1
|
Schweizer TA, Würmli JS, Prinz J, Wölfle M, Marti R, Koliwer-Brandl H, Rooney AM, Benvenga V, Egli A, Imhof L, Bosshard PP, Achermann Y. Photodynamic Therapy with Protoporphyrin IX Precursors Using Artificial Daylight Improves Skin Antisepsis for Orthopedic Surgeries. Microorganisms 2025; 13:204. [PMID: 39858972 PMCID: PMC11767567 DOI: 10.3390/microorganisms13010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Classical preoperative skin antisepsis is insufficient in completely eliminating bacterial skin colonization for arthroplasty. In contrast, photodynamic therapy (PDT) with red light and methyl-aminolevulinate (MAL), combined with skin antisepsis, led to the absence of bacterial growth in healthy participants, though with local skin erythema, posing an obstacle for orthopedic surgery. Therefore, we explored whether artificial daylight PDT (PDT-DL) was superior to red light. Twenty healthy participants were allocated to either 5-aminolevulinic acid-(5-ALA) PDT-DL (n = 10) or MAL-PDT-DL (n = 10) before antisepsis with povidone-iodine/alcohol. Skin swabs from the groin were taken to cultivate bacteria at baseline, after PDT-DL, and after the subsequent antisepsis. Additional swabs were taken on day 4 before and after antisepsis without PDT. The contralateral groin of each participant and of ten additional healthy volunteers served as the control (n = 30). In selected participants, 16S rRNA-based amplicon deep sequencing was performed. All participants showed a baseline bacterial colonization. After a PDT-DL with skin antisepsis, bacterial growth occurred in three (30%) and in one (10%) participants with 5-ALA and MAL, respectively, compared to the sixteen (55%) participants in the control group. On day 4, three (30%) participants per group showed positive cultures post antisepsis. Adverse effects were reported in six (60%) and zero (0%) participants for 5-ALA- and MAL-PDT-DL, respectively. The skin bacteriome changes correlated with the bacterial culture results. The MAL-PDT-DL with skin antisepsis significantly increased bacterial reduction on the skin without adverse effects. This offers an opportunity to prevent infections in arthroplasty patients and reduce antibiotic use, thus contributing to antibiotic stewardship goals emphasized in the One Health approach.
Collapse
Affiliation(s)
- Tiziano A. Schweizer
- Department of Dermatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (J.S.W.); (Y.A.)
| | - Julia S. Würmli
- Department of Dermatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (J.S.W.); (Y.A.)
| | - Julia Prinz
- Department of Dermatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (J.S.W.); (Y.A.)
| | - Maximilian Wölfle
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Roger Marti
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland (H.K.-B.); (V.B.); (A.E.)
- Analytica Medizinische Laboratorien AG, 8024 Zurich, Switzerland
| | - Hendrik Koliwer-Brandl
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland (H.K.-B.); (V.B.); (A.E.)
| | - Ashley M. Rooney
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland (H.K.-B.); (V.B.); (A.E.)
| | - Vanni Benvenga
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland (H.K.-B.); (V.B.); (A.E.)
| | - Adrian Egli
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland (H.K.-B.); (V.B.); (A.E.)
| | - Laurence Imhof
- Department of Dermatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (J.S.W.); (Y.A.)
| | - Philipp P. Bosshard
- Department of Dermatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (J.S.W.); (Y.A.)
| | - Yvonne Achermann
- Department of Dermatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (J.S.W.); (Y.A.)
