1
|
Van der Auwera S, Ameling S, Wittfeld K, Bülow R, Nauck M, Völzke H, Völker U, Grabe HJ. Circulating miRNAs modulating systemic low-grade inflammation and affecting neurodegeneration. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111130. [PMID: 39209100 DOI: 10.1016/j.pnpbp.2024.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE AND DESIGN Inflammatory processes are an important part of the etiology of many chronic diseases across various medical domains, including neurodegeneration. Understanding their regulation on the molecular level represents a major challenge. Regulatory microRNAs (miRNAs), have been recognized for their role in post-transcriptionally modulating immune-related pathways serving as biomarkers for numerous diseases. SUBJECTS AND METHODS This study aims to investigate the association between 176 plasma-circulating miRNAs and the blood-based immune markers C-reactive protein and fibrinogen within the general population-based SHIP-TREND-0 cohort (N = 801) and assess their impact on neurodegeneration in linear regression and moderation analyses. RESULTS We provide strong evidence for miRNA-mediated regulation, particularly in relation to fibrinogen, identifying 48 significant miRNAs with a pronounced over-representation in chronic inflammatory and neurological diseases. Additional moderation analyses explored the influence of the APOE ε4 genotype and brain white matter neurodegeneration on the association between miRNAs and inflammation. Again, significant associations were observed for fibrinogen with special emphasize on hsa-miR-148a-3p, known to impact on neuroinflammation. CONCLUSIONS Our study suggests the involvement of several plasma-circulating miRNAs in regulating immunological markers while also being linked to neurodegeneration. The strong interplay between miRNAs and inflammation holds promising potential for clinical application in many immune-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17475 Greifswald, Germany.
| | - Sabine Ameling
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Robin Bülow
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
2
|
Wang Y, He J, Ma H, Liu J, Du L, Chai C, Liu Y, Wang X. NR_103776.1 as a novel diagnostic biomarker for systemic lupus erythematosus. Ir J Med Sci 2024; 193:211-221. [PMID: 37369931 DOI: 10.1007/s11845-023-03420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND With the development of sequencing technologies, there is increasing evidence that long noncoding RNAs (lncRNAs) are involved in systemic lupus erythematosus (SLE). The level of NR_103776.1 expression in SLE and its clinical associations are still not well defined. OBJECTIVE To identify differentially expressed lncRNAs and explore their functional roles in SLE. METHODS Transcriptome sequencing was used to screen differentially expressed lncRNAs and mRNAs. Expression validation of clinical samples was performed by QRT-PCR. Bioinformatics was used to analyze its prognostic value and potential function. RESULTS Of the 231 significantly differentially expressed lncRNAs, NR_103776.1 could be used to distinguish not only SLE patients and rheumatoid arthritis patients but also active SLE patients, stable SLE patients, and healthy controls. NR_103776.1 was significantly and negatively correlated with inflammatory indexes (CRP and ESR). NR_103776.1 dysregulation might contribute to the metabolism of RNA and proteins in SLE patients. CONCLUSIONS This study not only provided a transcriptome profile of lncRNAs aberrantly expressed in individual nucleated cells of SLE patients but also suggested NR_103776.1 as a novel potential diagnostic biomarker.
Collapse
Affiliation(s)
- Yuqun Wang
- Department of Rheumatology and Immunology, School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, China
| | - Jia He
- Department of Rheumatology and Immunology, School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, China
| | - Honglei Ma
- Department of Rheumatology and Immunology, School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, China
| | - Junhong Liu
- Department of Rheumatology and Immunology, School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, China
| | - Linping Du
- Department of Rheumatology and Immunology, School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, China
| | - Chunxiang Chai
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Yajing Liu
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Xiaodong Wang
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China.
| |
Collapse
|
3
|
Athanasopoulou K, Chondrou V, Xiropotamos P, Psarias G, Vasilopoulos Y, Georgakilas GK, Sgourou A. Transcriptional repression of lncRNA and miRNA subsets mediated by LRF during erythropoiesis. J Mol Med (Berl) 2023; 101:1097-1112. [PMID: 37486375 PMCID: PMC10482784 DOI: 10.1007/s00109-023-02352-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Non-coding RNA (ncRNA) species, mainly long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been currently imputed for lesser or greater involvement in human erythropoiesis. These RNA subsets operate within a complex circuit with other epigenetic components and transcription factors (TF) affecting chromatin remodeling during cell differentiation. Lymphoma/leukemia-related (LRF) TF exerts higher occupancy on DNA CpG rich sites and is implicated in several differentiation cell pathways and erythropoiesis among them and also directs the epigenetic regulation of hemoglobin transversion from fetal (HbF) to adult (HbA) form by intervening in the γ-globin gene repression. We intended to investigate LRF activity in the evolving landscape of cells' commitment to the erythroid lineage and specifically during HbF to HbA transversion, to qualify this TF as potential repressor of lncRNAs and miRNAs. Transgenic human erythroleukemia cells, overexpressing LRF and further induced to erythropoiesis, were subjected to expression analysis in high LRF occupancy genetic loci-producing lncRNAs. LRF abundance in genetic loci transcribing for studied lncRNAs was determined by ChIP-Seq data analysis. qPCRs were performed to examine lncRNA expression status. Differentially expressed miRNA pre- and post-erythropoiesis induction were assessed by next-generation sequencing (NGS), and their promoter regions were charted. Expression levels of lncRNAs were correlated with DNA methylation status of flanked CpG islands, and contingent co-regulation of hosted miRNAs was considered. LRF-binding sites were overrepresented in LRF overexpressing cell clones during erythropoiesis induction and exerted a significant suppressive effect towards lncRNAs and miRNA collections. Based on present data interpretation, LRF's multiplied binding capacity across genome is suggested to be transient and associated with higher levels of DNA methylation. KEY MESSAGES: During erythropoiesis, LRF displays extensive occupancy across genetic loci. LRF significantly represses subsets of lncRNAs and miRNAs during erythropoiesis. Promoter region CpG islands' methylation levels affect lncRNA expression. MiRNAs embedded within lncRNA loci show differential regulation of expression.
Collapse
Affiliation(s)
- Katerina Athanasopoulou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Vasiliki Chondrou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Panagiotis Xiropotamos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Georgios Psarias
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Yiannis Vasilopoulos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Georgios K. Georgakilas
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece
| | - Argyro Sgourou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| |
Collapse
|
4
|
Danckwardt S, Trégouët DA, Castoldi E. Post-transcriptional control of haemostatic genes: mechanisms and emerging therapeutic concepts in thrombo-inflammatory disorders. Cardiovasc Res 2023; 119:1624-1640. [PMID: 36943786 PMCID: PMC10325701 DOI: 10.1093/cvr/cvad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 03/23/2023] Open
Abstract
The haemostatic system is pivotal to maintaining vascular integrity. Multiple components involved in blood coagulation have central functions in inflammation and immunity. A derailed haemostasis is common in prevalent pathologies such as sepsis, cardiovascular disorders, and lately, COVID-19. Physiological mechanisms limit the deleterious consequences of a hyperactivated haemostatic system through adaptive changes in gene expression. While this is mainly regulated at the level of transcription, co- and posttranscriptional mechanisms are increasingly perceived as central hubs governing multiple facets of the haemostatic system. This layer of regulation modulates the biogenesis of haemostatic components, for example in situations of increased turnover and demand. However, they can also be 'hijacked' in disease processes, thereby perpetuating and even causally entertaining associated pathologies. This review summarizes examples and emerging concepts that illustrate the importance of posttranscriptional mechanisms in haemostatic control and crosstalk with the immune system. It also discusses how such regulatory principles can be used to usher in new therapeutic concepts to combat global medical threats such as sepsis or cardiovascular disorders.
Collapse
Affiliation(s)
- Sven Danckwardt
- Centre for Thrombosis and Hemostasis (CTH), University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Centre for Cardiovascular Research (DZHK),
Berlin, Germany
- Posttranscriptional Gene Regulation, University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University
Medical Centre Mainz, Langenbeckstr. 1, 55131
Mainz, Germany
- Center for Healthy Aging (CHA), Mainz,
Germany
| | - David-Alexandre Trégouët
- INSERM, Bordeaux Population Health Research Center, UMR 1219, Department of
Molecular Epidemiology of Vascular and Brain Disorders (ELEANOR), University of
Bordeaux, Bordeaux, France
| | - Elisabetta Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht
(CARIM), Maastricht University, Universiteitsingel 50, 6229
ER Maastricht, The Netherlands
| |
Collapse
|
5
|
Nezhad Nezhad MT, Rajabi M, Nekooeizadeh P, Sanjari S, Pourvirdi B, Heidari MM, Veradi Esfahani P, Abdoli A, Bagheri S, Tobeiha M. Systemic lupus erythematosus: From non-coding RNAs to exosomal non-coding RNAs. Pathol Res Pract 2023; 247:154508. [PMID: 37224659 DOI: 10.1016/j.prp.2023.154508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Systemic lupus erythematosus (SLE), as an immunological illness, frequently impacts young females. Both vulnerabilities to SLE and the course of the illness's clinical symptoms have been demonstrated to be affected by individual differences in non-coding RNA expression. Many non-coding RNAs (ncRNAs) are out of whack in patients with SLE. Because of the dysregulation of several ncRNAs in peripheral blood of patients suffering from SLE, these ncRNAs to be showed valuable as biomarkers for medication response, diagnosis, and activity. NcRNAs have also been demonstrated to influence immune cell activity and apoptosis. Altogether, these facts highlight the need of investigating the roles of both families of ncRNAs in the progress of SLE. Being aware of the significance of these transcripts perhaps elucidates the molecular pathogenesis of SLE and could open up promising avenues to create tailored treatments during this condition. In this review we summarized various non-coding RNAs and Exosomal non-coding RNAs in SLE.
