1
|
Ahn S, Hwang JE, Kim YJ, Eom K, Jung MH, Moon H, Ham D, Park JM, Oh SU, Park JY, Joung H. Examination of the utility of skin carotenoid status in estimating dietary intakes of carotenoids and fruits and vegetables: A randomized, parallel-group, controlled feeding trial. Nutrition 2024; 119:112304. [PMID: 38154397 DOI: 10.1016/j.nut.2023.112304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023]
Abstract
OBJECTIVE Optical spectroscopy-measured skin carotenoid status (SCS) has been validated for estimating fruit and vegetable (F&V) intake; however, there is limited research addressing SCS kinetics in whole-diet interventions. The aim of this controlled feeding trial was to explore SCS's response to carotenoid intake changes via whole-diet intervention, evaluating its biomarker potential. METHODS Eighty participants ages 20 to 49 y, without underlying diseases, were randomly allocated to the high-carotenoid group (HG; n = 40) or control group (CG; n = 40). The HG consumed a high-carotenoid diet (21 mg total carotenoids/2000 kcal), whereas the CG consumed a control diet (13.6 mg total carotenoids/2000 kcal) for 6 wk. Subsequently, skin and blood carotenoid concentrations were tracked without intervention for 4 wk. SCS was measured weekly via resonance Raman spectroscopy, and serum carotenoid concentrations were analyzed biweekly using high-performance liquid chromatography. Baseline carotenoid and F&V intakes were assessed via a 3-d diet record. The kinetics of SCS and serum carotenoid concentrations were analyzed using a weighted generalized estimating equation. Pearson's correlation analyses were used to examine baseline correlations between SCS and dietary carotenoid and F&V intakes, as well as serum carotenoid concentrations. RESULTS During the intervention, the HG showed a faster and greater SCS increase than the CG (difference in slope per week = 8.87 AU, Pinteraction <0.001). Baseline SCS had positive correlations with total carotenoid intake (r = 0.45), total F&V intake (r = 0.49), and total serum carotenoid concentration (r = 0.79; P < 0.001 for all). CONCLUSION These results suggest that SCS is a valid biomarker for monitoring changes in carotenoid intake through whole diet, which supports using SCS for assessing carotenoid-rich F&V intake.
Collapse
Affiliation(s)
- Seoeun Ahn
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Eun Hwang
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Device Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, Gyeonggi-do, Republic of Korea
| | - Yoon Jae Kim
- Device Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, Gyeonggi-do, Republic of Korea
| | - Kunsun Eom
- Device Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, Gyeonggi-do, Republic of Korea
| | - Myoung Hoon Jung
- Device Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, Gyeonggi-do, Republic of Korea
| | - HyunSeok Moon
- Device Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, Gyeonggi-do, Republic of Korea
| | - Dongwoo Ham
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Ji Min Park
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Se Uk Oh
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jin-Young Park
- Device Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, Gyeonggi-do, Republic of Korea.
| | - Hyojee Joung
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Carotenoids in Human SkinIn Vivo: Antioxidant and Photo-Protectant Role against External and Internal Stressors. Antioxidants (Basel) 2022; 11:antiox11081451. [PMID: 35892651 PMCID: PMC9394334 DOI: 10.3390/antiox11081451] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The antioxidant system of the human body plays a crucial role in maintaining redox homeostasis and has an important protective function. Carotenoids have pronounced antioxidant properties in the neutralization of free radicals. In human skin, carotenoids have a high concentration in the stratum corneum (SC)-the horny outermost layer of the epidermis, where they accumulate within lipid lamellae. Resonance Raman spectroscopy and diffuse reflectance spectroscopy are optical methods that are used to non-invasively determine the carotenoid concentration in the human SC in vivo. It was shown by electron paramagnetic resonance spectroscopy that carotenoids support the entire antioxidant status of the human SC in vivo by neutralizing free radicals and thus, counteracting the development of oxidative stress. This review is devoted to assembling the kinetics of the carotenoids in the human SC in vivo using non-invasive optical and spectroscopic methods. Factors contributing to the changes of the carotenoid concentration in the human SC and their influence on the antioxidant status of the SC in vivo are summarized. The effect of chemotherapy on the carotenoid concentration of the SC in cancer patients is presented. A potential antioxidant-based pathomechanism of chemotherapy-induced hand-foot syndrome and a method to reduce its frequency and severity are discussed.
