1
|
Sharma N, Sharma G, Toor D. Plausible Influence of HLA Class I and Class II Diversity on SARS-CoV-2 Vulnerability. Crit Rev Immunol 2024; 44:31-40. [PMID: 37947070 DOI: 10.1615/critrevimmunol.2023049920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) caused the global coronavirus disease 2019 (COVID-19) pandemic, which adversely affected almost all aspects of human life and resulted in the loss of millions of lives, while affecting nearly 0.67 billion people worldwide. SARS-CoV-2 still poses a challenge to the healthcare system as there are more than 200,000 active cases of COVID-19 around the globe. Epidemiological data suggests that the magnitude of morbidity and mortality due to COVID-19 was low in a few geographical regions and was unpredictably higher in a few regions. The genetic diversity of different geographical regions might explain the sporadic prevalence of the disease. In this context, human leukocyte antigens (HLA) represent the most polymorphic gene-dense region of the human genome and serve as an excellent mini-genome model for evaluating population genetic diversity in the context of susceptibility and progression of various diseases. In this review, we highlight the plausible influence of HLA in susceptibility, severity, immune response, and designing of epitope-based vaccines for COVID-19. Further, there is a need for extensive investigations for illustration and clarification of the functional impact of HLA class I and II alleles in the pathogenesis and progression of SARS-CoV-2.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Gaurav Sharma
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Devinder Toor
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, 201313, Uttar Pradesh, India
| |
Collapse
|
2
|
Lin F, Lin X, Fu B, Xiong Y, Zaky MY, Wu H. Functional studies of HLA and its role in SARS-CoV-2: Stimulating T cell response and vaccine development. Life Sci 2023; 315:121374. [PMID: 36621539 PMCID: PMC9815883 DOI: 10.1016/j.lfs.2023.121374] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
In the biological immune process, the major histocompatibility complex (MHC) plays an indispensable role in the expression of HLA molecules in the human body when viral infection activates the T-cell response to remove the virus. Since the first case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in 2019, how to address and prevent SARS-CoV-2 has become a common problem facing all mankind. The T-cell immune response activated by MHC peptides is a way to construct a defense line and reduce the transmission and harm of the virus. Presentation of SARS-CoV-2 antigen is associated with different types of HLA phenotypes, and different HLA phenotypes induce different immune responses. The prediction of SARS-CoV-2 mutation information and the design of vaccines based on HLAs can effectively activate autoimmunity and cope with virus mutations, which can provide some references for the prevention and treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Feng Lin
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Xiaoyuan Lin
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China.
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt; Department of Oncology and Department of Biomedical and Clinical Science, Faculty of Medicine, Linköping University, Sweden
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China.
| |
Collapse
|
3
|
Dastar S, Gharesouran J, Mortazavi D, Hosseinzadeh H, Kian SJ, Taheri M, Ghafouri-Fard S, Jamali E, Rezazadeh M. COVID-19 pandemic: Insights into genetic susceptibility to SARS-CoV-2 and host genes implications on virus spread, disease severity and outcomes. Hum Antibodies 2021; 30:1-14. [PMID: 34864654 DOI: 10.3233/hab-211506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The outbreak of the newly emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) all over the world has caused global public health emergencies, international concern and economic crises. The systemic SARS-CoV-2 disease (COVID-19) can lead to death through causing unrestrained cytokines-storm and subsequent pulmonary shutdown among the elderly and patients with pre-existing comorbidities. Additionally, in comparison with poor nations without primary health care services, in developed countries with advanced healthcare system we can witness higher number of infections per one million people. In this review, we summarize the latest studies on genes associated with SARS-CoV-2 pathogenesis and propose possible mechanisms of the virus replication cycle and its triggered signaling pathways to encourage researchers to investigate genetic and immune profiles of the disease and try strategies for its treatment. Our review shows that immune response in people with different genetic background might vary as African and then Asian populations have lowest number of affected cases compared with European and American nations. Considering SARS-CoV-2 pathogenesis, we put forward some potentially important genetic gateways to COVID-19 infection including genes involved in the entry and replication of SARS-CoV-2 and the regulation of host immune response which might represent explanation for its spread, severity, and morality. Finally, we suggest that genetic alterations within these gateways could be critical factors in influencing geographical discrepancies of the virus, so it is essential to fully study them and design appropriated and reliable therapeutic agents against COVID-19.
Collapse
Affiliation(s)
- Saba Dastar
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih, Istanbul, Turkey
| | - Jalal Gharesouran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Deniz Mortazavi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Hosseinzadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Jalal Kian
- Department of Virology, Iran University of Medical Sciences, School of Medicine, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Shukla N, Prasad A, Kanga U, Suravajhala R, Nigam VK, Kishor PBK, Polavarapu R, Chaubey G, Singh KK, Suravajhala P. SARS-CoV-2 transgressing LncRNAs uncovers the known unknowns. Physiol Genomics 2021; 53:433-440. [PMID: 34492207 PMCID: PMC8562947 DOI: 10.1152/physiolgenomics.00075.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
SARS-CoV-2 harbors many known unknown regions in the form of hypothetical open reading frames (ORFs). Although the mechanisms underlying the disease pathogenesis are not clearly understood, molecules such as long noncoding RNAs (lncRNAs) play a key regulatory role in the viral pathogenesis from endocytosis. We asked whether or not the lncRNAs in the host are associated with the viral proteins and argue that lncRNA-mRNAs molecules related to viral infection may regulate SARS-CoV-2 pathogenesis. Toward the end of the perspective, we provide challenges and insights into investigating these transgression pathways.
