skin barrier function, which is primarily manifested by the orthorhombic organization of intercellular lipids, is provided at ≈20-40% SC depth, which is related to the maximal bonding state of water with surrounding components in the SC. The secondary and tertiary structures of keratin determine water binding in the SC, which is depth-dependent. This paper shows the technical possibility and advantage of confocal Raman microspectroscopy in non-invasive investigation of the skin and summarizes recent results on in vivo investigation of the human SC.
Collapse
Affiliation(s)
- Maxim E Darvin
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Schleusener
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jürgen Lademann
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chun-Sik Choe
- Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| |
Collapse
|
5
|
Gabe Y, Takeda K, Tobiishi M, Kikuchi S, Tsuda K, Haryuu Y, Nakajima Y, Inomata Y, Nakamura S, Murase D, Tokunaga S, Miyaki M, Takahashi Y. Evaluation of subclinical chronic sun damage in the skin via the detection of long-lasting ultraweak photon emission. Skin Res Technol 2021; 27:1064-1071. [PMID: 33998715 DOI: 10.1111/srt.13059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND It is well known that solar radiation accelerates skin photoaging. To evaluate subclinical photodamage in the skin especially from the early phase of ultraviolet (UV)-induced damage, we have focused on ultraweak photon emission (UPE), also called biophotons. Our previous study reported that the amount of long-lasting UPE induced by UV, predominantly from lipid peroxidation, is a valuable indicator to assess cutaneous photodamage even at a suberythemal dose, although it was only applied to evaluate acute UV damage. The aim of this study was to further investigate whether long-lasting UPE could also be a useful marker to assess subclinical chronic sun damage in the course of skin photoaging. MATERIALS AND METHODS Forty-three Japanese females in their 20s were recruited and were divided into two groups according to their history of sun exposure based on a questionnaire (high- and low-sun-exposure groups). Several skin properties on the cheek and outer forearm were measured in addition to UV-induced UPE. RESULTS Among the skin properties measured, water content, average skin roughness, and the lateral packing of lipids in the stratum corneum were significantly deteriorated in the high-sun-exposure group as were changes in some skin photoaging scores such as pigmented spots and wrinkles. In addition, those skin properties were correlated with the UPE signals, suggesting the possible impact of oxidative stress on chronic skin damage. CONCLUSION Subtle oxidative stress detected by long-lasting UPE may contribute to subclinical cutaneous damage at the beginning phase of chronic sun exposure, which potentially enhances skin photoaging over a lifetime.
Collapse
Affiliation(s)
- Yu Gabe
- Biological Science Research, Kao Corporation, Odawara, Japan
| | | | - Megumi Tobiishi
- Biological Science Research, Kao Corporation, Odawara, Japan
| | - Sho Kikuchi
- Skin Care Research, Kao Corporation, Sumida, Japan
| | - Koki Tsuda
- Analytical Science Research, Kao Corporation, Japan, Haga
| | | | | | | | - Shun Nakamura
- Analytical Science Research, Kao Corporation, Japan, Haga
| | - Daiki Murase
- Biological Science Research, Kao Corporation, Odawara, Japan
| | | | | | | |
Collapse
|
6
|
He Y, Wu W, Li J, Liu Y, Qu Z, Liu Y. In vivo Raman spectroscopy study on the stimulation mechanism of surfactant. Skin Res Technol 2020; 26:898-904. [PMID: 32585081 DOI: 10.1111/srt.12892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/30/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Surfactant is widely used in skin care products and cleansers, while it may cause physical discomfort. In this study, in vivo Raman spectroscopy was used to explore surfactant irritation mechanism on skin, which was not found in literature. METHODS Sodium dodecyl sulfate (SDS) was chosen to represent surfactant. Research on the negative effect of SDS was undertaken by scanning the two states of the skin (without and with the contact of SDS), respectively, on six volunteers, by means of Raman technique and skin magnifier. RESULTS The damage to the surface of normal skin by SDS was visible from the photographs taken by skin magnifier, and the apparent damage matched the damage that was happening underneath the skin elucidated by Raman spectra. Compared to the normal skin, the inter-cellular lipids (ICL) lateral packing order of the damaged skin was significantly reduced in 2-12 μm of skin depth (P < 0.05), deeper than 12 μm was not detected. The skin depth of 0-2 μm could not be determined due to strong interference of SDS. Significant change in the secondary and tertiary structures of keratin was not found.