Collapse
|
3
|
Zaytsev SM, Amouroux M, Khairallah G, Bashkatov AN, Tuchin VV, Blondel W, Genina EA. Impact of optical clearing on ex vivo human skin optical properties characterized by spatially resolved multimodal spectroscopy. JOURNAL OF BIOPHOTONICS 2022; 15:e202100202. [PMID: 34476912 DOI: 10.1002/jbio.202100202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
A spatially resolved multimodal spectroscopic device was used on a two-layered "hybrid" model made of ex vivo skin and fluorescent gel to investigate the effect of skin optical clearing on the depth sensitivity of optical spectroscopy. Time kinetics of fluorescence and diffuse reflectance spectra were acquired in four experimental conditions: with optical clearing agent (OCA) 1 made of polyethylene glycol 400 (PEG-400), propylene glycol and sucrose; with OCA 2 made of PEG-400 and dimethyl sulfoxide (DMSO); with saline solution as control and a "dry" condition. An increase in the gel fluorescence back reflected intensity was measured after optical clearing. Effect of OCA 2 turned out to be stronger than that of OCA 1, possibly due to DMSO impact on the stratum corneum keratin conformation. Complementary experimental results showed increased light transmittance through the skin and confirmed that the improvement in the depth sensitivity of the multimodal spectroscopic approach is related not only to the dehydration and refractive indices matching due to optical clearing, but also to the mechanical compression of tissues caused by the application of the spectroscopic probe.
Collapse
Affiliation(s)
- Sergey M Zaytsev
- Université de Lorraine, CNRS, CRAN UMR 7039, Vandoeuvre-lès-Nancy, France
- Saratov State University, Institute of Physics, Department of Optics and Biophotonics, Saratov, Russian Federation
| | - Marine Amouroux
- Université de Lorraine, CNRS, CRAN UMR 7039, Vandoeuvre-lès-Nancy, France
| | - Grégoire Khairallah
- Université de Lorraine, CNRS, CRAN UMR 7039, Vandoeuvre-lès-Nancy, France
- Department of Plastic, Aesthetic and Reconstructive Surgery, Metz-Thionville Regional Hospital, Ars-Laquenexy, France
| | - Alexey N Bashkatov
- Saratov State University, Institute of Physics, Department of Optics and Biophotonics, Saratov, Russian Federation
- National Research Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russian Federation
| | - Valery V Tuchin
- Saratov State University, Institute of Physics, Department of Optics and Biophotonics, Saratov, Russian Federation
- National Research Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russian Federation
- Institute of Precision Mechanics and Control RAS, Laboratory of Laser Diagnostics of Technical and Living Systems, Saratov, Russian Federation
| | - Walter Blondel
- Université de Lorraine, CNRS, CRAN UMR 7039, Vandoeuvre-lès-Nancy, France
| | - Elina A Genina
- Saratov State University, Institute of Physics, Department of Optics and Biophotonics, Saratov, Russian Federation
- National Research Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russian Federation
| |
Collapse
|
4
|
Baswan SM, Klosner AE, Weir C, Salter-Venzon D, Gellenbeck KW, Leverett J, Krutmann J. Role of ingestible carotenoids in skin protection: A review of clinical evidence. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2021; 37:490-504. [PMID: 33955073 DOI: 10.1111/phpp.12690] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/05/2021] [Accepted: 05/03/2021] [Indexed: 12/01/2022]
Abstract
Carotenoids, a class of phytonutrients, have been well established to boost skin's innate resistance against ultraviolet (UV) B-induced erythema (sunburn). Many of the published clinical studies thus far have focused on the measurement of erythema as the primary clinical indicator of skin protection against UVB radiation. More recent studies have shown that carotenoid supplementation provides even more skin protection than previously shown as new clinical and molecular endpoints beyond UVB-induced erythema have been reported. These recent studies have demonstrated that carotenoids also provide photoprotection against UVA-induced pigmentation and inhibit molecular markers of oxidative stress such as intercellular adhesion molecule 1, heme oxygenase-1, and matrix metalloproteinases 1 and 9. This article provides a comprehensive review of the published clinical evidence on skin benefits of carotenoids in the last five decades and indicates new perspectives on the role of ingestible carotenoids in skin protection.
