1
|
Galdino Andrade TE, Scavassini Peña M, Fiorotti J, de Souza Bin R, Rodrigues Caetano A, Connelley T, Ferreira de Miranda Santos IK. Graduate Student Literature Review: The DRB3 gene of the bovine major histocompatibility complex-Discovery, diversity, and distribution of alleles in commercial breeds of cattle and applications for development of vaccines. J Dairy Sci 2024; 107:11324-11341. [PMID: 39004123 DOI: 10.3168/jds.2023-24628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
The bovine major histocompatibility complex (MHC), also known as the bovine leukocyte antigen (BoLA) complex, is the genomic region that encodes the most important molecules for antigen presentation to initiate immune responses. The first evidence of MHC in bovines pointed to a locus containing 2 antigens, one detected by cytotoxic antiserum (MHC class I) and another studied by mixed lymphocyte culture tests (MHC class II). The most studied gene in the BoLA region is the highly polymorphic BoLA-DRB3, which encodes a β chain with a peptide groove domain involved in antigen presentation for T cells that will develop and co-stimulate cellular and humoral effector responses. The BoLA-DRB3 alleles have been associated with outcomes in infectious diseases such as mastitis, trypanosomiasis, and tick loads, and with production traits. To catalog these alleles, 2 nomenclature methods were proposed, and the current use of both systems makes it difficult to list, comprehend and apply these data effectively. In this review we have organized the knowledge available in all of the reports on the frequencies of BoLA-DRB3 alleles. It covers information from studies made in at least 26 countries on more than 30 breeds; studies are lacking in countries that are important producers of cattle livestock. We highlight practical applications of BoLA studies for identification of markers associated with resistance to infectious and parasitic diseases, increased production traits and T cell epitope mapping, in addition to genetic diversity and conservation studies of commercial and Creole and locally adapted breeds. Finally, we provide support for the need of studies to discover new BoLA alleles and uncover unknown roles of this locus in production traits.
Collapse
Affiliation(s)
| | - Maurício Scavassini Peña
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil, 14049-900
| | - Jéssica Fiorotti
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil, 14049-900
| | - Renan de Souza Bin
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil, 14049-900
| | | | - Timothy Connelley
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom, EH25 9RG
| | | |
Collapse
|
2
|
Agina OA, Shaari MR, Isa NMM, Ajat M, Zamri-Saad M, Hamzah H. Identification of novel bovine leukocyte antigen alleles and association of BoLA-DRB3.2*020:02:01 with resistance to Theileria orientalis infection in crossbred Kedah-Kelantan cattle: a pilot study. Trop Anim Health Prod 2024; 56:277. [PMID: 39316238 DOI: 10.1007/s11250-024-04138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
The bovine leukocyte antigen (BoLA) gene is a significant genetic part of the immune system and has been used as a disease marker in cattle. In this study, we detected Theileria orientalis, T. sinensis, Anaplasma marginale, Anaplasma platys, Candidatus Mycoplasma haemobos and Trypanosoma evansi by PCR amplification and sequencing of the amplicons. The allelic association of the BoLA-DRB3.2 gene with blood pathogen disease resistance and susceptibility in 87 Kedah-Kelantan x Brahman (KKB) and 38 Bali cattle was determined by Fisher's exact test and Cochran Mantel Haenszel (CMH) correction test. Sequence-based typing of the BoLA-DRB3.2 gene identified 43 alleles (27 previously reported alleles and 16 novel alleles) across the two cattle breeds. Alignment analysis of the 16 novel alleles revealed 90.7-95.8% and 85-92% nucleotide and amino acid identities, with the reference allele, BoLA-DRB3*016:01 cDNA clone NR-1. BoLA-DRB3*009:02 (25.6%) and BoLA-DRB3*036:01 (36%) were the most frequent alleles in KKB and Bali cattle, respectively. In KKB cattle, BoLA-DRB3*020:02:01 was significantly associated with resistance to T. orientalis whereas *007:01 and *009:02 were significantly associated with resistance to C. Mycoplasma haemobos. Also, DRB3*017:01 was associated with susceptibility to T. orientalis in KKB cattle. In the Bali cattle, BoLA-DRB3*015:01 was found to be a genetic marker of susceptibility to C. Mycoplasma haemobos infection. Therefore, this study identified BoLA-DRB3.2 alleles associated with resistance and susceptibility to T. orientalis infection in KKB cattle and susceptibility to C. Mycoplasma haemobos infection in Bali cattle for the first time. Therefore, this study suggests that these BoLA-DRB3 resistance alleles could be used as candidate markers for selection, whereas susceptibility alleles could be used as candidate markers for culling in the beef industry.