Collapse
Affiliation(s)
| | - Mohammadreza Rajabi
- Student Research Committee، Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Nekooeizadeh
- Student Research Committee، Shiraz University of Medical Sciences, Shiraz, Iran
| | - Siavash Sanjari
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Bita Pourvirdi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Mehdi Heidari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Pegah Veradi Esfahani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Abdoli
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Bagheri
- Diabetes Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Zhang W, Liu L, Xiao X, Zhou H, Peng Z, Wang W, Huang L, Xie Y, Xu H, Tao L, Nie W, Yuan X, Liu F, Yuan Q. Identification of common molecular signatures of SARS-CoV-2 infection and its influence on acute kidney injury and chronic kidney disease. Front Immunol 2023; 14:961642. [PMID: 37026010 PMCID: PMC10070855 DOI: 10.3389/fimmu.2023.961642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the main cause of COVID-19, causing hundreds of millions of confirmed cases and more than 18.2 million deaths worldwide. Acute kidney injury (AKI) is a common complication of COVID-19 that leads to an increase in mortality, especially in intensive care unit (ICU) settings, and chronic kidney disease (CKD) is a high risk factor for COVID-19 and its related mortality. However, the underlying molecular mechanisms among AKI, CKD, and COVID-19 are unclear. Therefore, transcriptome analysis was performed to examine common pathways and molecular biomarkers for AKI, CKD, and COVID-19 in an attempt to understand the association of SARS-CoV-2 infection with AKI and CKD. Three RNA-seq datasets (GSE147507, GSE1563, and GSE66494) from the GEO database were used to detect differentially expressed genes (DEGs) for COVID-19 with AKI and CKD to search for shared pathways and candidate targets. A total of 17 common DEGs were confirmed, and their biological functions and signaling pathways were characterized by enrichment analysis. MAPK signaling, the structural pathway of interleukin 1 (IL-1), and the Toll-like receptor pathway appear to be involved in the occurrence of these diseases. Hub genes identified from the protein-protein interaction (PPI) network, including DUSP6, BHLHE40, RASGRP1, and TAB2, are potential therapeutic targets in COVID-19 with AKI and CKD. Common genes and pathways may play pathogenic roles in these three diseases mainly through the activation of immune inflammation. Networks of transcription factor (TF)-gene, miRNA-gene, and gene-disease interactions from the datasets were also constructed, and key gene regulators influencing the progression of these three diseases were further identified among the DEGs. Moreover, new drug targets were predicted based on these common DEGs, and molecular docking and molecular dynamics (MD) simulations were performed. Finally, a diagnostic model of COVID-19 was established based on these common DEGs. Taken together, the molecular and signaling pathways identified in this study may be related to the mechanisms by which SARS-CoV-2 infection affects renal function. These findings are significant for the effective treatment of COVID-19 in patients with kidney diseases.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Leping Liu
- Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Hongshan Zhou
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Wei Wang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Ling Huang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Hui Xu
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Wannian Nie
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Xiangning Yuan
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
| | - Fang Liu
- Health Management Center, Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Fang Liu, ; Qiongjing Yuan,
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, China
- National Clinical Medical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, China
- Research Center for Medical Metabolomics, Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Fang Liu, ; Qiongjing Yuan,
| |
Collapse
|
7
|
Hossain MU, Ferdous N, Reza MN, Ahammad I, Tiernan Z, Wang Y, O’Hanlon F, Wu Z, Sarker S, Mohiuddin AKM, Das KC, Keya CA, Salimullah M. Pathogen-driven gene expression patterns lead to a novel approach to the identification of common therapeutic targets. Sci Rep 2022; 12:21070. [PMID: 36473896 PMCID: PMC9726901 DOI: 10.1038/s41598-022-25102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Developing a common medication strategy for disease control and management could be greatly beneficial. Investigating the differences between diseased and healthy states using differentially expressed genes aids in understanding disease pathophysiology and enables the exploration of protein-drug interactions. This study aimed to find the most common genes in diarrhea-causing bacteria such as Salmonella enterica serovar Typhimurium, Campylobacter jejuni, Escherichia coli, Shigella dysenteriae (CESS) to find new drugs. Thus, differential gene expression datasets of CESS were screened through computational algorithms and programming. Subsequently, hub and common genes were prioritized from the analysis of extensive protein-protein interactions. Binding predictions were performed to identify the common potential therapeutic targets of CESS. We identified a total of 827 dysregulated genes that are highly linked to CESS. Notably, no common gene interaction was found among all CESS bacteria, but we identified 3 common genes in both Salmonella-Escherichia and Escherichia-Campylobacter infections. Later, out of 73 protein complexes, molecular simulations confirmed 5 therapeutic candidates from the CESS. We have developed a new pipeline for identifying therapeutic targets for a common medication strategy against CESS. However, further wet-lab validation is needed to confirm their effectiveness.
Collapse
Affiliation(s)
- Mohammad Uzzal Hossain
- grid.4991.50000 0004 1936 8948Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, OX13QT UK ,Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349 Bangladesh
| | - Nadim Ferdous
- grid.443019.b0000 0004 0479 1356Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902 Bangladesh
| | - Mahjerin Nasrin Reza
- grid.443019.b0000 0004 0479 1356Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902 Bangladesh
| | - Ishtiaque Ahammad
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349 Bangladesh
| | - Zachary Tiernan
- grid.4991.50000 0004 1936 8948Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, OX13QT UK
| | - Yi Wang
- grid.4991.50000 0004 1936 8948Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, OX13QT UK
| | - Fergus O’Hanlon
- grid.4991.50000 0004 1936 8948Mathematical Institute, University of Oxford, Oxford, OX2 6GG UK
| | - Zijia Wu
- grid.4991.50000 0004 1936 8948Department of Chemistry, University of Oxford, Oxford, OX2 6GG UK
| | - Shishir Sarker
- grid.443016.40000 0004 4684 0582Department of Microbiology, Jagannath University, Dhaka, 1100 Bangladesh
| | - A. K. M. Mohiuddin
- grid.443019.b0000 0004 0479 1356Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902 Bangladesh
| | - Keshob Chandra Das
- Molecular Biotechnology Division, Ministry of Science and Technology, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349 Bangladesh
| | - Chaman Ara Keya
- grid.443020.10000 0001 2295 3329Department of Biochemistry and Microbiology, North South University, Dhaka, 1229 Bangladesh
| | - Md. Salimullah
- Molecular Biotechnology Division, Ministry of Science and Technology, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349 Bangladesh
| |
Collapse
|
8
|
circRNA circ_0055724 Inhibits Trophoblastic Cell Line HTR-8/SVneo’s Invasive and Migratory Abilities via the miR-136/N-Cadherin Axis. DISEASE MARKERS 2022; 2022:9390731. [PMID: 35783018 PMCID: PMC9242821 DOI: 10.1155/2022/9390731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
Abstract
Preeclampsia (PE) is one of the major causes of morbidity and mortality in pregnancy. According to recent research, circular RNAs (circRNA) may act as sponges for microRNAs (miRNAs) and modulate gene expression. Low expression of hsa_circ_0055724 (circ_0055724) in PE tissues was recently reported in literatures. However, its mechanism and function have not been reported. Therefore, we were committed to investigating the role and mechanism of circ_0055724 in PE. Our study first verified the low expression of circ_0055724 in PE tissues. Overexpression or knockdown of circ_0055724 enhances/weakens the trophoblast cell survival, migration, and invasion. Furthermore, CircInteractome predicted the binding sites of circ_0055724 and miR-136, while Starbase predicted miR-136 targeted N-cadherin. Luciferase reporter gene assay confirmed that circ_0055724 directly interacts with miR-136 and miR-136 directly interacts with N-cadherin. More results indicated that high expression of miR-136 and low expression of N-cadherin appeared in PE. Increased expression of circ_0055724 resulted in decreased miR-136 but increased N-cadherin expression. Hence, circ_0055724 and N-cadherin were positively correlated, while circ_0055724 and miR-136 had a negative correlation. In terms of mechanism, circ_0055724 may induce the expression of N-cadherin and regulate the proliferation, migration, and invasion of trophoblast cells through decreasing miR-136, which can be a promising biomarker for early diagnosis and prognosis of patients with PE.
Collapse
|
9
|
de Sousa TR, Fagundes BO, Nascimento A, Fernandes LA, Sgnotto FDR, Orfali RL, Aoki V, Duarte AJDS, Sanabani SS, Victor JR. IgG from Adult Atopic Dermatitis (AD) Patients Induces Thymic IL-22 Production and CLA Expression on CD4+ T Cells: Possible Epigenetic Implications Mediated by miRNA. Int J Mol Sci 2022; 23:6867. [PMID: 35743308 PMCID: PMC9224968 DOI: 10.3390/ijms23126867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/30/2022] Open
Abstract
Atopic dermatitis (AD) is a common relapsing inflammatory skin disorder characterized by immune-mediated inflammation and epidermal barrier dysfunction. The pathogenesis of AD is multifactorial and has not been fully elucidated to date. This study aimed to evaluate whether serum IgG from adult AD patients could modulate the thymic maturation of IL-22-producing T cells and CLA+ T cells of non-atopic infants. Given that miRNAs regulate immune response genes, we evaluated whether miRNA expression is also altered in cultured thymocytes. Thymocytes were cultured with purified IgG from AD patients or control conditions (mock, Intravenous-IgG (IVIg), non-atopic IgG, or atopic non-AD IgG). Using flow cytometry analysis, we assessed the expression of CLA and intracellular levels of IL-4, IFN-γ, and IL-22 on double-positive T cells (DP T), CD4 T cells, or CD8 T cells. We also investigated the frequency of IgG isotypes and their direct interaction with the thymic T cells membrane. The miRNA profiles were evaluated by the Illumina small RNA-seq approach. MiRNA target gene prediction and enrichment analyses were performed using bioinformatics. Increased frequencies of IL-22 and CLA+ producing CD4+ T cells cultured with IgG of AD patients was seen in non-atopic infant thymocytes compared to all control conditions. No alterations were observed in the frequency of IgG isotypes among evaluated IgG pools. Evidence for a direct interaction between IgG and thymic DP T, CD4 T, and CD8 T cells is presented. The small RNA-seq analysis identified ten mature miRNAs that were modulated by AD IgG compared to mock condition (miR-181b-5p, hsa-miR-130b-3p, hsa-miR-26a-5p, hsa-miR-4497, has-miR-146a, hsa-let-7i-5p, hsa-miR-342-3p, has-miR-148a-3p, has-miR-92a and has-miR-4492). The prediction of the targetome of the seven dysregulated miRNAs between AD and mock control revealed 122 putative targets, and functional and pathway enrichment analyses were performed. Our results enhance our understanding of the mechanism by which IgG can collaborate in thymic T cells in the setting of infant AD.
Collapse
Affiliation(s)
- Thamires Rodrigues de Sousa
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar 500, Sao Paulo 05403-000, Brazil; (T.R.d.S.); (B.O.F.); (R.L.O.); (V.A.); (A.J.d.S.D.)
| | - Beatriz Oliveira Fagundes
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar 500, Sao Paulo 05403-000, Brazil; (T.R.d.S.); (B.O.F.); (R.L.O.); (V.A.); (A.J.d.S.D.)
| | - Andrezza Nascimento
- Post-Graduation Program in Translational Medicine, Federal University of São Paulo, Sao Paulo 04039-002, Brazil; (A.N.); (L.A.F.)
| | - Lorena Abreu Fernandes
- Post-Graduation Program in Translational Medicine, Federal University of São Paulo, Sao Paulo 04039-002, Brazil; (A.N.); (L.A.F.)
| | | | - Raquel Leão Orfali
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar 500, Sao Paulo 05403-000, Brazil; (T.R.d.S.); (B.O.F.); (R.L.O.); (V.A.); (A.J.d.S.D.)
| | - Valéria Aoki
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar 500, Sao Paulo 05403-000, Brazil; (T.R.d.S.); (B.O.F.); (R.L.O.); (V.A.); (A.J.d.S.D.)
| | - Alberto José da Silva Duarte
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar 500, Sao Paulo 05403-000, Brazil; (T.R.d.S.); (B.O.F.); (R.L.O.); (V.A.); (A.J.d.S.D.)
- Division of Pathology, Medical School, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar 500, Sao Paulo 05403-000, Brazil; (T.R.d.S.); (B.O.F.); (R.L.O.); (V.A.); (A.J.d.S.D.)
- Laboratory of Medical Investigation LIM-03, Division of Pathology, Medical School, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Jefferson Russo Victor
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar 500, Sao Paulo 05403-000, Brazil; (T.R.d.S.); (B.O.F.); (R.L.O.); (V.A.); (A.J.d.S.D.)