Collapse
Affiliation(s)
| | - Allison E Klosner
- Nutrilite Health Institute, Innovation and Science, Amway Corporation, Buena Park, CA, USA
| | - Cathy Weir
- Innovation and Science, Amway Corporation, Ada, MI, USA
| | - Dawna Salter-Venzon
- Nutrilite Health Institute, Innovation and Science, Amway Corporation, Buena Park, CA, USA
| | - Kevin W Gellenbeck
- Nutrilite Health Institute, Innovation and Science, Amway Corporation, Buena Park, CA, USA
| | | | - Jean Krutmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.,Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
5
|
Cutaneous Carotenoid Level Measured by Multiple Spatially Resolved Reflection Spectroscopy Sensors Correlates with Vegetable Intake and Is Increased by Continual Intake of Vegetable Juice. Diseases 2020; 9:diseases9010004. [PMID: 33396495 PMCID: PMC7838938 DOI: 10.3390/diseases9010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 01/15/2023] Open
Abstract
Although vegetables are beneficial for human health, in many countries, the recommended vegetable intake is not reached. To assess vegetable intake, it is important to understand vegetable consumption. Therefore, we conducted a cross-sectional and intervention study of 26 healthy individuals (50% women; 37.0 ± 8.9 years) and estimated vegetable intake on the basis of the cutaneous carotenoid level (CCL) with a noninvasive skin carotenoid sensor, considering that vegetable juice intake can increase CCL. Participants consumed vegetable juice containing 350 g of vegetables daily for 4 weeks. Blood carotenoid levels and CCL were measured for 12 weeks. Cross-sectional analysis showed a significant positive correlation between CCL and vegetable intake (r = 0.489). Vegetable juice consumption significantly increased CCL and the blood levels of α-carotene, β-carotene, and lycopene (p < 0.05). The correlation coefficient between the blood level and CCL for lycopene was smaller (r = 0.001) compared to that between the blood level and CCL for α-carotene (r = 0.523) and β-carotene (r = 0.460), likely because of bioavailability differences. In conclusion, noninvasive skin carotenoid measurements are effective for determining vegetable intake, and vegetable juice significantly increases CCL.