- Internal Medicine, Hospital Zollikerberg, 8125 Zollikerberg, Switzerland
| |
Collapse
|
2
|
Xu J, Huang S, Fu Z, Zheng W, Luo W, Zhuang N, Liu L, He R, Yang F. Effects of Light and Laser Therapies on the Microecosystem of Sebaceous Glands in Acne Treatment. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2025; 41:e70005. [PMID: 39754335 DOI: 10.1111/phpp.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Acne vulgaris (acne) is one of the most common skin diseases with complex pathogenesis. Numerous studies have shown that the microecosystem of sebaceous glands and Cutibacterium acnes play key roles in its pathogenesis. Antibiotics targeting C. acnes have been widely used in acne treatment, but the growing prevalence of antibiotic resistance has become alarming. Further research into the microecosystem of sebaceous glands and the role of specific C. acnes phylotypes in acne pathogenesis has led to a paradigm shift in acne treatment. Currently, non-antibiotic therapies such as light therapy and laser therapy are becoming increasingly popular, opening up new opportunities in acne management. METHODS Studies on the microecosystem of sebaceous glands associated with acne and the effects of light and laser therapies on the microecosystem in acne treatment were retrieved from the PubMed database. RESULTS Dysbiosis of the microecosystem of the pilosebaceous unit is closely related to the pathogenesis of acne. Light and laser therapies have an impact on the microecosystem of the pilosebaceous unit in acne treatment. CONCLUSIONS Light and laser therapies are the popular alternative options in acne treatment. The mechanisms of their effect on the microecosystem of sebaceous glands are not completely clear and require further research, especially for laser therapy.
Collapse
Affiliation(s)
- Jiaoxiong Xu
- Department of Dermatology and Burn, Huangpu People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Shengbo Huang
- Department of Dermatology, Dermatology Hospital of Southern Medical University (Guangdong Provincial Dermatology Hospital), Guangzhou, Guangdong, China
- Department of Dermatology, The Second People's Hospital of Foshan (Affiliated Foshan Hospital of Southern Medical University), Foshan, Guangdong, China
| | - Zhengzheng Fu
- Department of Dermatology, Dermatology Hospital of Southern Medical University (Guangdong Provincial Dermatology Hospital), Guangzhou, Guangdong, China
| | - Wen Zheng
- Department of Dermatology, Dermatology Hospital of Southern Medical University (Guangdong Provincial Dermatology Hospital), Guangzhou, Guangdong, China
| | - Wanting Luo
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Niangqiao Zhuang
- Department of Dermatology, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, Guangdong, China
| | - Liuhong Liu
- Department of Dermatology, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China
| | - Renliang He
- Department of Dermatologic Surgery and Dermatoma, Dermatology Hospital of Southern Medical University (Guangdong Provincial Dermatology Hospital), Guangzhou, Guangdong, China
| | - Fang Yang
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Xie WY, Shen HL, Yan ZM, Zheng RJ, Jiang JJ, Zhong JJ, Zhou WW. Paenibacillus exopolysaccharide alleviates Malassezia-induced skin damage: Enhancing skin barrier function, regulating immune responses, and modulating microbiota. Int J Biol Macromol 2024; 278:135404. [PMID: 39256124 DOI: 10.1016/j.ijbiomac.2024.135404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Numerous studies have established a strong association between Malassezia and various skin disorders, including atopic dermatitis. Finding appropriate methods or medications to alleviate Malassezia-induced skin damage is of notable public interest. This study aimed to evaluate the therapeutic effect of the exopolysaccharide EPS1, produced by Paenibacillus polymyxa, on Malassezia restricta-induced skin damage. In vitro assays indicated that EPS1 reduced the expression of pro-inflammatory cytokine genes in TNF-α-induced HaCaT cells. In a murine model, EPS1 was found to mitigate clinical symptoms, reduce epidermal thickness and mast cell infiltration, improve skin barrier function, decrease pro-inflammatory cytokine levels associated with type 17 inflammation, enhance Tregs in the spleen, upregulate the transcription of Treg-related genes in skin lesions, and modulate the skin microbiota. This study is the first to report the alleviating effect of Paenibacillus exopolysaccharide on Malassezia-induced skin inflammation and its impact on the skin microbiota. These findings support the potential of Paenibacillus exopolysaccharides as consumer products and therapeutic agents for managing Malassezia-induced skin damage by improving skin barrier function, modulating immune responses, and influencing skin microbiota.