- Faculdades Metropolitanas Unidas (FMU), Health Sciences School, Sao Paulo 04505-002, Brazil
- Medical School, Universidade Santo Amaro (UNISA), Sao Paulo 04829-300, Brazil
| |
Collapse
|
10
|
Fujiwara M, Raheja R, Garo LP, Ajay AK, Kadowaki-Saga R, Karandikar SH, Gabriely G, Krishnan R, Beynon V, Paul A, Patel A, Saxena S, Hu D, Healy BC, Chitnis T, Gandhi R, Weiner HL, Murugaiyan G. microRNA-92a promotes CNS autoimmunity by modulating the regulatory and inflammatory T cell balance. J Clin Invest 2022; 132:e155693. [PMID: 35298438 PMCID: PMC9106347 DOI: 10.1172/jci155693] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/16/2022] [Indexed: 01/11/2023] Open
Abstract
A disequilibrium between immunosuppressive Tregs and inflammatory IL-17-producing Th17 cells is a hallmark of autoimmune diseases, including multiple sclerosis (MS). However, the molecular mechanisms underlying the Treg and Th17 imbalance in CNS autoimmunity remain largely unclear. Identifying the factors that drive this imbalance is of high clinical interest. Here, we report a major disease-promoting role for microRNA-92a (miR-92a) in CNS autoimmunity. miR-92a was elevated in experimental autoimmune encephalomyelitis (EAE), and its loss attenuated EAE. Mechanistically, miR-92a mediated EAE susceptibility in a T cell-intrinsic manner by restricting Treg induction and suppressive capacity, while supporting Th17 responses, by directly repressing the transcription factor Foxo1. Although miR-92a did not directly alter Th1 differentiation, it appeared to indirectly promote Th1 cells by inhibiting Treg responses. Correspondingly, miR-92a inhibitor therapy ameliorated EAE by concomitantly boosting Treg responses and dampening inflammatory T cell responses. Analogous to our findings in mice, miR-92a was elevated in CD4+ T cells from patients with MS, and miR-92a silencing in patients' T cells promoted Treg development but limited Th17 differentiation. Together, our results demonstrate that miR-92a drives CNS autoimmunity by sustaining the Treg/Th17 imbalance and implicate miR-92a as a potential therapeutic target for MS.
Collapse
Affiliation(s)
- Mai Fujiwara
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Radhika Raheja
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lucien P. Garo
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Amrendra K. Ajay
- Renal Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ryoko Kadowaki-Saga
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sukrut H. Karandikar
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Galina Gabriely
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rajesh Krishnan
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Vanessa Beynon
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Anu Paul
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Amee Patel
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shrishti Saxena
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dan Hu
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brian C. Healy
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tanuja Chitnis
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Roopali Gandhi
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Howard L. Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Wu LF, Zhang Q, Mo XB, Lin J, Wu YL, Lu X, He P, Wu J, Guo YF, Wang MJ, Ren WY, Deng HW, Lei SF, Deng FY. Identification of novel rheumatoid arthritis-associated MiRNA-204-5p from plasma exosomes. Exp Mol Med 2022; 54:334-345. [PMID: 35354913 PMCID: PMC8980013 DOI: 10.1038/s12276-022-00751-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/10/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by infiltration of immune cells in the synovium. However, the crosstalk of immune cells and synovial fibroblasts is still largely unknown. Here, global miRNA screening in plasma exosomes was carried out with a custom microarray (RA patients vs. healthy controls = 9:9). A total of 14 exosomal miRNAs were abnormally expressed in the RA patients. Then, downregulated expression of exosomal miR-204-5p was confirmed in both the replication (RA patients vs. healthy controls = 30:30) and validation groups (RA patients vs. healthy controls = 56:60). Similar to the findings obtained in humans, a decreased abundance of exosomal miR-204-5p was observed in mice with collagen-induced arthritis (CIA). Furthermore, Spearman correlation analysis indicated that plasma exosomal miR-204-5p expression was inversely correlated with disease parameters of RA patients, such as rheumatoid factor, erythrocyte sedimentation rate, and C-reactive protein. In vitro, our data showed that human T lymphocytes released exosomes containing large amounts of miR-204-5p, which can be transferred into synovial fibroblasts, inhibiting cell proliferation. Overexpression of miR-204-5p in synovial fibroblasts suppressed synovial fibroblast activation by targeting genes related to cell proliferation and invasion. In vivo assays found that administration of lentiviruses expressing miR-204-5p markedly alleviated the disease progression of the mice with CIA. Collectively, this study identified a novel RA-associated plasma exosomal miRNA-204-5p that mediates the communication between immune cells and synovial fibroblasts and can be used as a potential biomarker for RA diagnosis and treatment. A microRNA that is significantly reduced in joint tissues in rheumatoid arthritis could provide a therapeutic target and act as a biomarker for disease progression. In rheumatoid arthritis, immune cells release exosomes, tiny vesicles containing microRNA and proteins that are transferred to cells in the synovium, the connective tissue lining the inside of the joint capsule. This transfer of molecules influences synovial cell activity. Shu-Feng Lei and Fei-Yan Deng at the Medical School of Soochow University, Suzhou, China, and co-workers identifed exosomal microRNAs present in rheumatoid arthritis, and examined their effect on synovial cells. Levels of one exosomal microRNA, miR-204-5p, were significantly lower in patient samples and mice models, inversely correlating with disease severity. The team believe that chronic inflammation may suppress levels of miR-204-5p. Treatment boosting microRNA levels in mice models slowed disease progression.
Collapse
Affiliation(s)
- Long-Fei Wu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 215123, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Qin Zhang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xing-Bo Mo
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 215123, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Jun Lin
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yang-Lin Wu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xin Lu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 215123, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Pei He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 215123, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Jian Wu
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yu-Fan Guo
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ming-Jun Wang
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wen-Yan Ren
- Cam-Su Genomic Resource Center, Medical College of Soochow University, 215123, Suzhou, Jiangsu, China
| | - Hong-Wen Deng
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 215123, Suzhou, Jiangsu, China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 215123, Suzhou, Jiangsu, China.
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 215123, Suzhou, Jiangsu, China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 215123, Suzhou, Jiangsu, China.
| |
Collapse
|
12
|
Beretta F, Huang YF, Punga AR. Towards Personalized Medicine in Myasthenia Gravis: Role of Circulating microRNAs miR-30e-5p, miR-150-5p and miR-21-5p. Cells 2022; 11:cells11040740. [PMID: 35203389 PMCID: PMC8870722 DOI: 10.3390/cells11040740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/25/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune neuromuscular disease characterized by fatigable skeletal muscle weakness with a fluctuating unpredictable course. One main concern in MG is the lack of objective biomarkers to guide individualized treatment decisions. Specific circulating serum microRNAs (miRNAs) miR-30e-5p, miR-150-5p and miR-21-5p levels have been shown to correlate with clinical course in specific MG patient subgroups. The aim of our study was to better characterize these miRNAs, regardless of the MG subgroup, at an early stage from diagnosis and determine their sensitivity and specificity for MG diagnosis, as well as their predictive power for disease relapse. Serum levels of these miRNAs in 27 newly diagnosed MG patients were compared with 245 healthy individuals and 20 patients with non-MG neuroimmune diseases. Levels of miR-30e-5p and miR-150-5p significantly differed between MG patients and healthy controls; however, no difference was seen compared with patients affected by other neuroimmune diseases. High levels of miR-30e-5p predicted MG relapse (p = 0.049) with a hazard ratio of 2.81. In summary, miR-150-5p is highly sensitive but has low specificity for MG, while miR-30e-5p has the greatest potential as a predictive biomarker for the disease course in MG, regardless of subgroup.
Collapse
Affiliation(s)
- Francesca Beretta
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Yu-Fang Huang
- Department of Medical Sciences, Clinical Neurophysiology, Uppsala University, 75185 Uppsala, Sweden;
| | - Anna Rostedt Punga
- Department of Medical Sciences, Clinical Neurophysiology, Uppsala University, 75185 Uppsala, Sweden;
- Correspondence:
| |
Collapse
|
13
|
Dichev V, Mehterov N, Kazakova M, Karalilova R, Batalov A, Sarafian V. The lncRNAs/miR-30e/CHI3L1 Axis Is Dysregulated in Systemic Sclerosis. Biomedicines 2022; 10:496. [PMID: 35203705 PMCID: PMC8962397 DOI: 10.3390/biomedicines10020496] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/25/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease with completely undefined etiology and treatment difficulties. The expression of both protein coding and non-coding RNAs is dysregulated during disease development. We aimed to examine a possible regulatory axis implemented in the control of chitinase-3 like protein 1 (CHI3L1) or YKL-40, an inflammation-associated glycoprotein, shown to be elevated in SSc. A panel of seven miRNAs and three lncRNAs potentially involved in the control of CHI3L1 were selected on the basis of in silico analysis. TagMan assay was used to evaluate the expression levels of miRNAs and RT-qPCR for lncRNAs in white blood cells (WBCs) and plasma from SSc patients and healthy controls. Among the eight screened miRNAs, miR-30e-5p (p = 0.04) and miR-30a-5p (p = 0.01) were significantly downregulated in WBCs and plasma of SSc patients, respectively. On the contrary, the expression of the metastasis associated lung adenocarcinoma transcript 1 (MALAT1) (p = 0.044) and the Nuclear enriched abundant transcript 1 (NEAT1) (p = 0.008) in WBCs was upregulated compared to the controls. Increased levels of MALAT1 and NEAT1 could be associated with the downregulation of miR-30e-5p and miR-30a-5p expression in WBCs and plasma. We present novel data on the involvement of a possible regulatory axis lncRNAs/miR-30e/CHI3L1 in SSc and hypothesize that MALAT1 and NEAT1 could act as miR-30e-5p and miR-30a-5p decoys. This may be a reason for the increased serum levels of CHI3L1 in SSc patients.
Collapse
Affiliation(s)
- Valentin Dichev
- Department of Medical Biology, Medical University-Plovdiv, Blvd. 15A Vasil Aprilov, 4002 Plovdiv, Bulgaria; (V.D.); (M.K.); (V.S.)
- Research Institute, Medical University-Plovdiv, Blvd. 15A Vasil Aprilov, 4002 Plovdiv, Bulgaria
| | - Nikolay Mehterov
- Department of Medical Biology, Medical University-Plovdiv, Blvd. 15A Vasil Aprilov, 4002 Plovdiv, Bulgaria; (V.D.); (M.K.); (V.S.)
- Research Institute, Medical University-Plovdiv, Blvd. 15A Vasil Aprilov, 4002 Plovdiv, Bulgaria
| | - Maria Kazakova
- Department of Medical Biology, Medical University-Plovdiv, Blvd. 15A Vasil Aprilov, 4002 Plovdiv, Bulgaria; (V.D.); (M.K.); (V.S.)
- Research Institute, Medical University-Plovdiv, Blvd. 15A Vasil Aprilov, 4002 Plovdiv, Bulgaria
| | - Rositsa Karalilova
- Department of Propedeutics of Internal Diseases, Medical University-Plovdiv, Vasil Aprilov Blvd. 15A, 4001 Plovdiv, Bulgaria; (R.K.); (A.B.)
- Clinic of Rheumatology, University Hospital “Kaspela”, 64 Sofia Str., 4001 Plovdiv, Bulgaria
| | - Anastas Batalov
- Department of Propedeutics of Internal Diseases, Medical University-Plovdiv, Vasil Aprilov Blvd. 15A, 4001 Plovdiv, Bulgaria; (R.K.); (A.B.)
- Clinic of Rheumatology, University Hospital “Kaspela”, 64 Sofia Str., 4001 Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, Blvd. 15A Vasil Aprilov, 4002 Plovdiv, Bulgaria; (V.D.); (M.K.); (V.S.)