Collapse
Affiliation(s)
- Yifan He
- Department of Cosmetic Science, School of Sciences, Beijing Technology and Business University, Beijing, China
| | - Wenhai Wu
- Beijing EviSkin Inc., Beijing, China
| | - Jing Li
- Beijing EviSkin Inc., Beijing, China
| | - Youting Liu
- Beijing Academy of TCM Beauty Supplements Co., Ltd., Beijing, China
| | - Zhaohui Qu
- Beijing Academy of TCM Beauty Supplements Co., Ltd., Beijing, China
| | - Yuhong Liu
- Nutri-Woods Bio-Tech (Beijing) Co., Ltd., Beijing, China
| |
Collapse
|
7
|
Ri JS, Choe SH, Schleusener J, Lademann J, Choe CS, Darvin ME. In vivo Tracking of DNA for Precise Determination of the Stratum Corneum Thickness and Superficial Microbiome Using Confocal Raman Microscopy. Skin Pharmacol Physiol 2019; 33:30-37. [PMID: 31614347 DOI: 10.1159/000503262] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/06/2019] [Indexed: 11/19/2022]
Abstract
The skin barrier function is mostly provided by the stratum corneum (SC), the uppermost layer of the epidermis. To noninvasively analyze the physiological properties of the skin barrier functionin vivo, it is important to determine the SC thickness. Confocal Raman microscopy (CRM) is widely used for this task. In the present in vivo study, a new method based on the determination of the DNA concentration profile using CRM is introduced for determining the SC thickness. The obtained SC thickness values are compared with those obtained using other CRM-based methods determining the water and lipid depth profiles. The obtained results show almost no significant differences in SC thickness for the utilized methods. Therefore, the results indicate that it is possible to calculate the SC thickness by using the DNA profile in the fingerprint region, which is comparable with the SC thickness calculated by the water depth profiles (ANOVA test p = 0.77) and the lipid depth profile (ANOVA test p = 0.74). This provides the possibility to measure the SC thickness by using the DNA profile, in case the water or lipid profile analyses are influenced by a topically applied formulation. The increase in DNA concentration in the superficial SC (0-2 µm) is related to the DNA presence in the microbiome of the skin, which was not present in the SC depth below 4 µm.
Collapse
Affiliation(s)
- Jin Song Ri
- Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Se Hyok Choe
- Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Johannes Schleusener
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jürgen Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Chun Sik Choe
- Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Maxim E Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,
| |
Collapse
|
8
|
Davies MA. Cleansing-induced changes in skin measured by in vivo confocal raman spectroscopy. Skin Res Technol 2019; 26:30-38. [PMID: 31373073 DOI: 10.1111/srt.12760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/28/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND One of the most important steps people can take in reducing the spread of bacteria and viruses is washing the hands with soap and water. Frequent washing, required in certain occupations, can lead to skin dryness, chapping, and itching. MATERIALS AND METHODS In vivo confocal Raman spectroscopy was used to study short-term effects of hand washing on product deposition, lipid acyl chain structural disordering, and extraction of important skin components such as natural moisturizing factors, cholesterol, ceramides, amino acids, and changes in skin hydration. Effects of use of either soap, synthetic detergent, or triethanolamine (TEA)-soap/ glycerin were compared at two water temperatures. RESULTS Soap use resulted in significant deposition at all depths to 20 μm at 25°C and at the surface and 2 μm at 37°C. Significant decreases were observed in relative amounts of all skin components studied. NMF levels were not changed. Skin dehydration was observed for use of soap at 37°C. CONCLUSIONS Short-term effects of frequent hand washing can be monitored with in vivo confocal Raman spectroscopy. Effects of frequent washing may be reduced with lower wash temperature and products. Skin dehydration is not associated with lipid chain disordering.
Collapse
|
9
|
Darvin ME, Choe CS, Schleusener J, Lademann J. Non-invasive depth profiling of the stratum corneum in vivo using confocal Raman microscopy considering the non-homogeneous distribution of keratin. BIOMEDICAL OPTICS EXPRESS 2019; 10:3092-3103. [PMID: 31259076 PMCID: PMC6583359 DOI: 10.1364/boe.10.003092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Confocal Raman microscopy has a number of advantages in investigating the human stratum corneum (SC) in vivo and ex vivo. The penetration profiles of xenobiotics in the SC, as well as depth profiles of the physiological parameters of the SC, such as the concentration of water depending on the strength of hydrogen bonds, total water concentration, the hydrogen bonding state of water molecules, concentration of intercellular lipids, the lamellar and lateral packing order of intercellular lipids, the concentration of natural moisturizing factor molecules, carotenoids, and the secondary and tertiary structure properties of keratin are well investigated. To consider the depth-dependent Raman signal attenuation, in most cases a normalization procedure is needed, which uses the main SC's protein keratin-related Raman peaks, based on the assumption that keratin is homogeneously distributed in the SC. We found that this assumption is not accurate for the bottom part of the SC, where the water concentration is considerably increased, thus, reducing the presence of keratin. Our results demonstrate that the bottom part of the SC depth profile should be multiplied by 0.94 in average in order to match this non-homogeneity, which result in a decrease of the uncorrected values in these depths. The correctly normalized depth profiles of the concentration of lipids, water, natural moisturizing factor and carotenoids are presented in this work. The obtained results should be taken into consideration in future skin research using confocal Raman microscopy.