Collapse
Affiliation(s)
- Wan-Yue Xie
- Institute of Food Bioscience and Technology, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Hui-Ling Shen
- Institute of Food Bioscience and Technology, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zi-Ming Yan
- Institute of Food Bioscience and Technology, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ru-Jing Zheng
- Zhejiang Homay Technology Co., Ltd., Hangzhou 311200, Zhejiang, China
| | - Jin-Jie Jiang
- Zhejiang Homay Technology Co., Ltd., Hangzhou 311200, Zhejiang, China
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen-Wen Zhou
- Institute of Food Bioscience and Technology, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
4
|
Podwojniak A, Tan IJ, Sauer J, Neubauer Z, Rothenberg H, Ghani H, Parikh AK, Cohen B. Acne and the cutaneous microbiome: A systematic review of mechanisms and implications for treatments. J Eur Acad Dermatol Venereol 2024. [PMID: 39269130 DOI: 10.1111/jdv.20332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 08/16/2024] [Indexed: 09/15/2024]
Abstract
Acne vulgaris is a pervasive skin disease characterized by inflammation of sebaceous units surrounding hair follicles. It results from the complex interplay between skin physiology and the intricate cutaneous microbiome. Current acne treatments, while effective, have major limitations, prompting a shift towards microbiome-based therapeutic approaches. This study aims to determine the relationship between acne and the cutaneous microbiome, assess the effects of current treatments on the cutaneous microbiome and explore the implications for developing new therapies. A systematic review was performed using PubMed and SCOPUS databases within the last 10 years. Methodological quality was assessed independently by two authors. The search retrieved 1830 records, of which 26 articles met the inclusion criteria. Meta-analysis of alpha diversity change was assessed using fixed and randomized effect models per therapeutic group. Eight studies pertain to the role of the cutaneous microbiome in acne, identifying C. acnes, S. aureus and S. epidermidis as key contributors through overproliferation, commensalism or dysbiosis. Eleven studies discuss current acne treatments, including doxycycline (1), topical benzoyl peroxide (BPO) (4), isotretinoin (2), sulfacetamide-sulfur (SSA) (2) and aminolevulinic acid-photodynamic therapy (ALA-PDT) (2), identified as modulating the cutaneous microbiome as a mechanism of efficacy in acne treatment. Seven studies discuss new treatments with topical probiotics, plant derivatives and protein derivatives, which contribute to acne clearance via modulation of dysbiosis, inflammatory markers and diversity indexes. A meta-analysis of the effects of existing therapeutics on the cutaneous microbiome identified benzoyl peroxide as the only treatment to facilitate significant change in diversity. Despite the heterogeneity of study types and microbiome classifications limiting the analysis, this review underscores the complexity of microbial involvement in acne pathogenesis. It delineates the effects of acne therapeutics on microbial diversity, abundance and composition, emphasizing the necessity for personalized approaches in acne management based on microbiome modulation.
Collapse
Affiliation(s)
- Alicia Podwojniak
- Rowan-Virtua School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Isabella J Tan
- Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - John Sauer
- Rowan-Virtua School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Zachary Neubauer
- Thomas Jefferson University-Sidney Kimmel Medical College, Philadelphia, Pennsylvania, USA
| | - Hanna Rothenberg
- Rowan-Virtua School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Hira Ghani
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Aarushi K Parikh
- Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Bernard Cohen
- Department of Dermatology, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Hong JY, Kim KR, Kim HJ, Seok J, Park KY. Targeted precision cryotherapy for acne vulgaris. Skin Res Technol 2024; 30:e70045. [PMID: 39221850 PMCID: PMC11367662 DOI: 10.1111/srt.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Acne vulgaris poses a significant dermatological challenge, necessitating alternative treatments due to limitations and side effects associated with current therapies. This pilot clinical trial investigated the feasibility and efficacy of precision cryotherapy for acne vulgaris. METHODS A total of 20 volunteers underwent targeted precision cryotherapy using a carbon dioxide-based device. Treatment outcomes were assessed using various parameters, including Investigator Global Assessment (IGA) score, acne lesion count, erythema index (EI), global evaluation score, and participant satisfaction. Safety monitoring included adverse event reporting and physical examination. RESULTS Precision cryotherapy demonstrated a significant reduction (90.25%) in the acne lesion count by week 4, with clinical improvement indicated by IGA score reduction (p < 0.001). The EI showed notable improvements at weeks 1, 2, and 4. The global evaluation score demonstrated a 75%-100% clinical improvement at Visit 4. Participants reported high satisfaction (6.75 ± 0.79) with the procedure. No adverse event or discomfort was reported. CONCLUSION Precision cryotherapy effectively improved acne lesions, which was safe and satisfactory for participants. These findings suggest its potential as an alternative therapeutic modality, especially for populations with limited treatment options. Further research is needed to validate the results and explore underlying mechanisms.