- Research Institute, Medical University-Plovdiv, Blvd. 15A Vasil Aprilov, 4002 Plovdiv, Bulgaria
| |
Collapse
|
14
|
Wang Y, Wei J, Chen T, Yang X, Zhao L, Wang M, Dou Y, Du Y, Ni R, Li T, Ma X. A Whole Transcriptome Analysis in Peripheral Blood Suggests That Energy Metabolism and Inflammation Are Involved in Major Depressive Disorder. Front Psychiatry 2022; 13:907034. [PMID: 35633815 PMCID: PMC9136012 DOI: 10.3389/fpsyt.2022.907034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Previous studies on transcriptional profiles suggested dysregulation of multiple RNA species in major depressive disorder (MDD). However, the interaction between different types of RNA was neglected. Therefore, integration of different RNA species in transcriptome analysis would be helpful for interpreting the functional readout of the transcriptome in MDD. METHODS A whole transcriptome sequencing were performed on the peripheral blood of 15 patients with MDD and 15 matched healthy controls (HCs). The differential expression of miRNAs, lncRNAs, circRNAs, and mRNAs was examined between MDD and HCs using empirical analysis of digital gene expression data in R (edgeR). Weighted correlation network analysis (WGCNA) was used to identify RNA co-expression modules associated with MDD. A ceRNA network was constructed for interpretation of interactions between different RNA species. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to explore potential biological mechanisms associated with MDD. RESULTS Multiple RNAs and co-expression modules were identified to be significantly dysregulated in MDD compared to HCs. Based on the differential RNAs, a ceRNA network that were dysregulated in MDD were constructed. The pathway networks that related to oxidative phosphorylation and the chemokine signaling were found to be associated with MDD. CONCLUSION Our results suggested that the processes of energy metabolism and inflammation may be involved in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Yu Wang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jinxue Wei
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China.,Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Ting Chen
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Yang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Liansheng Zhao
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China.,Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Min Wang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yikai Dou
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yue Du
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Rongjun Ni
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Li
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Carini G, Musazzi L, Bolzetta F, Cester A, Fiorentini C, Ieraci A, Maggi S, Popoli M, Veronese N, Barbon A. The Potential Role of miRNAs in Cognitive Frailty. Front Aging Neurosci 2021; 13:763110. [PMID: 34867290 PMCID: PMC8632944 DOI: 10.3389/fnagi.2021.763110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Frailty is an aging related condition, which has been defined as a state of enhanced vulnerability to stressors, leading to a limited capacity to meet homeostatic demands. Cognitive impairment is also frequent in older people, often accompanying frailty. Age is the main independent risk factor for both frailty and cognitive impairment, and compelling evidence suggests that similar age-associated mechanisms could underlie both clinical conditions. Accordingly, it has been suggested that frailty and cognitive impairment share common pathways, and some authors proposed "cognitive frailty" as a single complex phenotype. Nevertheless, so far, no clear common underlying pathways have been discovered for both conditions. microRNAs (miRNAs) have emerged as key fine-tuning regulators in most physiological processes, as well as pathological conditions. Importantly, miRNAs have been proposed as both peripheral biomarkers and potential molecular factors involved in physiological and pathological aging. In this review, we discuss the evidence linking changes of selected miRNAs expression with frailty and cognitive impairment. Overall, miR-92a-5p and miR-532-5p, as well as other miRNAs implicated in pathological aging, should be investigated as potential biomarkers (and putative molecular effectors) of cognitive frailty.
Collapse
Affiliation(s)
- Giulia Carini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Francesco Bolzetta
- Medical Department, Geriatric Unit, Azienda ULSS (Unità Locale Socio Sanitaria) 3 "Serenissima," Venice, Italy
| | - Alberto Cester
- Medical Department, Geriatric Unit, Azienda ULSS (Unità Locale Socio Sanitaria) 3 "Serenissima," Venice, Italy
| | - Chiara Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Ieraci
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Stefania Maggi
- Aging Branch, Neuroscience Institute, National Research Council, Padua, Italy
| | - Maurizio Popoli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Nicola Veronese
- Medical Department, Geriatric Unit, Azienda ULSS (Unità Locale Socio Sanitaria) 3 "Serenissima," Venice, Italy.,Geriatrics Section, Department of Medicine, University of Palermo, Palermo, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
16
|
Cheng T, Ding S, Liu S, Li X, Tang X, Sun L. Resolvin D1 Improves the Treg/Th17 Imbalance in Systemic Lupus Erythematosus Through miR-30e-5p. Front Immunol 2021; 12:668760. [PMID: 34093566 PMCID: PMC8171186 DOI: 10.3389/fimmu.2021.668760] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/16/2021] [Indexed: 12/31/2022] Open
Abstract
Resolvin D1 (RvD1) prompts inflammation resolution and regulates immune responses. We explored the effect of RvD1 on systemic lupus erythematosus (SLE) and investigated the correlation between RvD1 and Treg/Th17 imbalance, which is one of the major factors contributing to the pathogenesis of disease. SLE patients and healthy controls were recruited to determine plasma RvD1 levels. MRL/lpr lupus model was used to verify rescue of the disease phenotype along with Treg/Th17 ratio. Purified naive CD4+ T cells were used to study the effect of RvD1 on Treg/Th17 differentiation in vitro. Furthermore, small RNA Sequencing and transfection were performed successively to investigate downstream microRNAs. The result showed that the RvD1 level was significantly lower in active SLE patients compared with inactive status and controls. Moreover, The SLE disease activity index (SLEDAI) score had a significant negative correlation with RvD1 level. As expected, RvD1 treatment ameliorated disease phenotype and inflammatory response, improved the imbalanced Treg/Th17 in MRL/lpr mice. In addition, RvD1 increased Treg while reduced Th17 differentiation in vitro. Furthermore, miR-30e-5p was verified to modulate the Treg/Th17 differentiation from naïve CD4+ T cells as RvD1 downstream microRNA. In conclusion, RvD1 effectively ameliorates SLE progression through up-regulating Treg and down-regulating Th17 cells via miR-30e-5p.
Collapse
MESH Headings
- Adult
- Animals
- Anti-Inflammatory Agents/pharmacology
- Case-Control Studies
- Cell Differentiation/drug effects
- Cells, Cultured
- Cytokines/blood
- Disease Models, Animal
- Docosahexaenoic Acids/blood
- Docosahexaenoic Acids/pharmacology
- Female
- Humans
- Inflammation Mediators/blood
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/prevention & control
- Male
- Mice, Inbred MRL lpr
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Young Adult
- Mice
Collapse
Affiliation(s)
| | | | | | | | | | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
17
|
A novel rationale for targeting FXI: Insights from the hemostatic microRNA targetome for emerging anticoagulant strategies. Pharmacol Ther 2021; 218:107676. [DOI: 10.1016/j.pharmthera.2020.107676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
|
18
|
Hiramatsu-Asano S, Sunahori-Watanabe K, Zeggar S, Katsuyama E, Mukai T, Morita Y, Wada J. Deletion of Mir223 Exacerbates Lupus Nephritis by Targeting S1pr1 in Faslpr/lpr Mice. Front Immunol 2021; 11:616141. [PMID: 33574820 PMCID: PMC7871001 DOI: 10.3389/fimmu.2020.616141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/09/2020] [Indexed: 12/29/2022] Open
Abstract
Objective The micro RNAs (miRNAs) and their target mRNAs are differentially expressed in various immune-mediated cells. Here, we investigated the role of Mir223 and sphingosine-1-phosphate receptor 1 (S1pr1) in the pathogenesis of systemic lupus erythematosus. Methods We analyzed miRNA and mRNA profiling data of CD4+ splenic T cells derived from MRL/MpJ-Faslpr /J mice. We performed 3' untranslated region (UTR) luciferase reporter gene assay using human umbilical vein endothelial cells (HUVECs). We generated the B6-Mir223-/-Faslpr/lpr mice and the lupus phenotypes were analyzed. Results In CD4+ splenic T cells, we identified upregulation of miR-223-3p and downregulation of the possible target, S1pr1 by RNA sequencing of MRL/MpJ-Faslpr /J mice. The transfection with miR-223-3p mimic significantly suppressed a luciferase activity in HUVEC treated with a Lentivirus vector containing 3' UTR of S1pr1. The mRNA levels of S1pr1 were significantly decreased after miR-223-3p overexpression. In B6-Mir223-/-Faslpr/lpr mice, the proportion of CD3+ T cells, CD3+CD4-CD8- cells, B cells, plasma cells, and S1PR1+CD4+ T cells in the spleen was significantly increased compared with that in B6-Mir223+/+Faslpr/lpr mice by flow cytometry. B6-Mir223-/-Faslpr/lpr mice demonstrated the elevation of glomerular and renal vascular scores associated with enhanced intraglomerular infiltration of S1PR1+CD4+ T cells. Conclusion Unexpectedly, the deletion of Mir223 exacerbated the lupus phenotypes associated with increased population of S1PR1+CD4+ T in spleen and the enhanced infiltration of S1PR1+CD4+ T cells in inflamed kidney tissues, suggesting compensatory role of Mir223 in the pathogenesis of lupus nephritis.
Collapse
Affiliation(s)
- Sumie Hiramatsu-Asano
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Japan
| | - Katsue Sunahori-Watanabe
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Sonia Zeggar
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Eri Katsuyama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tomoyuki Mukai
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Japan
| | - Yoshitaka Morita
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
19
|
Reza AMMT, Yuan YG. microRNAs Mediated Regulation of the Ribosomal Proteins and its Consequences on the Global Translation of Proteins. Cells 2021; 10:110. [PMID: 33435549 PMCID: PMC7827472 DOI: 10.3390/cells10010110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
Ribosomal proteins (RPs) are mostly derived from the energy-consuming enzyme families such as ATP-dependent RNA helicases, AAA-ATPases, GTPases and kinases, and are important structural components of the ribosome, which is a supramolecular ribonucleoprotein complex, composed of Ribosomal RNA (rRNA) and RPs, coordinates the translation and synthesis of proteins with the help of transfer RNA (tRNA) and other factors. Not all RPs are indispensable; in other words, the ribosome could be functional and could continue the translation of proteins instead of lacking in some of the RPs. However, the lack of many RPs could result in severe defects in the biogenesis of ribosomes, which could directly influence the overall translation processes and global expression of the proteins leading to the emergence of different diseases including cancer. While microRNAs (miRNAs) are small non-coding RNAs and one of the potent regulators of the post-transcriptional gene expression, miRNAs regulate gene expression by targeting the 3' untranslated region and/or coding region of the messenger RNAs (mRNAs), and by interacting with the 5' untranslated region, and eventually finetune the expression of approximately one-third of all mammalian genes. Herein, we highlighted the significance of miRNAs mediated regulation of RPs coding mRNAs in the global protein translation.
Collapse
Affiliation(s)
- Abu Musa Md Talimur Reza
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Yu-Guo Yuan
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
20
|
Tsai CY, Shen CY, Liu CW, Hsieh SC, Liao HT, Li KJ, Lu CS, Lee HT, Lin CS, Wu CH, Kuo YM, Yu CL. Aberrant Non-Coding RNA Expression in Patients with Systemic Lupus Erythematosus: Consequences for Immune Dysfunctions and Tissue Damage. Biomolecules 2020; 10:biom10121641. [PMID: 33291347 PMCID: PMC7762297 DOI: 10.3390/biom10121641] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease with heterogeneous clinical manifestations. A diverse innate and adaptive immune dysregulation is involved in the immunopathogenesis of SLE. The dysregulation of immune-related cells may derive from the intricate interactions among genetic, epigenetic, environmental, and immunological factors. Of these contributing factors, non-coding RNAs (ncRNAs), including microRNAs (miRNAs, miRs), and long non-coding RNAs (lncRNAs) play critical roles in the post-transcriptional mRNA expression of cytokines, chemokines, and growth factors, which are essential for immune modulation. In the present review, we emphasize the roles of ncRNA expression in the immune-related cells and cell-free plasma, urine, and tissues contributing to the immunopathogenesis and tissue damage in SLE. In addition, the circular RNAs (circRNA) and their post-translational regulation of protein synthesis in SLE are also briefly described. We wish these critical reviews would be useful in the search for biomarkers/biosignatures and novel therapeutic strategies for SLE patients in the future.