Collapse
Affiliation(s)
- Nidhi Shukla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
- Department of Chemistry, Manipal University Jaipur, Jaipur, India
| | - Anchita Prasad
- Department of Bioengineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Uma Kanga
- Department of Transplant Immunology and Immunogenetics, AIIMS, New Delhi, India
| | | | - Vinod Kumar Nigam
- Department of Bioengineering, Birla Institute of Technology Mesra, Ranchi, India
| | - P B Kavi Kishor
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research (VFSTR), Guntur, India
| | | | - Gyaneshwer Chaubey
- Cytogenetics Lab, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Keshav K Singh
- Department of Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Prashanth Suravajhala
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
- Bioclues Organization, Hyderabad, India
- Amrita School of Biotechnology, Amrita University, Amritapuri, Kerala, India
| |
Collapse
|
5
|
Baranwal AK, Bhat DK, Goswami S, Agarwal SK, Kaur G, Mehra N. Clinical relevance of major histocompatibility complex class I chain-related molecule A (MICA) antibodies in live donor renal transplantation - Indian Experience. Scand J Immunol 2020; 92:e12923. [PMID: 32593197 DOI: 10.1111/sji.12923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/29/2020] [Accepted: 06/22/2020] [Indexed: 11/28/2022]
Abstract
Antibody-mediated rejections (AMR) in the absence of circulating anti-HLA-DSA have highlighted the role of non-HLA antibodies, particularly those directed against endothelial cells. Of these, MICA (major histocompatibility complex class I chain-related molecule A) antibodies are the most notable and important because of their potential in promoting graft rejections. Limited studies have focused on the impact of MICA donor-specific antibodies (DSA) on graft outcome as compared to those that are not donor-specific (NDSA). We evaluated pre- and post-transplant sera at POD 7, 30, 90, 180 and the time of biopsy from 206 consecutive primary live donor renal transplant recipients for anti-MICA and anti-HLA antibodies using single antigen bead assay on a Luminex platform. Recipients who developed MICA antibodies and their donors were phenotyped for MICA alleles. For the purpose of antibody analysis, patients were categorized into three major groups: biopsy-proven AMR, acute cellular rejection (ACR) and those with no rejection episodes (NRE). During the mean follow-up period of 17.37 ± 6.88 months, 16 of the 206 recipients developed AMR, while ACR was observed in only 13 cases. A quarter (25%) of the AMR cases had anti-MICA antibodies as compared to 7.7% of those experiencing ACR and 6.2% of the NRE group. Allelic typing revealed that all MICA Ab +ve AMR cases were due to the presence of donor-specific antibodies. MICA-DSA even in the absence of HLA-DSA was significantly associated with AMR but not with ACR when compared with the NRE group (P = <.01).
Collapse
Affiliation(s)
- Ajay Kumar Baranwal
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India.,Department of Pathology, Command Hospital, Pune, India
| | - Deepali K Bhat
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India.,Cellular & Molecular Therapeutic Branch, NHLBI, National Institute of Health (NIH), Bethesda, MD, USA
| | - Sanjeev Goswami
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay Kumar Agarwal
- Department of Nephrology, All India Institute of Medical Sciences, New Delhi, India
| | - Gurvinder Kaur
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India.,Laboratory Oncology, Dr BR Ambedkar Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Narinder Mehra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India.,National Chair, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
6
|
Debnath M, Banerjee M, Berk M. Genetic gateways to COVID-19 infection: Implications for risk, severity, and outcomes. FASEB J 2020; 34:8787-8795. [PMID: 32525600 PMCID: PMC7300732 DOI: 10.1096/fj.202001115r] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 01/05/2023]
Abstract
The dynamics, such as transmission, spatial epidemiology, and clinical course of Coronavirus Disease-2019 (COVID-19) have emerged as the most intriguing features and remain incompletely understood. The genetic landscape of an individual in particular, and a population in general seems to play a pivotal role in shaping the above COVID-19 dynamics. Considering the implications of host genes in the entry and replication of SARS-CoV-2 and in mounting the host immune response, it appears that multiple genes might be crucially involved in the above processes. Herein, we propose three potentially important genetic gateways to COVID-19 infection; these could explain at least in part the discrepancies of its spread, severity, and mortality. The variations within Angiotensin-converting enzyme 2 (ACE2) gene might constitute the first genetic gateway, influencing the spatial transmission dynamics of COVID-19. The Human Leukocyte Antigen locus, a master regulator of immunity against infection seems to be crucial in influencing susceptibility and severity of COVID-19 and can be the second genetic gateway. The genes regulating Toll-like receptor and complement pathways and subsequently cytokine storm induced exaggerated inflammatory pathways seem to underlie the severity of COVID-19, and such genes might represent the third genetic gateway. Host-pathogen interaction is a complex event and some additional genes might also contribute to the dynamics of COVID-19. Overall, these three genetic gateways proposed here might be the critical host determinants governing the risk, severity, and outcome of COVID-19. Genetic variations within these gateways could be key in influencing geographical discrepancies of COVID-19.
Collapse
Affiliation(s)
- Monojit Debnath
- Department of Human GeneticsNational Institute of Mental Health and NeurosciencesBangaloreIndia
| | - Moinak Banerjee
- Human Molecular Genetics LaboratoryRajiv Gandhi Centre for BiotechnologyThiruvanathapuramIndia
| | - Michael Berk
- IMPACT ‐ the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon HealthDeakin UniversityGeelongVICAustralia
- Florey Institute for Neuroscience and Mental Health, Department of Psychiatry and Orygen, The National Centre of Excellence in Youth Mental HealthThe University of MelbourneMelbourneVICAustralia
| |
Collapse
|