Collapse
Affiliation(s)
- Ji Yeon Hong
- Department of DermatologyChung‐Ang University HospitalChung‐Ang University College of MedicineDongjak‐guSeoulSouth Korea
| | - Ka Ram Kim
- Department of DermatologyChung‐Ang University HospitalChung‐Ang University College of MedicineDongjak‐guSeoulSouth Korea
| | - Hyun Jung Kim
- Department of DermatologyChungnam National University Sejong HospitalSejongSouth Korea
| | - Joon Seok
- Department of DermatologyChung‐Ang University HospitalChung‐Ang University College of MedicineDongjak‐guSeoulSouth Korea
| | - Kui Young Park
- Department of DermatologyChung‐Ang University HospitalChung‐Ang University College of MedicineDongjak‐guSeoulSouth Korea
| |
Collapse
|
6
|
Clément S, Winum JY. Photodynamic therapy alone or in combination to counteract bacterial infections. Expert Opin Ther Pat 2024; 34:401-414. [PMID: 38439633 DOI: 10.1080/13543776.2024.2327308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
INTRODUCTION Antibacterial photodynamic therapy presents a promising alternative to antibiotics, with potential against multidrug-resistant bacteria, offering broad-spectrum action, reduced resistance risk, and improved tissue selectivity. AREAS COVERED This manuscript reviews patent literature in the field of antibacterial photodynamic therapy through the period of 2019-2023. All data are from the US and European patent databases and SciFinder. EXPERT OPINION Antibacterial photodynamic therapy (PDT) is an appealing approach for treating bacterial infections, especially biofilm-related ones, by releasing reactive oxygen species (ROS) upon light activation. Its success is driven by a growing variety of photosensitizers (PSs) with tailored properties, like water solubility, controllable surface charge, and ROS generation efficiency. Among them, Aggregation Induced Emission (AIE)-type PSs are promising, demonstrating enhanced efficacy when aggregated in biological environments. However, the penetration of pristine PSs into bacterial biofilms within deep tissues or complex anatomical regions is limited, reducing their antibacterial effectiveness. To address this, nanotechnology has been integrated into antibacterial PDT to synthesize various nano-PSs. This adaptability allows seamless integration with other antimicrobial treatments, offering a comprehensive approach to combat localized infections, especially in dentistry and dermatology. By combining PSs with complementary therapies, antibacterial PDT offers a multifaceted strategy for effective microbial control and management.
Collapse
Affiliation(s)
| | - Jean-Yves Winum
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
7
|
Du L, Cao Z, Wei J, Li M, Han C, Zhang C. Fire needle pretreatment with 5-aminolevulinic acid photodynamic therapy combined with low-dose isotretinoin in the treatment of severe refractory nodulocystic acne. Photodiagnosis Photodyn Ther 2024; 47:104215. [PMID: 38735352 DOI: 10.1016/j.pdpdt.2024.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Nodulocystic acne is a severe form of acne, which is commonly treated with oral isotretinoin, hormones, or antibiotics. However, drug therapy often has some side effects and poor compliance. Fire needle combined with 5-aminolevulinic acid photodynamic therapy (ALA-PDT) is a simple, effective, short-term treatment with few adverse reactions, which is expected to be an effective physiotherapy for nodulocystic acne. Moreover, the combination with isotretinoin can reduce the dosage of the drug, thereby reducing the side effects of isotretinoin. OBJECTIVES To evaluate the safety and efficacy of fire-needle pretreated ALA-PDT combined with low-dose isotretinoin in the treatment of severe refractory nodulocystic acne. METHODS This study reported 10 patients with refractory nodulocystic acne who received combined treatment. During the treatment period, all patients received a low dose of oral isotretinoin capsules daily. The acne lesions were pretreated with fire needle before ALA-PDT treatment. The number of acne lesions, including papules, pustules, and nodular cysts, was documented at weeks 0, 2, 4, 8, and 12 to assess the therapeutic efficacy. Concurrently, adverse reactions such as pain, pruritus, and pigmentation changes were recorded and evaluated throughout the treatment course. RESULTS After combined treatment, all patients achieved good therapeutic effects, with an overall effective rate of 90 % at week 12. After treatment, skin lesions such as nodules, and cysts subsided significantly. The combination therapy has no serious adverse effects and has a favorable safety profile. CONCLUSION Fire needle pretreatment ALA-PDT combined with low-dose isotretinoin is effective and safe in the treatment of severe refractory nodular cystic acne, which is worthy of clinical promotion and research.