Collapse
MESH Headings
- Adaptive Immunity/genetics
- Autoimmunity/genetics
- Chemokines/genetics
- Chemokines/immunology
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Gene Expression Regulation
- Humans
- Immunity, Innate/genetics
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- MicroRNAs/genetics
- MicroRNAs/immunology
- Neutrophils/immunology
- Neutrophils/pathology
- RNA, Circular/genetics
- RNA, Circular/immunology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/immunology
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| | - Chieh-Yu Shen
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
- Institute of Clinical Medicine, National Taiwan University School of Medicine, Taipei 10002, Taiwan
| | - Chih-Wei Liu
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.)
| | - Song-Chou Hsieh
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.)
| | - Ko-Jen Li
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Cheng-Shiun Lu
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Hui-Ting Lee
- Mackay Memorial Hospital and Mackay College of Medicine, Taipei 10449, Taiwan;
| | - Cheng-Sung Lin
- Department of Thoracic Surgery, Ministry of Health and Welfare Taipei Hospital, New Taipei City 24213, Taiwan;
| | - Cheng-Han Wu
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Yu-Min Kuo
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Chia-Li Yu
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| |
Collapse
|
21
|
Dong Y, Fan X, Wang Z, Zhang L, Guo S. Circ_HECW2 functions as a miR-30e-5p sponge to regulate LPS-induced endothelial-mesenchymal transition by mediating NEGR1 expression. Brain Res 2020; 1748:147114. [DOI: 10.1016/j.brainres.2020.147114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022]
|
22
|
Wolska-Gawron K, Bartosińska J, Rusek M, Kowal M, Raczkiewicz D, Krasowska D. Circulating miRNA-181b-5p, miRNA-223-3p, miRNA-210-3p, let 7i-5p, miRNA-21-5p and miRNA-29a-3p in patients with localized scleroderma as potential biomarkers. Sci Rep 2020; 10:20218. [PMID: 33214624 PMCID: PMC7678876 DOI: 10.1038/s41598-020-76995-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Localized scleroderma (LoSc) is a rare disease manifested by an inflammation and sclerosis of the skin. The latest studies focused on glycoprotein Krebs von den Lungen-6, surfactant protein-D, chemokine ligand 18 and dipeptidylpeptidase 4 as potential biomarkers of skin fibrosis in systemic scleroderma. Our study aimed to identify 6 miRNAs with elevated or decreased levels in 38 LoSc patients (31 females, 7 males) compared to healthy volunteers (HVs) and to correlate the selected miRNAs' serum levels with the severity and the clinical symptoms of LoSc and some laboratory parameters with the selected miRNAs' serum levels. The serum levels of miRNAs, i.e. miRNA-181b-5p, miRNA-223-3p, miRNA-21-5p, let 7i-5p, miRNA-29a-3p and miRNA-210-3p were significantly increased in the LoSc patients compared to the HVs. The level of let-7i increase in the female LoSc patients correlated negatively with BSA (r = - 0.355, p = 0.049) and mLoSSI (r = - 0.432, p = 0.015). Moreover, the female patients with inactive LoSc had significantly higher level of let-7i (2.68-fold on average) in comparison to those with active disease (p = 0.045). The exact role of those molecules has not been revealed in LoSc and a long-term longitudinal research is pivotal to confirm their prognostic value.
Collapse
Affiliation(s)
- Katarzyna Wolska-Gawron
- Department of Dermatology, Venerology and Paediatric Dermatology, The Medical University of Lublin, 20-081 Lublin 11 Staszica St, Lublin, Poland.
| | - Joanna Bartosińska
- Department of Cosmetology and Aesthetic Medicine, The Medical University of Lublin, Lublin, Poland
| | - Marta Rusek
- Department of Dermatology, Venerology and Paediatric Dermatology, The Medical University of Lublin, 20-081 Lublin 11 Staszica St, Lublin, Poland
- Department of Pathophysiology, The Medical University of Lublin, Lublin, Poland
| | - Małgorzata Kowal
- Department of Dermatology, Venerology and Paediatric Dermatology, The Medical University of Lublin, 20-081 Lublin 11 Staszica St, Lublin, Poland
| | - Dorota Raczkiewicz
- SGH Warsaw School of Economics, Collegium of Economic Analysis, Institute of Statistics and Demography, Warsaw, Poland
| | - Dorota Krasowska
- Department of Dermatology, Venerology and Paediatric Dermatology, The Medical University of Lublin, 20-081 Lublin 11 Staszica St, Lublin, Poland
| |
Collapse
|
23
|
LncRNA GAS5 suppresses CD4+ T cell activation by upregulating E4BP4 via inhibiting miR-92a-3p in systemic lupus erythematosus. Immunol Lett 2020; 227:41-47. [DOI: 10.1016/j.imlet.2020.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 06/29/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
|
24
|
Mishra R, Bhattacharya S, Rawat BS, Kumar A, Kumar A, Niraj K, Chande A, Gandhi P, Khetan D, Aggarwal A, Sato S, Tailor P, Takaoka A, Kumar H. MicroRNA-30e-5p has an Integrated Role in the Regulation of the Innate Immune Response during Virus Infection and Systemic Lupus Erythematosus. iScience 2020; 23:101322. [PMID: 32688283 PMCID: PMC7371751 DOI: 10.1016/j.isci.2020.101322] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/26/2020] [Accepted: 06/25/2020] [Indexed: 01/02/2023] Open
Abstract
Precise regulation of innate immunity is crucial for development of appropriate host immunity against microbial infections and maintenance of immune homeostasis. MicroRNAs are small non-coding RNAs, post-transcriptional regulator of multiple genes, and act as a rheostat for protein expression. Here, we identified microRNA-30e-5p induced by hepatitis B virus and other viruses that act as a master regulator for innate immunity. Moreover, pegylated interferons treatment of patients with HBV for viral reduction also reduces miRNA. Additionally, we have also shown the immuno-pathological effects of miR-30e in patients with systemic lupus erythematosus (SLE) and mouse model. Mechanistically, miR-30e targets multiple negative regulators of innate immune signaling and enhances immune responses. Furthermore, sequestering of miR-30e in patients with SLE and mouse model significantly reduces type-I interferon and pro-inflammatory cytokines. Collectively, our study demonstrates the novel role of miR-30e in innate immunity and its prognostic and therapeutic potential in infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Richa Mishra
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, AB-3, Room No. 215, Bhopal By-pass Road, Bhauri, Bhopal, MP 462066, India
| | - Sanjana Bhattacharya
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, AB-3, Room No. 215, Bhopal By-pass Road, Bhauri, Bhopal, MP 462066, India
| | - Bhupendra Singh Rawat
- Laboratory of Innate Immunity, National Institute of Immunology (NII), New Delhi 110067, India
| | - Ashish Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, AB-3, Room No. 215, Bhopal By-pass Road, Bhauri, Bhopal, MP 462066, India
| | - Akhilesh Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, AB-3, Room No. 215, Bhopal By-pass Road, Bhauri, Bhopal, MP 462066, India
| | - Kavita Niraj
- Department of Research (Medical Biotechnology), Bhopal Memorial Hospital & Research Centre (BMHRC), Bhopal, MP 462038, India
| | - Ajit Chande
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, MP 462066, India
| | - Puneet Gandhi
- Department of Research (Medical Biotechnology), Bhopal Memorial Hospital & Research Centre (BMHRC), Bhopal, MP 462038, India
| | - Dheeraj Khetan
- Department of Transfusion Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, UP 226014, India
| | - Amita Aggarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, UP 226014, India
| | - Seiichi Sato
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Prafullakumar Tailor
- Laboratory of Innate Immunity, National Institute of Immunology (NII), New Delhi 110067, India
| | - Akinori Takaoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Himanshu Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, AB-3, Room No. 215, Bhopal By-pass Road, Bhauri, Bhopal, MP 462066, India; WPI Immunology, Frontier Research Centre, Osaka University, Osaka 5650871, Japan.
| |
Collapse
|
25
|
Exploring the Role of Non-Coding RNAs in the Pathophysiology of Systemic Lupus Erythematosus. Biomolecules 2020; 10:biom10060937. [PMID: 32580306 PMCID: PMC7356926 DOI: 10.3390/biom10060937] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic immune-related disorder designated by a lack of tolerance to self-antigens and the over-secretion of autoantibodies against several cellular compartments. Although the exact pathophysiology of SLE has not been clarified yet, this disorder has a strong genetic component based on the results of familial aggregation and twin studies. Variation in the expression of non-coding RNAs has been shown to influence both susceptibility to SLE and the clinical course of this disorder. Several long non-coding RNAs (lncRNAs) such as GAS5, MALAT1 and NEAT1 are dysregulated in SLE patients. Moreover, genetic variants within lncRNAs such as SLEAR and linc00513 have been associated with risk of this disorder. The dysregulation of a number of lncRNAs in the peripheral blood of SLE patients has potentiated them as biomarkers for diagnosis, disease activity and therapeutic response. MicroRNAs (miRNAs) have also been shown to affect apoptosis and the function of immune cells. Taken together, there is a compelling rationale for the better understanding of the involvement of these two classes of non-coding RNAs in the pathogenesis of SLE. Clarification of the function of these transcripts has the potential to elucidate the molecular pathophysiology of SLE and provide new opportunities for the development of targeted therapies for this disorder.
Collapse
|
26
|
Nie Y, Wang S, Yu Y, Zuo X, Xiong B. The effect of miR-223 on cellular behaviour in non-5q myelodysplastic syndromes through targeting RPS14. Pathology 2020; 52:552-560. [PMID: 32571542 DOI: 10.1016/j.pathol.2020.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
Myelodysplastic syndromes (MDS) are characterised by impaired haematopoiesis and a high risk of leukaemic transformation. A decrease in RPS14 expression in non-5q MDS patients was confirmed by immunohistochemical analyses of MDS bone marrow biopsies. To determine the cause of RPS14 reduction in non-5q MDS, we analysed the 3'-UTR of RPS14 and demonstrated that miR-223 binds to the 3'-UTR of RPS14 by bioinformatics-based approach combined with the luciferase reporter assay. Using quantitative real-time polymerase chain reaction (qRT-PCR) analysis, we observed a significantly increased expression of miR-223 in CD34+ cells and SKM-1 cells derived from non-5q MDS patients in vitro and demonstrated a correlation between miR-223 levels and red blood cell counts. Exogenous miR-223 expression in SKM-1 cells could also inhibit RPS14 expression. In functional studies, overexpression of miR-223 was shown to promote cell proliferation and inhibit cell apoptosis in SKM-1 cells, and to impair erythroid differentiation in haemin-induced K562 cells. Taken together, our results revealed that the overexpression of miR-223 in MDS is closely associated with cell transformation and erythroid differentiation arrest, which is most likely mediated by targeting RPS14.
Collapse
Affiliation(s)
- Yanbo Nie
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China; Sino-us-diagnostics, Tianjin, China
| | - Shixuan Wang
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yalan Yu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuelan Zuo
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bei Xiong
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
27
|
Wang Y, Zhang J, Su Y, Wang C, Zhang G, Liu X, Chen Q, Lv M, Chang Y, Peng J, Hou M, Huang X, Zhang X. miRNA-98-5p Targeting IGF2BP1 Induces Mesenchymal Stem Cell Apoptosis by Modulating PI3K/Akt and p53 in Immune Thrombocytopenia. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:764-776. [PMID: 32428701 PMCID: PMC7232042 DOI: 10.1016/j.omtn.2020.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Immune thrombocytopenia (ITP) is a common hematological autoimmune disease, in which defective mesenchymal stem cells (MSCs) are potentially involved. Our previous study suggested that MSCs in ITP patients displayed enhanced apoptosis. MicroRNAs (miRNAs) play important roles in ITP by affecting megakaryopoiesis, platelet production and immunoregulation, whereas the roles of miRNAs in ITP-MSCs remain unknown. In a previous study, we performed microarray analysis to obtain mRNA and miRNA profiles of ITP-MSCs. In the present study, we reanalyze the data and identify miR-98-5p as a candidate miRNA contributing to MSC deficiency in ITP. miR-98-5p acts through targeting insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), and the subsequent downregulation of insulin-like growth factor 2 (IGF-2) causes inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which is involved in the process of MSC deficiency. Furthermore, miR-98-5p upregulates p53 by inhibiting β-transducin repeat-containing protein (β-TrCP)-dependent p53 ubiquitination. Moreover, miR-98-5p overexpression impairs the therapeutic effect of MSCs in ITP mice. All-trans retinoic acid (ATRA) protects MSCs from apoptosis by downregulating miR-98-5p, thus providing a potential therapeutic approach for ITP. Our findings demonstrate that miR-98-5p is a critical regulator of ITP-MSCs, which will help us thoroughly understand the pathogenesis of ITP.