Collapse
|
6
|
Tsankov N, Mateev D, Bogdanov I, Darlenski R. Dynamics of epidermal carotenoid levels
in vivo
of healthy subjects in Antarctica. J Eur Acad Dermatol Venereol 2020; 34:e824-e825. [DOI: 10.1111/jdv.16702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- N. Tsankov
- Department of Dermatology and Venereology Acibadem Cityclinic Tokuda Hospital Sofia Bulgaria
| | - D. Mateev
- Bulgarian Antarctic Institute Sofia Bulgaria
| | - I. Bogdanov
- Department of Dermatology and Venereology Acibadem Cityclinic Tokuda Hospital Sofia Bulgaria
| | - R. Darlenski
- Department of Dermatology and Venereology Acibadem Cityclinic Tokuda Hospital Sofia Bulgaria
- Department of Dermatology and Venereology Trakia University Stara Zagora Bulgaria
| |
Collapse
|
7
|
Matsumoto M, Suganuma H, Shimizu S, Hayashi H, Sawada K, Tokuda I, Ihara K, Nakaji S. Skin Carotenoid Level as an Alternative Marker of Serum Total Carotenoid Concentration and Vegetable Intake Correlates with Biomarkers of Circulatory Diseases and Metabolic Syndrome. Nutrients 2020; 12:E1825. [PMID: 32575348 PMCID: PMC7353351 DOI: 10.3390/nu12061825] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/22/2023] Open
Abstract
To confirm the usefulness of noninvasive measurements of skin carotenoids to indicate vegetable intake and to elucidate relationships between skin carotenoid levels and biomarkers of circulatory diseases and metabolic syndrome, we conducted a cross-sectional study on a resident-based health checkup (n = 811; 58% women; 49.5 ± 15.1 years). Skin and serum carotenoid levels were measured via reflectance spectroscopy and high-performance liquid chromatography, respectively. Vegetable intake was estimated using a dietary questionnaire. Levels of 9 biomarkers (body mass index [BMI], brachial-ankle pulse wave velocity [baPWV], systolic and diastolic blood pressure [SBP and DBP], homeostasis model assessment as an index of insulin resistance [HOMA-IR], blood insulin, fasting blood glucose [FBG], triglycerides [TGs], and high-density lipoprotein cholesterol [HDL-C]) were determined. Skin carotenoid levels were significantly positively correlated with serum total carotenoids and vegetable intake (r = 0.678 and 0.210, respectively). In women, higher skin carotenoid levels were significantly associated with lower BMI, SBP, DBP, HOMA-IR, blood insulin, and TGs levels and higher HDL-C levels. In men, it was also significantly correlated with BMI and blood insulin levels. In conclusion, dermal carotenoid level may indicate vegetable intake, and the higher level of dermal carotenoids are associated with a lower risk of circulatory diseases and metabolic syndrome.
Collapse
Affiliation(s)
- Mai Matsumoto
- Innovation Division, KAGOME CO., LTD. 17 Nishitomiyama, Nasushiobara 329-2762, Japan; (M.M.); (S.S.); (H.H.)
| | - Hiroyuki Suganuma
- Innovation Division, KAGOME CO., LTD. 17 Nishitomiyama, Nasushiobara 329-2762, Japan; (M.M.); (S.S.); (H.H.)
| | - Sunao Shimizu
- Innovation Division, KAGOME CO., LTD. 17 Nishitomiyama, Nasushiobara 329-2762, Japan; (M.M.); (S.S.); (H.H.)
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
- Center for Advanced Medical Science, Department of Stress Response Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Hiroki Hayashi
- Innovation Division, KAGOME CO., LTD. 17 Nishitomiyama, Nasushiobara 329-2762, Japan; (M.M.); (S.S.); (H.H.)
| | - Kahori Sawada
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan; (K.S.); (I.T.); (K.I.); (S.N.)
| | - Itoyo Tokuda
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan; (K.S.); (I.T.); (K.I.); (S.N.)
| | - Kazushige Ihara
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan; (K.S.); (I.T.); (K.I.); (S.N.)
| | - Shigeyuki Nakaji
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan; (K.S.); (I.T.); (K.I.); (S.N.)