Collapse
Affiliation(s)
- Lingyun Du
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan 250033, PR China
| | - Zhiqiang Cao
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, Shaanxi, PR China
| | - Jingjing Wei
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan 250033, PR China
| | - Mingming Li
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan 250033, PR China
| | - Changyu Han
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan 250033, PR China
| | - Chunhong Zhang
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan 250033, PR China.
| |
Collapse
|
8
|
He XLS, Wang N, Teng X, Wang NN, Xie ZY, Dong YJ, Lin MQ, Zhang ZH, Rong M, Chen YG, Li B, Lv GY, Chen SH. Dendrobium officinale flowers' topical extracts improve skin oxidative stress and aging. J Cosmet Dermatol 2024; 23:1891-1904. [PMID: 38362670 DOI: 10.1111/jocd.16210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/25/2023] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Dendrobium officinale flowers (DOF) have the effects of antiaging and nourishing yin, but it lacks pharmacological research on skin aging. OBJECTIVE Confirming the role of DOF in delaying skin aging based on the "in vitro animal-human" model. METHODS In this experiment, three kinds of free radical scavenging experiments in vitro, D-galactose-induced aging mouse model, and human antiaging efficacy test were used to test whether DOF can improve skin aging through anti-oxidation. RESULTS In vitro experiment shows that DOF has certain scavenging effect on 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical, hydroxyl free radical, and superoxide free radical, and its IC50 is 0.2090 μg/mL, 15.020, and 1.217 mg/mL respectively. DOF can enhance the activities of T-AOC, SOD, CAT, and GSH Px in the serum of aging mice, increase the content of GSH, and reduce the content of MDA when administered with DOF of 1.0, 2.0, and 4.0 g/kg for 6 weeks. In addition, it can enhance the activity of SOD in the skin of aging mice, increase the content of Hyp, and decrease the content of MDA, activated Keap1/Nrf2 pathway in the skin of aging mice. Applying DOF with a concentration of 0.2 g/mL on the face for 8 weeks can significantly improve the skin water score and elasticity value, reduce facial wrinkles, pores, acne, and UV spots, and improve the facial brown spots and roughness. CONCLUSION DOF can significantly improve skin aging caused by oxidative stress, and its mechanism may be related to scavenging free radicals in the body and improving skin quality.