Collapse
Affiliation(s)
- Maxim E. Darvin
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Chun-Sik Choe
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
- Kim Il Sung University, Ryongnam-Dong, Taesong District, Pyongyang, DPR Korea
| | - Johannes Schleusener
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Jürgen Lademann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
10
|
Abstract
Skin hydration is a complex process that influences the physical and mechanical properties of skin. Various technologies have emerged over the years to assess this parameter, with the current standard being electrical probe-based instruments. Nevertheless, their inability to provide detailed information has prompted the use of sophisticated spectroscopic and imaging methodologies, which are capable of in-depth skin analysis that includes structural and composition details. Modern imaging and spectroscopic techniques have transformed skin research in the dermatological and cosmetics disciplines, and are now commonly employed in conjunction with traditional methods for comprehensive assessment of both healthy and pathological skin. This article reviews current techniques employed in measuring skin hydration, and gives an account on their principle of operation and applications in skin-related research.
Collapse
|
11
|
Translating chemometric analysis into physiological insights from in vivo confocal Raman spectroscopy of the human stratum corneum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:403-409. [DOI: 10.1016/j.bbamem.2018.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/31/2018] [Accepted: 11/16/2018] [Indexed: 11/23/2022]
|
12
|
Age related depth profiles of human Stratum Corneum barrier-related molecular parameters by confocal Raman microscopy in vivo. Mech Ageing Dev 2018; 172:6-12. [DOI: 10.1016/j.mad.2017.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/19/2017] [Indexed: 12/20/2022]
|
13
|
Choe C, Schleusener J, Lademann J, Darvin ME. In vivo confocal Raman microscopic determination of depth profiles of the stratum corneum lipid organization influenced by application of various oils. J Dermatol Sci 2017; 87:183-191. [PMID: 28522139 DOI: 10.1016/j.jdermsci.2017.04.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/05/2017] [Accepted: 04/28/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND The intercellular lipids (ICL) of stratum corneum (SC) play an important role in maintaining the skin barrier function. The lateral and lamellar packing order of ICL in SC is not homogenous, but rather depth-dependent. OBJECTIVE This study aimed to analyze the influence of the topically applied mineral-derived (paraffin and petrolatum) and plant-derived (almond oil and jojoba oil) oils on the depth-dependent ICL profile ordering of the SC in vivo. METHOD Confocal Raman microscopy (CRM), a unique tool to analyze the depth profile of the ICL structure non-invasively, is employed to investigate the interaction between oils and human SC in vivo. RESULTS The results show that the response of SC to oils' permeation varies in the depths. All oils remain in the upper layers of the SC (0-20% of SC thickness) and show predominated differences of ICL ordering from intact skin. In these depths, skin treated with plant-derived oils shows more disordered lateral and lamellar packing order of ICL than intact skin (p<0.05). In the intermediate layers of SC (30-50% of SC thickness), the oils do not influence the lateral packing order of SC ICL (p>0.1), except plant-derived oils at the depth 30% of SC thickness. In the deeper layers of the SC (60-100% of SC thickness), no difference between ICL lateral packing order of the oil-treated and intact skin can be observed, except that at the depths of 70-90% of the SC thickness, where slight changes with more disorder states are measured for plant-derived oil treated skin (p<0.1), which could be explained by the penetration of free fatty acid fractions in the deep-located SC areas. CONCLUSION Both oil types remain in the superficial layers of the SC (0-20% of the SC thickness). Skin treated with mineral- and plant-derived oils shows significantly higher disordered lateral and lamellar packing order of ICL in these layers of the SC compared to intact skin. Plant-derived oils significantly changed the ICL ordering in the depths of 30% and 70-90% of the SC thickness, which is likely due to the penetration of free fatty acids in the deeper layers of the SC.