Collapse
Affiliation(s)
- Yanan Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Jiamin Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Yan Su
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Chencong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Gaochao Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Xiao Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Qi Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Yingjun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China; National Clinical Research Center for Hematologic Disease, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China.
| |
Collapse
|
28
|
Labib DA, Koptan D, Ghoniem S, Salah SH, El Shazly R, El Refai RM. Dysregulation of microRNA146a-5p expression in systemic lupus erythematosus females: Diagnostic potential and association with ocular manifestations. THE EGYPTIAN RHEUMATOLOGIST 2020. [DOI: 10.1016/j.ejr.2019.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Sabre L, Punga T, Punga AR. Circulating miRNAs as Potential Biomarkers in Myasthenia Gravis: Tools for Personalized Medicine. Front Immunol 2020; 11:213. [PMID: 32194544 PMCID: PMC7065262 DOI: 10.3389/fimmu.2020.00213] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease caused by antibodies which attack receptors at the neuromuscular junction. One of the main difficulties in predicting the clinical course of MG is the heterogeneity of the disease, where disease progression differs greatly depending on the subgroup that the patient is classified into. MG subgroups are classified according to: age of onset [early-onset MG (EOMG; onset ≤ 50 years) versus late-onset MG (LOMG; onset > 50 years]; the presence of a thymoma (thymoma-associated MG); antibody subtype [acetylcholine receptor antibody seropositive (AChR+) and muscle-specific tyrosine kinase antibody seropositive (MuSK+)]; as well as clinical subtypes (ocular versus generalized MG). The diagnostic tests for MG, such as antibody titers, neurophysiological tests, and objective clinical fatigue score, do not necessarily reflect disease progression. Hence, there is a great need for reliable objective biomarkers in MG to follow the disease course as well as the individualized response to therapy toward personalized medicine. In this regard, circulating microRNAs (miRNAs) have emerged as promising potential biomarkers due to their accessibility in body fluids and unique profiles in different diseases, including autoimmune disorders. Several studies on circulating miRNAs in MG subtypes have revealed specific miRNA profiles in patients’ sera. In generalized AChR+ EOMG, miR-150-5p and miR-21-5p are the most elevated miRNAs, with lower levels observed upon treatment with immunosuppression and thymectomy. In AChR+ generalized LOMG, the miR-150-5p, miR-21-5p, and miR-30e-5p levels are elevated and decrease in accordance with the clinical response after immunosuppression. In ocular MG, higher levels of miR-30e-5p discriminate patients who will later generalize from those remaining ocular. In contrast, in MuSK+ MG, the levels of the let-7 miRNA family members are elevated. Studies of circulating miRNA profiles in Lrp4 or agrin antibody-seropositive MG are still lacking. This review summarizes the present knowledge of circulating miRNAs in different subgroups of MG.
Collapse
Affiliation(s)
- Liis Sabre
- Department of Neurology and Neurosurgery, University of Tartu, Tartu, Estonia.,Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anna Rostedt Punga
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
Pasquali L, Svedbom A, Srivastava A, Rosén E, Lindqvist U, Ståhle M, Pivarcsi A, Sonkoly E. Circulating microRNAs in extracellular vesicles as potential biomarkers for psoriatic arthritis in patients with psoriasis. J Eur Acad Dermatol Venereol 2020; 34:1248-1256. [PMID: 31954077 DOI: 10.1111/jdv.16203] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Psoriatic arthritis (PsA) develops in ~30% of patients with psoriasis. The diagnosis of PsA is challenging, and there are no reliable molecular markers in clinical use. MicroRNAs are short non-coding regulatory RNAs, which can be actively packaged into extracellular vesicles (EVs) and secreted to the circulation. OBJECTIVES To explore whether plasma-derived EV microRNAs may serve as biomarkers for PsA in patients with psoriasis. METHODS Plasma samples were obtained from patients with cutaneous-only psoriasis (PsC) and patients with psoriasis and PsA. Plasma EVs were isolated using miRCURY™ Exosome Isolation Kit. RNA sequencing was used to identify differentially expressed EV miRNAs in the discovery phase (PsC, n = 15; PsA, n = 14). In the validation phase (PsC, n = 29; PsA, n = 28), 41 selected miRNAs were analysed in plasma EVs by qPCR. The association of the identified miRNAs with PsA was assessed by logistic regression analysis. RESULTS RNA sequencing identified 19 plasma EV miRNAs with significantly different levels between PsA and PsC in the discovery cohort. Significantly lower levels of plasma EV let-7b-5p and miR-30e-5p in PsA vs. PsC were confirmed in the validation cohort, and their decreased levels were found to be associated with the presence of PsA. ROC analysis revealed an AUC of 0.68 (95% CI 0.53-0.83) for let-7b-5p and 0.69 (95% CI 0.55-0.84) for miR-30e-5p. CONCLUSIONS Circulating EV microRNA levels are altered in patients with PsA as compared with PsC. Findings of this exploratory study suggest that circulating EV microRNAs may serve as biomarkers for arthritis in psoriasis patients.
Collapse
Affiliation(s)
- L Pasquali
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden
| | - A Svedbom
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - A Srivastava
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden
| | - E Rosén
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - U Lindqvist
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - M Ståhle
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden.,Dermatology and Venereology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - A Pivarcsi
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden.,Research Institute of Translational Biomedicine, University of Szeged, Szeged, Hungary
| | - E Sonkoly
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden.,Dermatology and Venereology Unit, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
31
|
Cao HY, Li D, Wang YP, Lu HX, Sun J, Li HB. Clinical significance of reduced expression of lncRNA TUG1 in the peripheral blood of systemic lupus erythematosus patients. Int J Rheum Dis 2020; 23:428-434. [PMID: 31944629 DOI: 10.1111/1756-185x.13786] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/17/2019] [Accepted: 12/17/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the expression and clinical significance of long non-coding RNA taurine up-regulated gene 1 (lncRNA TUG1) in the peripheral blood of systemic lupus erythematosus (SLE) patients. METHODS With the peripheral blood mononuclear cells (PBMCs: T-cells, B-cells and monocytes) collected from SLE patients and healthy controls, TUG1 expression was determined to identify the correlation with the clinicopathological features of SLE patients. Thereby, the diagnostic value of TUG1 expression in diagnosis of SLE was evaluated by receiver operating characteristic (ROC) curve analysis. RESULTS As compared to healthy controls, SLE patients manifested a lower expression of TUG1 in PBMCs, which was further decreased in SLE patients with lupus nephritis (P < .05). The lowest level of TUG1 was found in monocytes, rather than T-cells or B-cells (P < .05). Negative correlations were identified between TUG1 levels and SLE Disease Activity Index score (r = -.904, P < .001), erythrocyte sedimentation rate (r = -.779, P < .001), disease duration (r = -.503, P < .001) and 24-hour urinary protein (r = -.807, P < .001). Complement C3 levels were positively associated with TUG1 expression (r = .817, P < .001). In addition, the area under the ROC curve of diagnostic efficiency for SLE based on TUG1 was 0.982, and 0.930 for SLE with lupus nephritis. CONCLUSIONS The levels of lncRNA TUG1 was markedly lower in the SLE patients, which was more obvious in SLE patients with lupus nephritis, and thus, it could be a promising clinical diagnostic tool for SLE patients or SLE patients with lupus nephritis.
Collapse
Affiliation(s)
- Hai-Yu Cao
- Department of Dermatology, The First Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Dong Li
- Department of Dermatology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Peng Wang
- Department of General Medicine, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui-Xiu Lu
- Department of Dermatology, The First Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Jing Sun
- Department of Dermatology, The First Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Hai-Bin Li
- Department of General Medicine, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
32
|
Clemente E, Efthymakis K, Carletti E, Capone V, Sperduti S, Bologna G, Marchisio M, Di Nicola M, Neri M, Sallese M. An explorative study identifies miRNA signatures for the diagnosis of non-celiac wheat sensitivity. PLoS One 2019; 14:e0226478. [PMID: 31834915 PMCID: PMC6910677 DOI: 10.1371/journal.pone.0226478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
Non-celiac wheat sensitivity (NCWS), also referred to as non-celiac gluten sensitivity, is a recently described disorder triggered by wheat/gluten ingestion. NCWS elicits a wide range of symptoms including diarrhoea, intestinal discomfort, and fatigue in analogy with other wheat/gluten-related disorders and celiac disease in particular. From the pathological standpoint, NCWS patients only have a slight increase of intraepithelial lymphocytes, while antibodies to tissue transglutaminase (tTG) and villous atrophy, otherwise diagnostic features of celiac disease, are absent. To date, the diagnosis of NCWS relies on symptoms and exclusion of confounding diseases, since biomarkers are not yet available. Here, the expression levels of selected miRNAs were examined in duodenal biopsies and peripheral blood leukocytes collected from newly diagnosed patients with NCWS and, as controls, from patients with celiac disease and gluten-independent gastrointestinal problems. We identified a few miRNAs whose expression is higher in the intestinal mucosa of patients affected by NCWS in comparison to control patients affect by gluten-independent dyspeptic symptoms (Helicobacter pylori-negative) and celiac disease. The present study provided the first evidence that NCWS patients have a characteristic miRNA expression patterns, such peculiarity could be exploited as a biomarker to the diagnosis of this disease.
