1
|
Al-Talib M, Skaria A, Griffin S. Cellular Immunity Against BK Polyomavirus in Kidney Transplant Recipients: A Comprehensive Review. Transpl Infect Dis 2024:e14401. [PMID: 39499036 DOI: 10.1111/tid.14401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/13/2024] [Indexed: 11/07/2024]
Abstract
BK polyomavirus (BKPyV) is an important opportunistic viral infection that complicates kidney transplantation. Uncontrolled viral replication may result in BKPyV-associated nephropathy (BKPyVAN), a major cause of premature allograft damage and failure. In the continued absence of proven treatments, management relies on the empirical reduction of immunosuppression to facilitate an effective host immune response to clear the virus. This may be complicated by the risk of allograft rejection. There is compelling evidence that cellular immune responses are key to establishing control after viral reactivation. Measurable peripheral BKPyV-specific T cell responses temporally correlate with declining viral loads and subsequent clearance. Conversely, these responses are delayed or absent in BKPyVAN. How these peripheral findings correspond to the intragraft response, and whether BKPyV-specific T cells contribute to the immunopathology of BKPyVAN, remains poorly understood. Molecular techniques have provided some insights; however, these have been unable to fully discriminate BKPyVAN from cellular rejection to date. Furthermore, the contributions of components of innate cellular immunity, such as natural killer cells, are not known. Herein, we review the role of cellular immunity in BKPyV infection in kidney transplant recipients. We discuss advances in the understanding of how the development, phenotype, and functionality of these responses may determine the balance between viral control and immunopathology, and how this knowledge is being translated into tools to prognosticate and guide individualized immunosuppression reduction. Lastly, we consider how further elucidation of these responses may inform the design of therapies that would revolutionize how BKPyV is managed after transplantation.
Collapse
Affiliation(s)
- Mohammed Al-Talib
- Systems Immunity Research Institute, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Anna Skaria
- Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Siân Griffin
- Department of Nephrology and Transplantation, Cardiff and Vale University Health Board, Cardiff, UK
| |
Collapse
|
2
|
Hajeer A, Jawdat D, Massadeh S, Aljawini N, Abedalthagafi MS, Arabi YM, Alaamery M. Association of KIR gene polymorphisms with COVID-19 disease. Clin Immunol 2022; 234:108911. [PMID: 34929414 PMCID: PMC8683215 DOI: 10.1016/j.clim.2021.108911] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/08/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022]
Abstract
Background Methods Results Conclusions
Collapse
|
3
|
Abdelhafiz AS, Ali A, Fouda MA, Sayed DM, Kamel MM, Kamal LM, Khalil MA, Bakry RM. HLA-B*15 predicts survival in Egyptian patients with COVID-19. Hum Immunol 2022; 83:10-16. [PMID: 34607724 PMCID: PMC8485223 DOI: 10.1016/j.humimm.2021.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/30/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023]
Abstract
Genetic differences among individuals could affect the clinical presentations and outcomes of COVID-19. Human Leukocyte Antigens are associated with COVID-19 susceptibility, severity, and prognosis. This study aimed to identify HLA-B and -C genotypes among 69 Egyptian patients with COVID-19 and correlate them with disease outcomes and other clinical and laboratory data. HLA-B and -C typing was performed using Luminex-based HLA typing kits. Forty patients (58%) had severe COVID-19; 55% of these patients died, without reported mortality in the moderate group. The alleles associated with severe COVID-19 were HLA-B*41, -B*42, -C*16, and -C*17, whereas HLA-B*15, -C*7, and -C*12 were significantly associated with protection against mortality. Regression analysis showed that HLA-B*15 was the only allele associated with predicted protection against mortality, where the likelihood of survival increased with HLA-B*15 (P < 0.001). Patient survival was less likely to occur with higher total leukocytic count, ferritin, and creatinine levels. This study provides interesting insights into the association between HLA class I alleles and protection from or severity of COVID-19 through immune response modulation. This is the first study to investigate this relationship in Egyptian patients. More studies are needed to understand how HLA class I alleles interact and affect Cytotoxic T lymphocytes and natural killer cell function.
Collapse
Affiliation(s)
- Ahmed Samir Abdelhafiz
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Asmaa Ali
- Department of Pulmonary Medicine, Abbassia Chest Hospital, MOH, Cairo, Egypt
| | - Merhan A Fouda
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Douaa M Sayed
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Mahmoud M Kamel
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Lamyaa Mohamed Kamal
- Department of Clinical and Chemical Pathology, Elsahel Teaching Hospital, MOH, Cairo, Egypt
| | - Mahmoud Ali Khalil
- Department of Tropical Medicine and Infectious Disease, Imbaba Fever Hospital, MOH, Cairo, Egypt
| | - Rania M Bakry
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
4
|
Myint TM, Chong CHY, Wyld M, Nankivell B, Kable K, Wong G. Polyoma BK Virus in Kidney Transplant Recipients: Screening, Monitoring, and Management. Transplantation 2022; 106:e76-e89. [PMID: 33908382 DOI: 10.1097/tp.0000000000003801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Polyomavirus BK virus (BKPyV) infection is an important complication of kidney transplantation and allograft failure. The prevalence of viremia is 10%-15%, compared with BK-associated nephropathy (BKPyVAN) at 3%-5%. Given that there are no effective antiviral prophylaxis or treatment strategies for BKPyVAN, active screening to detect BKPyV viremia is recommended, particularly during the early posttransplant period. Immunosuppression reduction to allow viral clearance may avoid progression to severe and irreversible allograft damage. The frequency and duration of screening are highly variable between transplant centers because the evidence is reliant largely on observational data. While the primary treatment goals center on achieving viral clearance through immunosuppression reduction, prevention of subsequent acute rejection, premature graft loss, and return to dialysis remain as major challenges. Treatment strategies for BKPyV infection should be individualized to the recipient's underlying immunological risk and severity of the allograft infection. Efficacy data for adjuvant therapies including intravenous immunoglobulin and cidofovir are sparse. Future well-powered and high-quality randomized controlled trials are needed to inform evidence-based clinical practice for the management of BKPy infection.