Collapse
Affiliation(s)
- ChunSik Choe
- Charité - Universitätsmedizin Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany; Kim Il Sung University, Ryongnam-Dong, Taesong District, Pyongyang, Democratic People's Republic of Korea
| | - Johannes Schleusener
- Charité - Universitätsmedizin Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Jürgen Lademann
- Charité - Universitätsmedizin Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Maxim E Darvin
- Charité - Universitätsmedizin Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
14
|
Quatela A, Miloudi L, Tfayli A, Baillet-Guffroy A. In vivo Raman Microspectroscopy: Intra- and Intersubject Variability of Stratum Corneum Spectral Markers. Skin Pharmacol Physiol 2016; 29:102-9. [DOI: 10.1159/000445079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/28/2016] [Indexed: 11/19/2022]
|
15
|
Hutton Carlsen K, Køcks M, Sepehri M, Serup J. Allergic reactions in red tattoos: Raman spectroscopy for 'fingerprint' detection of chemical risk spectra in tattooed skin and culprit tattoo inks. Skin Res Technol 2016; 22:460-469. [PMID: 26991512 DOI: 10.1111/srt.12287] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2015] [Indexed: 11/30/2022]
Abstract
AIM The aim of this study was to assess the feasibility of Raman spectroscopy as a screening technique for chemical characterisation of tattoo pigments in pathologic reacting tattoos and tattoo ink stock products to depict unsafe pigments and metabolites of pigments. MATERIALS/METHODS Twelve dermatome shave biopsies from allergic reactions in red tattoos were analysed with Raman spectroscopy (A 785-nm 300 mW diode laser). These were referenced to samples of 10 different standard tattoo ink stock products, three of these identified as the culprit inks used by the tattooist and thus by history the source of the allergy. Three primary aromatic amine (PAA) laboratory standards (aniline, o-anisidine and 3,3'-dichlorobenzidine) were also studied. RESULTS Application of Raman spectroscopy to the shave biopsies was technically feasible. In addition, all ten inks and the three PAA standards could be discriminated. 10/12 shave biopsies provided clear fingerprint Raman signals which differed significantly from background skin, and Raman spectra from 8/12 biopsies perfectly matched spectra from the three culprit ink products. The spectrum of one red ink (a low cost product named 'Tattoo', claimed to originate from Taiwan, no other info on label) was identified in 5/12 biopsies. Strong indications of the inks 'Bright Red' and 'Crimson Red' were seen in three biopsies. The three PAA's could not be unambiguously identified. CONCLUSION This study, although on a small-scale, demonstrated Raman spectroscopy to be feasible for chemical analysis of red pigments in allergic reactions. Raman spectroscopy has a major potential for fingerprint screening of problematic tattoo pigments in situ in skin, ex vivo in skin biopsies and in tattoo ink stock products, thus, to eliminate unsafe ink products from markets.
Collapse
Affiliation(s)
- K Hutton Carlsen
- Department of Dermatology, The "Tattoo Clinic", Bispebjerg University Hospital, Copenhagen, Denmark.
| | - M Køcks
- Chemistry and Biotechnology, Danish Technological Institute, Aarhus, Denmark
| | - M Sepehri
- Centre of Wound Healing, Bispebjerg University Hospital, Copenhagen, Denmark
| | - J Serup
- Department of Dermatology, The "Tattoo Clinic", Bispebjerg University Hospital, Copenhagen, Denmark
| |
Collapse
|
16
|
Automatic and objective oral cancer diagnosis by Raman spectroscopic detection of keratin with multivariate curve resolution analysis. Sci Rep 2016; 6:20097. [PMID: 26806007 PMCID: PMC4726139 DOI: 10.1038/srep20097] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/18/2015] [Indexed: 11/29/2022] Open
Abstract
We have developed an automatic and objective method for detecting human oral squamous cell carcinoma (OSCC) tissues with Raman microspectroscopy. We measure 196 independent Raman spectra from 196 different points of one oral tissue sample and globally analyze these spectra using a Multivariate Curve Resolution (MCR) analysis. Discrimination of OSCC tissues is automatically and objectively made by spectral matching comparison of the MCR decomposed Raman spectra and the standard Raman spectrum of keratin, a well-established molecular marker of OSCC. We use a total of 24 tissue samples, 10 OSCC and 10 normal tissues from the same 10 patients, 3 OSCC and 1 normal tissues from different patients. Following the newly developed protocol presented here, we have been able to detect OSCC tissues with 77 to 92% sensitivity (depending on how to define positivity) and 100% specificity. The present approach lends itself to a reliable clinical diagnosis of OSCC substantiated by the “molecular fingerprint” of keratin.
Collapse
|