| |
Collapse
|
8
|
Baswan SM, Marini A, Klosner AE, Jaenicke T, Leverett J, Murray M, Gellenbeck KW, Krutmann J. Orally administered mixed carotenoids protect human skin against ultraviolet A-induced skin pigmentation: A double-blind, placebo-controlled, randomized clinical trial. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2020; 36:219-225. [PMID: 32072695 DOI: 10.1111/phpp.12541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Photoprotection of human skin is determined as the capacity of sunscreens to prevent ultraviolet (UV) B radiation-induced erythema and UVA radiation-induced pigmentation. It is unequivocal that, in addition to sunscreens, oral supplementation with carotenoids can protect human skin against UVB radiation-induced erythema. It is not known if this is also the case for UVA radiation-induced pigmentation. OBJECTIVE To clinically evaluate the photoprotective effects of daily supplementation with carotenoids against UVA radiation-induced pigmentation. METHODS In this double-blind, placebo-controlled trial, 60 subjects (Fitzpatrick types II-IV) were randomized to receive Nutrilite™ Multi Carotene supplement or placebo for 12 weeks. UVB-induced minimal erythemal dose (MED), UVA-induced minimal persistent pigmentation dose (MPPD) and skin carotenoid levels were measured at baseline, 4, 8, and 12 weeks of intervention. Skin color was evaluated by expert clinical graders and by colorimetry. Carotenoid levels in the skin were measured by the Biozoom® device. RESULTS In the intervention group, a significant increase in comparison with the placebo group was observed in (a) skin carotenoid levels, (b) UVB-induced MED, and (c) UVA-induced MPPD values obtained by colorimetry. CONCLUSION Daily supplementation with carotenoids protects human skin against both UVB-induced erythema and UVA-induced pigmentation.
Collapse
Affiliation(s)
| | - Alessandra Marini
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Allison E Klosner
- Nutrilite Health Institute R&D, Amway Corporation, Buena Park, CA, USA
| | - Thomas Jaenicke
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | | - Mary Murray
- Nutrilite Health Institute R&D, Amway Corporation, Buena Park, CA, USA
| | | | - Jean Krutmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| |
Collapse
|
9
|
Meléndez-Martínez AJ, Stinco CM, Mapelli-Brahm P. Skin Carotenoids in Public Health and Nutricosmetics: The Emerging Roles and Applications of the UV Radiation-Absorbing Colourless Carotenoids Phytoene and Phytofluene. Nutrients 2019; 11:nu11051093. [PMID: 31100970 PMCID: PMC6566388 DOI: 10.3390/nu11051093] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/01/2023] Open
Abstract
In this work, the importance of dietary carotenoids in skin health and appearance is comprehensively reviewed and discussed. References are made to their applications in health-promoting and nutricosmetic products and the important public health implications that can be derived. Attention is focused on the colourless UV radiation (UVR)-absorbing dietary carotenoids phytoene and phytofluene, which are attracting increased interest in food science and technology, nutrition, health and cosmetics. These compounds are major dietary carotenoids, readily bioavailable, and have been shown to be involved in several health-promoting actions, as pinpointed in recent reviews. The growing evidence that these unique UVR-absorbing carotenoids with distinctive structures, properties (light absorption, susceptibility to oxidation, rigidity, tendency to aggregation, or even fluorescence, in the case of phytofluene) and activities can be beneficial in these contexts is highlighted. Additionally, the recommendation that the levels of these carotenoids are considered in properly assessing skin carotenoid status is made.
Collapse
Affiliation(s)
- Antonio J Meléndez-Martínez
- Food Colour & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, 41012 Seville, Spain.
| | - Carla M Stinco
- Food Colour & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, 41012 Seville, Spain.
| | - Paula Mapelli-Brahm
- Food Colour & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
10
|
Jung S, Schleusener J, Knorr F, Kraft M, Thiede G, Richter H, Darvin ME, Schanzer S, Gallinger S, Wegener U, Lademann J. Influence of polyester spacer fabric, cotton, chloroprene rubber, and silicone on microclimatic and morphologic physiologic skin parameters in vivo. Skin Res Technol 2019; 25:389-398. [PMID: 30758884 DOI: 10.1111/srt.12666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/09/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Skin diseases can develop upon disadvantageous microclimate in relation to skin contact with textiles of supporting devices. Increased temperature, moisture, mechanical fracture, pressure, and inflammatory processes often occur mutually and enhance each other in their adverse effects. Therefore, the early prevention of skin irritations by improvement of microclimatic properties of skin in contact with supporting devices is important. MATERIALS AND METHODS In this study, the microclimate under occlusion with polyester, cotton, chloroprene rubber, and silicone textiles, used for supporting devices, was analyzed by determining several characteristic physiologic skin parameters in vivo, including temperature, moisture, and transepidermal water loss (TEWL). This is achieved by comparing a miniaturized in vivo detection device with several established optical and sensory methods in vivo. RESULTS A highly significant TEWL decrease was found after polyester, chloroprene rubber, and silicone application. The application of all materials showed highly significant decrease in skin surface temperature, with chloroprene rubber showing the lowest. Similarly, all materials showed highly significant increase in relative moisture, where the highest increase was found for chloroprene rubber and silicone and the lowest increase for cotton. The cutaneous carotenoid concentration of chloroprene rubber, silicone, and polyester decreased. A manipulation of the surface structure of the stratum corneum was recognized for all materials except for cotton by laser scanning microscopy. CONCLUSION The skin parameters temperature, relative moisture, antioxidant status, and TEWL can effectively characterize the microclimatic environment during occlusion with medical supporting materials. These parameters could potentially be used to develop standardized testing procedures for material evaluation.