Collapse
Affiliation(s)
- Thida Maung Myint
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
- Newcastle Transplant Unit, John Hunter Hospital, Newcastle, NSW, Australia
| | - Chanel H Y Chong
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Melanie Wyld
- Department of Renal Medicine, Centre for Transplant and Renal Research, Westmead Hospital, Westmead, NSW, Australia
| | - Brian Nankivell
- Department of Renal Medicine, Centre for Transplant and Renal Research, Westmead Hospital, Westmead, NSW, Australia
| | - Kathy Kable
- Department of Renal Medicine, Centre for Transplant and Renal Research, Westmead Hospital, Westmead, NSW, Australia
| | - Germaine Wong
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
- Department of Renal Medicine, Centre for Transplant and Renal Research, Westmead Hospital, Westmead, NSW, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, NSW, Australia
| |
Collapse
|
5
|
BK Virus-Associated Nephropathy after Renal Transplantation. Pathogens 2021; 10:pathogens10020150. [PMID: 33540802 PMCID: PMC7913099 DOI: 10.3390/pathogens10020150] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
Recent advances in immunosuppressive therapy have reduced the incidence of acute rejection and improved renal transplantation outcomes. Meanwhile, nephropathy caused by BK virus has become an important cause of acute or chronic graft dysfunction. The usual progression of infection begins with BK viruria and progresses to BK viremia, leading to BK virus associated nephropathy. To detect early signs of BK virus proliferation before the development of nephropathy, several screening tests are used including urinary cytology and urinary and plasma PCR. A definitive diagnosis of BK virus associated nephropathy can be achieved only histologically, typically by detecting tubulointerstitial inflammation associated with basophilic intranuclear inclusions in tubular and/or Bowman’s epithelial cells, in addition to immunostaining with anti-Simian virus 40 large T-antigen. Several pathological classifications have been proposed to categorize the severity of the disease to allow treatment strategies to be determined and treatment success to be predicted. Since no specific drugs that directly suppress the proliferation of BKV are available, the main therapeutic approach is the reduction of immunosuppressive drugs. The diagnosis of subsequent acute rejection, the definition of remission, the protocol of resuming immunosuppression, and long-term follow-up remain controversial.
Collapse
|
6
|
Burek Kamenaric M, Ivkovic V, Kovacevic Vojtusek I, Zunec R. The Role of HLA and KIR Immunogenetics in BK Virus Infection after Kidney Transplantation. Viruses 2020; 12:v12121417. [PMID: 33317205 PMCID: PMC7763146 DOI: 10.3390/v12121417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
BK virus (BKV) is a polyomavirus with high seroprevalence in the general population with an unremarkable clinical presentation in healthy people, but a potential for causing serious complications in immunosuppressed transplanted patients. Reactivation or primary infection in kidney allograft recipients may lead to allograft dysfunction and subsequent loss. Currently, there is no widely accepted specific treatment for BKV infection and reduction of immunosuppressive therapy is the mainstay therapy. Given this and the sequential appearance of viruria-viremia-nephropathy, screening and early detection are of utmost importance. There are numerous risk factors associated with BKV infection including genetic factors, among them human leukocyte antigens (HLA) and killer cell immunoglobulin-like receptors (KIR) alleles have been shown to be the strongest so far. Identification of patients at risk for BKV infection would be useful in prevention or early action to reduce morbidity and progression to frank nephropathy. Assessment of risk involving HLA ligands and KIR genotyping of recipients in the pre-transplant or early post-transplant period might be useful in clinical practice. This review summarizes current knowledge of the association between HLA, KIR and BKV infection and potential future directions of research, which might lead to optimal utilization of these genetic markers.
Collapse
Affiliation(s)
- Marija Burek Kamenaric
- Tissue Typing Center, Clinical Department of Transfusion Medicine and Transplantation Biology, University Hospital Center Zagreb, 10 000 Zagreb, Croatia;
| | - Vanja Ivkovic
- Department of Nephrology, Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10 000 Zagreb, Croatia; (V.I.); (I.K.V.)
- Department of Public Health, Faculty of Health Studies, University of Rijeka, 51 000 Rijeka, Croatia
| | - Ivana Kovacevic Vojtusek
- Department of Nephrology, Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10 000 Zagreb, Croatia; (V.I.); (I.K.V.)
| | - Renata Zunec
- Tissue Typing Center, Clinical Department of Transfusion Medicine and Transplantation Biology, University Hospital Center Zagreb, 10 000 Zagreb, Croatia;
- Correspondence:
| |
Collapse
|