Collapse
Affiliation(s)
- Emanuela Clemente
- Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University of Chieti–Pescara, Chieti, Italy
- Centre for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Konstantinos Efthymakis
- Centre for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Ageing Sciences, “G. d'Annunzio” University of Chieti–Pescara, Chieti, Italy
| | - Erminia Carletti
- Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University of Chieti–Pescara, Chieti, Italy
- Centre for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Vanessa Capone
- Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University of Chieti–Pescara, Chieti, Italy
- Centre for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Samantha Sperduti
- Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University of Chieti–Pescara, Chieti, Italy
- Centre for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Giuseppina Bologna
- Centre for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Ageing Sciences, “G. d'Annunzio” University of Chieti–Pescara, Chieti, Italy
| | - Marco Marchisio
- Centre for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Ageing Sciences, “G. d'Annunzio” University of Chieti–Pescara, Chieti, Italy
| | - Marta Di Nicola
- Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University of Chieti–Pescara, Chieti, Italy
| | - Matteo Neri
- Centre for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Ageing Sciences, “G. d'Annunzio” University of Chieti–Pescara, Chieti, Italy
- * E-mail: (MS); (MN)
| | - Michele Sallese
- Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University of Chieti–Pescara, Chieti, Italy
- Centre for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- * E-mail: (MS); (MN)
| |
Collapse
|
33
|
Tsai CY, Hsieh SC, Lu CS, Wu TH, Liao HT, Wu CH, Li KJ, Kuo YM, Lee HT, Shen CY, Yu CL. Cross-Talk between Mitochondrial Dysfunction-Provoked Oxidative Stress and Aberrant Noncoding RNA Expression in the Pathogenesis and Pathophysiology of SLE. Int J Mol Sci 2019; 20:ijms20205183. [PMID: 31635056 PMCID: PMC6829370 DOI: 10.3390/ijms20205183] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototype of systemic autoimmune disease involving almost every organ. Polygenic predisposition and complicated epigenetic regulations are the upstream factors to elicit its development. Mitochondrial dysfunction-provoked oxidative stress may also play a crucial role in it. Classical epigenetic regulations of gene expression may include DNA methylation/acetylation and histone modification. Recent investigations have revealed that intracellular and extracellular (exosomal) noncoding RNAs (ncRNAs), including microRNAs (miRs), and long noncoding RNAs (lncRNAs), are the key molecules for post-transcriptional regulation of messenger (m)RNA expression. Oxidative and nitrosative stresses originating from mitochondrial dysfunctions could become the pathological biosignatures for increased cell apoptosis/necrosis, nonhyperglycemic metabolic syndrome, multiple neoantigen formation, and immune dysregulation in patients with SLE. Recently, many authors noted that the cross-talk between oxidative stress and ncRNAs can trigger and perpetuate autoimmune reactions in patients with SLE. Intracellular interactions between miR and lncRNAs as well as extracellular exosomal ncRNA communication to and fro between remote cells/tissues via plasma or other body fluids also occur in the body. The urinary exosomal ncRNAs can now represent biosignatures for lupus nephritis. Herein, we’ll briefly review and discuss the cross-talk between excessive oxidative/nitrosative stress induced by mitochondrial dysfunction in tissues/cells and ncRNAs, as well as the prospect of antioxidant therapy in patients with SLE.
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec.2, Shih-Pai Road, Taipei 11217, Taiwan.
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Cheng-Shiun Lu
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Tsai-Hung Wu
- Division of Nephrology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec. 2, Shih-Pai Road, Taipei 11217, Taiwan.
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec.2, Shih-Pai Road, Taipei 11217, Taiwan.
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Hui-Ting Lee
- Section of Allergy, Immunology & Rheumatology, Mackay Memorial Hospital, #92 Sec. 2, Chung-Shan North Road, Taipei 10449, Taiwan.
| | - Chieh-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, #7 Chung-Shan South Road, Taipei 10002, Taiwan.
| |
Collapse
|
34
|
Predictive value of circulating coagulation related microRNAs expressions for major adverse cardiac and cerebral event risk in patients undergoing continuous ambulatory peritoneal dialysis: a cohort study. J Nephrol 2019; 33:157-165. [PMID: 31359371 PMCID: PMC7007420 DOI: 10.1007/s40620-019-00626-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/20/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND We aimed to investigate the correlation of coagulation related microRNAs (miRNAs) expressions with major adverse cardiac and cerebral event (MACCE) risk in patients undergoing continuous ambulatory peritoneal dialysis (CAPD). METHODS 198 end-stage renal disease (ESRD) patients underwent CAPD were consecutively recruited in this study. Clinical characteristics as well as physiological and biochemical indexes were recorded. Peripheral blood was collected after enrollment to separate plasma, and 13 blood coagulation related miRNAs were detected by the real-time quantitative polymerase chain reaction. All patents were followed up for 48 months, and the last follow-up date was 2018/12/31. MACCEs occurred during the follow up were documented, and MACCE-free survival was calculated. RESULTS MACCE incidence at 1 year, 2 year, 3 year and 4 year was 2.5, 6.1, 9.1 and 13.1% respectively, and mean MACCE-free survival was 45.2 (95% CI 44.0-46.4) months. Kaplan-Meier curves showed that miR-30e-5p, miR-92a-3p, miR-106a-5p and miR-126-5p high expressions were associated with longer MACCE-survival, while miR-423-5p high expression correlated with shorter MACCE-free survival. Multivariate Cox's regression analysis disclosed that miR-92a-3p, miR-126-5p and miR-652-3p independently predicted longer MACCE-free survival, while miR-423-5p independently predicted reduced MACCE-free survival in CAPD patients. CONCLUSION Circulating miR-92a-3p, miR-126-5p, miR-652-3p and miR-423-5p exhibit potential to serve as novel biomarkers for MACCE risk in patients undergoing CAPD.
Collapse
|
35
|
Diagnostic significance of circulating miRNAs in systemic lupus erythematosus. PLoS One 2019; 14:e0217523. [PMID: 31163082 PMCID: PMC6548426 DOI: 10.1371/journal.pone.0217523] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Background In recent years, many studies focused on the association between the microRNAs (miRNAs) and the risk of systemic lupus erythematosus (SLE), especially miRNA-21 (miR-21). We aimed to investigate the role of circulating miRNAs, especially the miR-21, as a biomarker in detecting SLE. Methods We searched PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, and China National Knowledge Infrastructure through Mar 3th, 2019. We performed this meta-analysis in a fixed/random-effect model using Meta-disc 1.4 and STATA 15.1. Results A total of 17 relevant studies were eligible to analyze pooled accuracy. The overall performance of total mixed miRNAs (TmiRs) detection was: pooled sensitivity, 0.71 (95% confidence interval [CI], 0.69 to 0.72); pooled specificity, 0.81 (95%CI, 0.79 to 0.83); and area under the summary receiver operating characteristic curves value (SROC), 0.8797. The miR-21 detection was: pooled sensitivity, 0.68 (95%CI, 0.62 to 0.74); pooled specificity, 0.77 (95%CI, 0.69 to 0.84); and SROC, 0.8281. The meta-regression analysis showed that the type of samples was the sources of heterogeneity. The subgroup analysis suggested that detection in plasma group had the largest AUC of SROC in all the subgroups: pooled sensitivity, 0.8 (95%CI, 0.78 to 0.82); pooled specificity, 0.83 (95%CI, 0.8 to 0.86); and SROC, 0.9068. Conclusions Our meta-analysis demonstrated that circulating miRNAs might be potential novel biomarkers for detecting SLE, especially miR-21. Moreover, plasma is recommended as the clinical specimen for diagnostic detection.
Collapse
|
36
|
MiR-195 modulates oxidative stress-induced apoptosis and mitochondrial energy production in human trophoblasts via flavin adenine dinucleotide-dependent oxidoreductase domain-containing protein 1 and pyruvate dehydrogenase phosphatase regulatory subunit. J Hypertens 2019; 36:306-318. [PMID: 28858979 DOI: 10.1097/hjh.0000000000001529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Preeclampsia is a severe pregnancy-specific syndrome defined as newly onset hypertension and proteinuria. Abnormal placental development has been generally accepted as the initial cause of the disorder. Recently, miR-195 was identified as one of the downregulated small RNAs in preeclamptic placentas. METHODS The potential targets of miR-195 in human trophoblast cells were screened by isobaric tags for relative and absolute quantification-based mass spectrum analysis. Localization of miR-195 and its targets was examined by in-situ hybridization and immunohistochemistry in human placenta. Real-time PCR, western blotting and luciferase assay were used for target validation. Apoptosis was accessed by Annexin V/PI costaining, whereas mitochondrial function by ATP measurement and tetramethylrhodamine ethyl ester fluorescence. RESULTS Two mitochondria-associated proteins, flavin adenine dinucleotide-dependent oxidoreductase domain-containing protein 1 (FOXRED1) and pyruvate dehydrogenase phosphatase regulatory subunit (PDPR), were identified as targets of miR-195. Overexpression of miR-195 in HTR8/SVneo cells resulted in enhanced apoptosis, decreased mitochondrial membrane potential and cellular ATP content upon hydrogen peroxide stimulation. The effects could be partially rescued by FOXRED1 or PDPR. In preeclamptic patients, lowered circulating level of miR-195 were found at early-to-mid gestation and term pregnancy, and marked increase in FOXRED1 and PDPR expression were observed in the placenta when compared with gestational week-matched controls. In addition, chronic hydrogen peroxide stimuli suppressed miR-195 expression in trophoblast cells. CONCLUSION MiR-195 could suppress mitochondrial energy production via targeting FOXRED1 and PDPR, and lead to trophoblast cell apoptosis under oxidative stress. In preeclamptic placenta, lowered level of miR-195 might be induced by chorionic oxidative stress and subsequently form a compensation mechanism to defend the disturbed energy production and cell apoptosis upon oxidative stress.
Collapse
|
37
|
Decmann A, Nyírö G, Darvasi O, Turai P, Bancos I, Kaur RJ, Pezzani R, Iacobone M, Kraljevic I, Kastelan D, Parasiliti-Caprino M, Maccario M, Nirschl N, Heinrich D, Reincke M, Patócs A, Igaz P. Circulating miRNA Expression Profiling in Primary Aldosteronism. Front Endocrinol (Lausanne) 2019; 10:739. [PMID: 31736877 PMCID: PMC6828819 DOI: 10.3389/fendo.2019.00739] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022] Open
Abstract
Objective: Primary aldosteronism is a major cause of secondary hypertension. Its two principal forms are bilateral adrenal hyperplasia (BAH) and aldosterone-producing adenoma (APA) whose differentiation is clinically pivotal. There is a major clinical need for a reliable and easily accessible diagnostic biomarker for case identification and subtyping. Circulating microRNAs were shown to be useful as minimally invasive diagnostic markers. Our aim was to determine and compare the circulating microRNA expression profiles of adenoma and hyperplasia plasma samples, and to evaluate their applicability as minimally invasive markers. Methods: One hundred and twenty-three samples from primary aldosteronism patients were included. Next-generation sequencing was performed on 30 EDTA-anticoagulated plasma samples (discovery cohort). Significantly differently expressed miRNAs were validated by real-time reverse transcription-qPCR in an independent validation cohort (93 samples). Results: We have found relative overexpression of miR-30e-5p, miR-30d-5p, miR-223-3p, and miR-7-5p in hyperplasia compared to adenoma by next-generation sequencing. Validation by qRT-PCR confirmed significant overexpression of hsa-miR-30e-5p, hsa-miR-30d-5p, and hsa-miR-7-5p in hyperplasia samples. Regarding the microRNA expressional variations, adenoma is more heterogeneous at the miRNA level compared to hyperplasia. Conclusion: Three microRNAs were significantly overexpressed in hyperplasia samples compared to adenoma samples, but their sensitivity and specificity values are not good enough for introduction to clinical practice.