Collapse
Affiliation(s)
- Sora Jung
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Johannes Schleusener
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Fanny Knorr
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Marc Kraft
- Department of Medical Engineering, Berlin Institute of Technology, Technical University Berlin, Berlin, Germany
| | - Gisela Thiede
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Heike Richter
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Maxim E Darvin
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Sabine Schanzer
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Simon Gallinger
- Department of Medical Engineering, Berlin Institute of Technology, Technical University Berlin, Berlin, Germany
| | - Ulrich Wegener
- Rehabtech Research Lab GmbH, Science Center, Berlin, Germany
| | - Jürgen Lademann
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Medical Engineering, Berlin Institute of Technology, Technical University Berlin, Berlin, Germany
| |
Collapse
|
11
|
|
12
|
Bielfeldt S, Springmann G, Seise M, Wilhelm KP, Callaghan T. An updated review of clinical methods in the assessment of ageing skin - New perspectives and evaluation for claims support. Int J Cosmet Sci 2018; 40:348-355. [PMID: 30047989 DOI: 10.1111/ics.12484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
Abstract
With the advancement of skin research, today's consumer has increased access to an informed understanding of ageing skin and its appendages, together with a plethora of targeted products to meet such needs. In recent years, increased legislative demands for quality evidential claims support have led not only to the development and validation of clinical methods to measure and quantify ageing skin, but also a clearer understanding of the skin ageing process-especially the impact of both its internal and external environments-as well as a tougher stance on clearly unjustifiable claims. Traditional testing methods used to research and evaluate anti-ageing products claim to employ sophisticated instruments. Today, however, since the term anti-ageing can be considered a misnomer, intelligent use of combined more advanced clinical methods has enabled the development of technologically improved consumer products providing enhanced efficacy and targeted performance. Non-invasive methods for the assessment and quantification of the causes of ageing skin provide tools to the clinical researcher as defined by key clinically observed ageing parameters. Where evidence requires additional support, a number of clinical procedures evaluating ageing skin and hair products are combined with invasive procedures, thus enabling an added value to product claims. As discussed herein, given the enhanced understanding of ageing, we provide an update to our previous reviews of clinical methods used in the assessment of skin ageing, to include the wider aspects of environmental exposure; skin pigmentation; microbiome disturbance; surface topography; colour, radiance, and pH; and structural integrity-all requiring a disciplined approach to their use in dermatological investigations and product claims evidence.