Collapse
Affiliation(s)
- Xing-Li-Shang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang, PR China
| | - Ning Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang, PR China
| | - Xi Teng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang, PR China
| | - Nan-Nan Wang
- College of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Zhi-Yi Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang, PR China
| | - Ying-Jie Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang, PR China
| | - Min-Qiu Lin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang, PR China
| | - Ze-Hua Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang, PR China
| | - Mei Rong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang, PR China
| | - Yi-Gong Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang, PR China
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou, Zhejiang, PR China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang, PR China
| |
Collapse
|
9
|
Rodrigues VC, Santos ARD, Bona E, Freitas CF, Silva JVDO, Malacarne LC, Machinski Junior M, Abreu Filho BAD, Mikcha JMG. Optimization of the Erythrosine-mediated photodynamic therapy against Escherichia coli using response surface methodology. Photodiagnosis Photodyn Ther 2024; 45:103916. [PMID: 38042237 DOI: 10.1016/j.pdpdt.2023.103916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND The efficacy of photodynamic therapy (PDT) depends on the combination of light and a photosensitizer for inactivation of microorganisms. However, finding the ideal conditions for the factors involved in this technique is time and cost-consuming. The rotational composite central design (RCCD) is a tool that can be allied with PDT to achieve precise results within a shorter working time. METHODS This study used the response surface methodology to optimize the parameters of PDT mediated by Erythrosine (ERY) and green light-emitting diodes (LED) in different Escherichia coli strains by applying RCCD. RESULTS The RCCD predicted optimum values of ERY and light exposure on PDT. According to the experimental results, the light exposure time showed the most significant influence on the inactivation of the evaluated bacteria. The optimized operating conditions were validated in laboratory tests, and no viable cells were recovered with ERY at 116 µmol L-1 and 30 min of light (33.34 J cm2) for E. coli ATCC 25922, 108 µmol L-1 and 40 min (44.38 J cm2) for E. coli ATCC 35218, and 108 µmol L-1 and 29.3 min (32.5 J cm2) for E. coli O157:H7 EDL 933. CONCLUSION The adjusted polynomial models provided accurate information on the combined effects of ERY and lighting time with green LED on PDT. The application of the RCCD, in addition to reducing the number of experiments, also allows for increased quantity and quality of the results. Therefore, surface response methodology combined with PDT is a promising approach to inactivate E. coli.
Collapse
Affiliation(s)
- Vanessa Carvalho Rodrigues
- Postgraduate program of Food Science, State University of Maringá, Av. Colombo, 5790 - Jd. Universitário, Maringá 87020-900, Paraná, Brazil.
| | | | - Evandro Bona
- Post-Graduation Program of Food Technology, Federal Technology University, Campo Mourão, Paraná, Brazil; Post-Graduation Program of Chemistry, Federal Technology University, Curitiba, Paraná, Brazil
| | - Camila Fabiano Freitas
- Departament of Chemistry, State University of Maringá, Maringá, Paraná, Brazil; Departament of Chemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | | | - Miguel Machinski Junior
- Postgraduate program of Food Science, State University of Maringá, Av. Colombo, 5790 - Jd. Universitário, Maringá 87020-900, Paraná, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Benicio Alves de Abreu Filho
- Postgraduate program of Food Science, State University of Maringá, Av. Colombo, 5790 - Jd. Universitário, Maringá 87020-900, Paraná, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Jane Martha Graton Mikcha
- Postgraduate program of Food Science, State University of Maringá, Av. Colombo, 5790 - Jd. Universitário, Maringá 87020-900, Paraná, Brazil; Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
10
|
Huang C, Zhuo F, Han B, Li W, Jiang B, Zhang K, Jian X, Chen Z, Li H, Huang H, Dou X, Yu B. The updates and implications of cutaneous microbiota in acne. Cell Biosci 2023; 13:113. [PMID: 37344849 DOI: 10.1186/s13578-023-01072-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
Acne is a chronic inflammatory skin disorder that profoundly impacts the quality of life of patients worldwide. While it is predominantly observed in adolescents, it can affect individuals across all age groups. Acne pathogenesis is believed to be a result of various endogenous and exogenous factors, but the precise mechanisms remain elusive. Recent studies suggest that dysbiosis of the skin microbiota significantly contributes to acne development. Specifically, Cutibacterium acnes, the dominant resident bacterial species implicated in acne, plays a critical role in disease progression. Various treatments, including topical benzoyl peroxide, systemic antibiotics, and photodynamic therapy, have demonstrated beneficial effects on the skin microbiota composition in acne patients. Of particular interest is the therapeutic potential of probiotics in acne, given its direct influence on the skin microbiota. This review summarizes the alterations in skin microbiota associated with acne, provides insight into its pathogenic role in acne, and emphasizes the potential of therapeutic interventions aimed at restoring microbial homeostasis for acne management.
Collapse
Affiliation(s)
- Cong Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Fan Zhuo
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Baoquan Han
- Department of Urology, Shenzhen University General Hospital, Shenzhen, 518055, China
| | - Wenting Li
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Bin Jiang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Kaoyuan Zhang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Xingling Jian
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Zhenzhen Chen
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Hui Li
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Haiyan Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Xia Dou
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Bo Yu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China.
| |
Collapse
|