Collapse
Affiliation(s)
- Onyinyechukwu Ada Agina
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.
| | - Mohd Rosly Shaari
- Animal Science Research Centre, Malaysian Agricultural Research and Developmental Institute, Serdang Selangor 43400, Headquarters, Malaysia
| | - Nur Mahiza Md Isa
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Zamri-Saad
- Research Centre for Ruminant Diseases, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hazilawati Hamzah
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
3
|
Hamada R, Giovambattista G, Metwally S, Borjigin L, Polat Yamanaka M, Matsuura R, Ali AO, Mahmoud HYAH, Mohamed AEA, Kyaw Moe K, Takeshima SN, Wada S, Aida Y. First characterization of major histocompatibility complex class II DRB3 diversity in cattle breeds raised in Egypt. Gene 2024; 918:148491. [PMID: 38649062 DOI: 10.1016/j.gene.2024.148491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Genes encoding bovine leukocyte antigen (BoLA) enable the immune system to identify pathogens. Therefore, these genes have been used as genetic markers for infectious and autoimmune diseases as well as for immunological traits in cattle. Although BoLA polymorphisms have been reported in various cattle breeds worldwide, they have not been studied in cattle populations in Egypt. In this study, we characterized BoLA-DRB3 in two local Egyptian populations and one foreign population using polymerase chain reaction-sequence-based typing (PCR-SBT) method. Fifty-four previously reported BoLA-DRB3 alleles and eight new alleles (BoLA-DRB3*005:08, *015:07, *016:03, *017:04, *020:02:02, *021:03, *164:01, and *165:01) were identified. Alignment analysis of the eight new alleles revealed 90.7-98.9 %, and 83.1-97.8 % nucleotide and amino acid identities, respectively, with the BoLA-DRB3 cDNA clone NR-1. Interestingly, BoLA-DRB3 in Egyptian cattle showed a high degree of allelic diversity in native (na = 28, hE > 0.95), mixed (na = 61, hE > 0.96), and Holstein (na = 18, hE > 0.88) populations. BoLA-DRB3*002:01 (14.3 %), BoLA-DRB3*001:01 (8.5 %), and BoLA-DRB3*015:01 (20.2 %) were the most frequent alleles in native, mixed, and Holstein populations, respectively, indicating that the genetic profiles differed in each population. Based on the allele frequencies of BoLA-DRB3, genetic variation among Egyptian, Asian, African, and American breeds was examined using Nei's distances and principal component analysis. The results suggested that native and mixed cattle populations were most closely associated with African breeds in terms of their gene pool, whereas Holstein cattle were more distinct from the other breeds and were closely related to Holstein cattle populations from other countries.
Collapse
Affiliation(s)
- Rania Hamada
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour City, El Beheira 22511, Egypt
| | - Guillermo Giovambattista
- Facultad de Ciencias Veterinarias UNLP, IGEVET - Instituto de Genética Veterinaria (UNLP-CONICET LA PLATA), La Plata, Argentina; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Samy Metwally
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Division of Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour City, El Beheira 22511, Egypt
| | - Liushiqi Borjigin
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Meripet Polat Yamanaka
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryosuke Matsuura
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Alsagher O Ali
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Hassan Y A H Mahmoud
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Adel E A Mohamed
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Kyaw Kyaw Moe
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Pathology and Microbiology, University of Veterinary Science, Yezin, Nay Pyi Taw, Myanmar
| | - Shin-Nosuke Takeshima
- Department of Food and Nutrition, Faculty of Human Life, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama, Japan
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
4
|
Li TT, Xia T, Wu JQ, Hong H, Sun ZL, Wang M, Ding FR, Wang J, Jiang S, Li J, Pan J, Yang G, Feng JN, Dai YP, Zhang XM, Zhou T, Li T. De novo genome assembly depicts the immune genomic characteristics of cattle. Nat Commun 2023; 14:6601. [PMID: 37857610 PMCID: PMC10587341 DOI: 10.1038/s41467-023-42161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023] Open
Abstract
Immunogenomic loci remain poorly understood because of their genetic complexity and size. Here, we report the de novo assembly of a cattle genome and provide a detailed annotation of the immunogenomic loci. The assembled genome contains 143 contigs (N50 ~ 74.0 Mb). In contrast to the current reference genome (ARS-UCD1.2), 156 gaps are closed and 467 scaffolds are located in our assembly. Importantly, the immunogenomic regions, including three immunoglobulin (IG) loci, four T-cell receptor (TR) loci, and the major histocompatibility complex (MHC) locus, are seamlessly assembled and precisely annotated. With the characterization of 258 IG genes and 657 TR genes distributed across seven genomic loci, we present a detailed depiction of immune gene diversity in cattle. Moreover, the MHC gene structures are integrally revealed with properly phased haplotypes. Together, our work describes a more complete cattle genome, and provides a comprehensive view of its complex immune-genome.