Collapse
Affiliation(s)
- S Bielfeldt
- proDERM Institute for Applied Dermatological Research, 22869, Schenefeld/Hamburg, Germany
| | - G Springmann
- proDERM Institute for Applied Dermatological Research, 22869, Schenefeld/Hamburg, Germany
| | - M Seise
- proDERM Institute for Applied Dermatological Research, 22869, Schenefeld/Hamburg, Germany
| | - K-P Wilhelm
- proDERM Institute for Applied Dermatological Research, 22869, Schenefeld/Hamburg, Germany
| | - T Callaghan
- Callaghan Consulting International, 22587, Hamburg, Germany
| |
Collapse
|
13
|
Lohan SB, Vitt K, Scholz P, Keck CM, Meinke MC. ROS production and glutathione response in keratinocytes after application of β-carotene and VIS/NIR irradiation. Chem Biol Interact 2017; 280:1-7. [PMID: 29203372 DOI: 10.1016/j.cbi.2017.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/01/2017] [Indexed: 12/26/2022]
Abstract
The skin is exposed to many stress factors which, in turn, can promote a shift of the antioxidant (AO) network towards the prooxidative side, supporting the development of various skin disorders. A balanced diet, in combination with a healthy lifestyle could reduce oxidative stress. Carotenoids are essential nonenzymatic AOs and main components of the exogenous AO system. To examine the interdependence between endogenous and exogenous AOs, secondary keratinocytes (HaCaT) were treated with various Beta (β-)-carotene concentrations with subsequent stress treatment by moderate irradiation (700-2000 nm). To facilitate the uptake of β-carotene, an innovative nanocrystal solution was used. Cell viability assay was applied to HaCaT cells to evaluate suitable concentration of β-carotene, whereby the uptake was measured by resonant Raman spectroscopy. The redox status was determined before and after supplementation with two selected β-carotene concentrations (0.02 and 0.1 μg/ml) and irradiation. Reactive oxygen species (ROS) were measured by electron paramagnetic resonance spectroscopy and the AO glutathione (GSH) by a fluorescent-based assay for evaluating the endogenous redox status. An increase of ROS and a reduction of GSH after irradiation was observed. Interestingly, the applied β-carotene, already induce oxidative stress. Nevertheless, an effective protection against irradiation could be observed for the lower dose. The high dose turned pro-oxidative.
Collapse
Affiliation(s)
- Silke B Lohan
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany.
| | - Kristina Vitt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| | | | | | - Martina C Meinke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Berlin, Germany
| |
Collapse
|
14
|
Meinke MC, Nowbary CK, Schanzer S, Vollert H, Lademann J, Darvin ME. Influences of Orally Taken Carotenoid-Rich Curly Kale Extract on Collagen I/Elastin Index of the Skin. Nutrients 2017; 9:nu9070775. [PMID: 28753935 PMCID: PMC5537889 DOI: 10.3390/nu9070775] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 12/17/2022] Open
Abstract
Two differently designed, spatially resolved reflectance spectroscopy-based scanners and two-photon tomography were used for noninvasive in vivo determination of cutaneous carotenoids, and collagen I/elastin aging index of dermis, respectively, in the skin of 29 healthy female volunteers between 40 and 56 years of age. The volunteers received a supplement in the form of a carotenoid-rich natural curly kale extract containing 1650 µg of carotenoids in total (three capsules of 550 µg), once a day. Measurements were taken before, after 5 months and after 10 months of daily supplementation. The results showed significantly increased values for the cutaneous carotenoids and the collagen I/elastin aging index of dermis 5 and 10 months after the beginning of the study. The obtained results show that a natural carotenoid-rich extract could prevent the aging-related collagen I degradation in the dermis and improve the extracellular matrix.
Collapse
Affiliation(s)
- Martina C Meinke
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center of Experimental and Applied Cutaneous Physiology (CCP), Department of Dermatology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Ceylan K Nowbary
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center of Experimental and Applied Cutaneous Physiology (CCP), Department of Dermatology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Sabine Schanzer
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center of Experimental and Applied Cutaneous Physiology (CCP), Department of Dermatology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Henning Vollert
- Bioactive Food GmbH, Am Ihlsee 36a, 23795 Bad Segeberg, Germany.
| | - Jürgen Lademann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center of Experimental and Applied Cutaneous Physiology (CCP), Department of Dermatology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Maxim E Darvin
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center of Experimental and Applied Cutaneous Physiology (CCP), Department of Dermatology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|