Collapse
Affiliation(s)
- Abel Decmann
- 2nd Department of Internal Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Nyírö
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Ottó Darvasi
- Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Péter Turai
- 2nd Department of Internal Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Irina Bancos
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ravinder Jeet Kaur
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Raffaele Pezzani
- Endocrinology Unit, Department of Medicine, University of Padua, Padova, Italy
| | - Maurizio Iacobone
- Minimally Invasive Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, Padova, Italy
| | - Ivana Kraljevic
- Department of Endocrinology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Darko Kastelan
- Department of Endocrinology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Mirko Parasiliti-Caprino
- Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Mauro Maccario
- Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Nina Nirschl
- Medizinische Klinik und Poliklinik IV, Ludwig Maximilian University Munich, Munich, Germany
| | - Daniel Heinrich
- Medizinische Klinik und Poliklinik IV, Ludwig Maximilian University Munich, Munich, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Ludwig Maximilian University Munich, Munich, Germany
| | - Attila Patócs
- Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Peter Igaz
- 2nd Department of Internal Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- *Correspondence: Peter Igaz
| |
Collapse
|
38
|
MicroRNA-92a Drives Th1 Responses in the Experimental Autoimmune Encephalomyelitis. Inflammation 2018; 42:235-245. [PMID: 30411211 DOI: 10.1007/s10753-018-0887-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
Circulating microRNA miR-21-5p, miR-150-5p and miR-30e-5p correlate with clinical status in late onset myasthenia gravis. J Neuroimmunol 2018; 321:164-170. [DOI: 10.1016/j.jneuroim.2018.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
|
40
|
Zhang H, Huang X, Ye L, Guo G, Li X, Chen C, Sun L, Li B, Chen N, Xue X. B Cell-Related Circulating MicroRNAs With the Potential Value of Biomarkers in the Differential Diagnosis, and Distinguishment Between the Disease Activity and Lupus Nephritis for Systemic Lupus Erythematosus. Front Immunol 2018; 9:1473. [PMID: 30008716 PMCID: PMC6033964 DOI: 10.3389/fimmu.2018.01473] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/13/2018] [Indexed: 12/31/2022] Open
Abstract
Our understanding of circulating microRNAs (miRNAs) related to systemic lupus erythematosus (SLE) remains very limited. In this study, we screened SLE-specific miRNAs in plasma from 42 B cell-related miRNAs by using miRNA PCR Array. The selected miRNAs were first confirmed in plasma samples from 50 SLE patients, 16 rheumatoid arthritis (RA) patients, and 20 healthy donors using qRT-PCR. We then investigated the relationship between expressions of the selected miRNAs and SLE clinical indicators. As a result, 14 miRNAs (miR-103, miR-150, miR-20a, miR-223, miR-27a, miR-15b, miR-16, miR-181a, miR-19b, miR-22, miR-23a, miR-25, miR-92a, and miR-93) were significantly decreased in the plasma of SLE patients compared with healthy controls (P < 0.05) and could act as the diagnostic signature to distinguish SLE patients from healthy donors. Six miRNAs (miR-92a, miR-27a, miR-19b, miR-23a, miR-223, and miR-16) expressed in plasma were significantly lower in SLE patients than in RA patients (P < 0.05), revealing the potentially diagnostic signature to distinguish SLE patients from RA patients. Furthermore, the downregulated expression of miR-19b, miR-25, miR-93, and miR-15b was associated with SLE disease activity (P < 0.05) while miR-15b and miR-22 expressions were significantly lower in SLE patients with low estimate glomerular filtration rate (eGFR < 60 ml/min/1.73 m2) (P < 0.05). The diagnostic potential of miR-15b for SLE disease activity and lupus nephritis (LN) with low eGFR was validated on an independent validation set with 69 SLE patients and a cross-validation set with 80 SLE patients. In summary, the signature of circulating miRNAs will provide novel biomarkers for the diagnosis of SLE and evaluation of disease activity and LN.
Collapse
Affiliation(s)
- Huidi Zhang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xixi Huang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lulu Ye
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gangqiang Guo
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao Li
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chaosheng Chen
- Department of Nephrology of the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li Sun
- Department of Rheumatology of the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Baoqing Li
- Department of Laboratory Medicine of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nan Chen
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
41
|
Pasquier J, Ramachandran V, Abu-Qaoud MR, Thomas B, Benurwar MJ, Chidiac O, Hoarau-Véchot J, Robay A, Fakhro K, Menzies RA, Jayyousi A, Zirie M, Al Suwaidi J, Malik RA, Talal TK, Najafi-Shoushtari SH, Rafii A, Abi Khalil C. Differentially expressed circulating microRNAs in the development of acute diabetic Charcot foot. Epigenomics 2018; 10:1267-1278. [PMID: 29869523 PMCID: PMC6240850 DOI: 10.2217/epi-2018-0052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Charcot foot (CF) is a rare complication of Type 2 diabetes (T2D). Materials & methods: We assessed circulating miRNAs in 17 patients with T2D and acute CF (G1), 17 patients with T2D (G2) and equivalent neuropathy and 17 patients with T2D without neuropathy (G3) using the high-throughput miRNA expression profiling. Results: 51 significantly deregulated miRNAs were identified in G1 versus G2, 37 in G1 versus G3 and 64 in G2 versus G3. Furthermore, we demonstrated that 16 miRNAs differentially expressed between G1 versus G2 could be involved in osteoclastic differentiation. Among them, eight are key factors involved in CF pathophysiology. Conclusion: Our data reveal that CF patients exhibit an altered expression profile of circulating miRNAs.
Collapse
Affiliation(s)
- Jennifer Pasquier
- Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, PO box 24144, Doha, Qatar.,Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, PO box 24144, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, NY 10021, USA
| | - Vimal Ramachandran
- MicroRNA Core, Department of Research, Weill Cornell Medicine-Qatar, PO box 24144, Doha, Qatar
| | - Moh'd Rasheed Abu-Qaoud
- Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, PO box 24144, Doha, Qatar.,Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, PO box 24144, Doha, Qatar
| | - Binitha Thomas
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, PO box 24144, Doha, Qatar
| | - Manasi J Benurwar
- MicroRNA Core, Department of Research, Weill Cornell Medicine-Qatar, PO box 24144, Doha, Qatar
| | - Omar Chidiac
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, PO box 24144, Doha, Qatar
| | - Jessica Hoarau-Véchot
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, PO box 24144, Doha, Qatar
| | - Amal Robay
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, PO box 24144, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, NY 10021, USA
| | - Khalid Fakhro
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, PO box 24144, Doha, Qatar.,Department of Human Genetics, Sidra Medical & Research Centre, PO box 26999, Doha, Qatar
| | - Robert A Menzies
- Department of Medicine, Hamad Medical Corporation, PO box 2050, Doha, Qatar
| | - Amin Jayyousi
- Department of Medicine, Hamad Medical Corporation, PO box 2050, Doha, Qatar
| | - Mahmoud Zirie
- Department of Medicine, Hamad Medical Corporation, PO box 2050, Doha, Qatar
| | - Jassim Al Suwaidi
- Department of Medicine, Hamad Medical Corporation, PO box 2050, Doha, Qatar
| | - Rayaz A Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, PO box 3050, Doha, Qatar.,John & Sanford I, Weill Department of Medicine, Weill Cornell Medicine, NY 10021, USA
| | - Talal K Talal
- Department of Medicine, Hamad Medical Corporation, PO box 2050, Doha, Qatar
| | - Seyed Hani Najafi-Shoushtari
- MicroRNA Core, Department of Research, Weill Cornell Medicine-Qatar, PO box 24144, Doha, Qatar.,Department of Cell & Developmental Biology, Weill Cornell Medicine, NY 10021, USA
| | - Arash Rafii
- Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, PO box 24144, Doha, Qatar.,Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, PO box 24144, Doha, Qatar
| | - Charbel Abi Khalil
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, PO box 24144, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, NY 10021, USA.,Department of Medicine, Weill Cornell Medicine-Qatar, PO box 3050, Doha, Qatar.,John & Sanford I, Weill Department of Medicine, Weill Cornell Medicine, NY 10021, USA
| |
Collapse
|
42
|
Comprehensive circular RNA profiles in plasma reveals that circular RNAs can be used as novel biomarkers for systemic lupus erythematosus. Clin Chim Acta 2018; 480:17-25. [DOI: 10.1016/j.cca.2018.01.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 01/01/2023]
|
43
|
|
44
|
Wang Z, Chang C, Peng M, Lu Q. Translating epigenetics into clinic: focus on lupus. Clin Epigenetics 2017; 9:78. [PMID: 28785369 PMCID: PMC5541721 DOI: 10.1186/s13148-017-0378-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/26/2017] [Indexed: 01/17/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic relapsing–remitting autoimmune disease with highly heterogeneous phenotypes. Biomarkers with high sensitivity and specificity are useful for early diagnosis as well as monitoring disease activity and long-term complications. Epigenetics potentially provide novel biomarkers in autoimmune diseases. These may include DNA methylation changes in relevant lupus-prone genes or histone modifications and microRNAs to upregulate and downregulate relevant gene expression. The timing and nature of epigenetic modification provide such changes. In lupus, DNA methylation alterations in cytokine genes, such as IFN-related gene and retrovirus gene, have been found to offer biomarkers for lupus diagnosis. Histone modifications such as histone methylation and acetylation lead to transcriptional alterations of several genes such as PTPN22, LRP1B, and TNFSF70. There are varieties of microRNAs applied as lupus biomarkers, including DNMT1-related microRNAs, renal function-associated microRNAs, microRNAs involved in the immune system, and microRNAs for phenotype classification. Thus, we conclude a wide range of promising roles of epigenetic biomarkers aiding in the diagnosing and monitoring of lupus diseases and the risk of organ damage.
Collapse
Affiliation(s)
- Zijun Wang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, Hunan 410011 China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA USA
| | - Mou Peng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, Hunan 410011 China
| |
Collapse
|
45
|
Dong Z, Qi R, Guo X, Zhao X, Li Y, Zeng Z, Bai W, Chang X, Hao L, Chen Y, Lou M, Li Z, Lu Y. MiR-223 modulates hepatocellular carcinoma cell proliferation through promoting apoptosis via the Rab1-mediated mTOR activation. Biochem Biophys Res Commun 2016; 483:630-637. [PMID: 27998765 DOI: 10.1016/j.bbrc.2016.12.091] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/13/2016] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common digestive malignancy. MiR-223, a well-identified miRNA, exhibits diverse properties in different cancers. In this study, we demonstrated that miR-223 could suppress cell growth and promote apoptosis in HepG2 and Bel-7402 HCC cell lines. We screened and identified a novel miR-223 target, Ras-related protein Rab-1(Rab1). Upregulation of miR-223 would specifically and markedly down-regulate Rab1 expression. In addition, miR-223-overexpressing subclones showed significant cell growth inhibition by increasing cell apoptosis in HepG2 and Bel-7402 cells. To identify the mechanisms, we firstly investigated the mTOR pathway and found that pmTOR, p70S6K and Bcl-2 were dramatically down-regulated after miR-223 transfection, while no changes in the level of Bax was visualized. Furthermore, our data showed that the anti-tumor effects arising from miR-223 transfection in HCC cells may be due to the deactivation of mTOR pathway caused by the suppression of Rab1 expression when miR-223 is overexpressed. In summary, our results indicate that miR-223 functions as a tumor suppressor and plays a critical role in inhibiting the tumorigenesis and promoting the apoptosis of HCC through the mTOR signaling pathway in vitro. By targeting Rab1, miR-223 efficiently mediates the mTOR pathway. Given these, miR-223 may be a potential therapeutic target for treating HCC.
Collapse
Affiliation(s)
- Zheng Dong
- Comprehensive Liver Cancer Center, The 302 Hospital, Beijing, China
| | - Ruizhao Qi
- Department of General Surgery, The 302 Hospital, Beijing, China
| | - Xiaodong Guo
- Department of Pathology, The 302 Hospital, Beijing, China
| | - Xin Zhao
- Department of General Surgery, The 302 Hospital, Beijing, China
| | - Yinyin Li
- Comprehensive Liver Cancer Center, The 302 Hospital, Beijing, China
| | - Zhen Zeng
- Comprehensive Liver Cancer Center, The 302 Hospital, Beijing, China
| | - Wenlin Bai
- Comprehensive Liver Cancer Center, The 302 Hospital, Beijing, China
| | - Xiujuan Chang
- Comprehensive Liver Cancer Center, The 302 Hospital, Beijing, China
| | - Liyan Hao
- Department of Nursing, The 302 Hospital, Beijing, China
| | - Yan Chen
- Comprehensive Liver Cancer Center, The 302 Hospital, Beijing, China
| | - Min Lou
- Comprehensive Liver Cancer Center, The 302 Hospital, Beijing, China
| | - Zhiwei Li
- Department of General Surgery, The 302 Hospital, Beijing, China.
| | - Yinying Lu
- Comprehensive Liver Cancer Center, The 302 Hospital, Beijing, China.
| |
Collapse
|