Collapse
Affiliation(s)
- Ting-Ting Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Tian Xia
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Jia-Qi Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Hao Hong
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Zhao-Lin Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Ming Wang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuanmingyuan Xilu, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan Xilu, Beijing, 100193, China
| | - Fang-Rong Ding
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuanmingyuan Xilu, Beijing, 100193, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Shuai Jiang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Jin Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Jie Pan
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Guang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jian-Nan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yun-Ping Dai
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuanmingyuan Xilu, Beijing, 100193, China
| | - Xue-Min Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
| | - Tao Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Suprovych TM, Salyha YT, Suprovych MP, Fedorovych EI, Fedorovych VV, Chornyj IO. Genetic Polymorphism of BoLA-DRB3.2 Locus in Ukrainian Cattle Breeds. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722040089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Notsu K, El Daous H, Mitoma S, Norimine J, Sekiguchi S. A pooled testing system to rapidly identify cattle carrying the elite controller BoLA-DRB3*009:02 haplotype against bovine leukemia virus infection. HLA 2021; 99:12-24. [PMID: 34837483 PMCID: PMC9543338 DOI: 10.1111/tan.14502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022]
Abstract
As genetically resistant individuals, the “elite controllers” (ECs) of human immunodeficiency virus infection have been focused on as the keys to developing further functional treatments in medicine. In the livestock production field, identifying the ECs of bovine leukemia virus (BLV) infection in cattle is desired to stop BLV transmission chains on farms. Cattle carrying the bovine leukocyte antigen (BoLA)‐DRB3*009:02 allele (DRB3*009:02) have a strong possibility of being BLV ECs. Most of cattle carrying this allele maintain undetectable BLV proviral loads and do not shed virus even when infected. BLV ECs can act as transmission barriers when placed between uninfected and infected cattle in a barn. To identify cattle carrying DRB3*009:02 in large populations more easily, we developed a pooled testing system. It employs a highly sensitive, specific real‐time PCR assay and TaqMan MGB probes (DRB3*009:02‐TaqMan assay). Using this system, we determined the percentage of DRB3*009:02‐carrying cattle on Kyushu Island, Japan. Our pooled testing system detected cattle carrying the DRB3*009:02 allele from a DNA pool containing one DRB3*009:02‐positive animal and 29 cattle with other alleles. Its capacity is sufficient for herd‐level screening for DRB3*009:02‐carrying cattle. The DRB3*009:02‐TaqMan assay showed high‐discriminative sensitivity and specificity toward DRB3*009:02, making it suitable for identifying DRB3*009:02‐carrying cattle in post‐screening tests on individuals. We determined that the percentage of DRB3*009:02‐carrying cattle in Kyushu Island was 10.56%. With its ease of use and reliable detection, this new method strengthens the laboratory typing for DRB3*009:02‐carrying cattle. Thus, our findings support the use of BLV ECs in the field.
Collapse
Affiliation(s)
- Kosuke Notsu
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hala El Daous
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan.,Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Shuya Mitoma
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
| | - Junzo Norimine
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Satoshi Sekiguchi
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
7
|
BoLA-DRB3 gene haplotypes show divergence in native Sudanese cattle from taurine and indicine breeds. Sci Rep 2021; 11:17202. [PMID: 34433838 PMCID: PMC8387388 DOI: 10.1038/s41598-021-96330-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 08/02/2021] [Indexed: 11/08/2022] Open
Abstract
Autochthonous Sudanese cattle breeds, namely Baggara for beef and Butana and Kenana for dairy, are characterized by their adaptive characteristics and high performance in hot and dry agro-ecosystems. They are thus used largely by nomadic and semi-nomadic pastoralists. We analyzed the diversity and genetic structure of the BoLA-DRB3 gene, a genetic locus linked to the immune response, for the indigenous cattle of Sudan and in the context of the global cattle repository. Blood samples (n = 225) were taken from three indigenous breeds (Baggara; n = 113, Butana; n = 60 and Kenana; n = 52) distributed across six regions of Sudan. Nucleotide sequences were genotyped using the sequence-based typing method. We describe 53 alleles, including seven novel alleles. Principal component analysis (PCA) of the protein pockets implicated in the antigen-binding function of the MHC complex revealed that pockets 4 and 9 (respectively) differentiate Kenana-Baggara and Kenana-Butana breeds from other breeds. Venn analysis of Sudanese, Southeast Asian, European and American cattle breeds with 115 alleles showed 14 were unique to Sudanese breeds. Gene frequency distributions of Baggara cattle showed an even distribution suggesting balancing selection, while the selection index (ω) revealed the presence of diversifying selection in several amino acid sites along the BoLA-DRB3 exon 2 of these native breeds. The results of several PCA were in agreement with clustering patterns observed on the neighbor joining (NJ) trees. These results provide insight into their high survival rate for different tropical diseases and their reproductive capacity in Sudan's harsh environment.
Collapse
|
8
|
Vasoya D, Oliveira PS, Muriel LA, Tzelos T, Vrettou C, Morrison WI, de Miranda Santos IKF, Connelley T. High throughput analysis of MHC-I and MHC-DR diversity of Brazilian cattle populations. HLA 2021; 98:93-113. [PMID: 34102036 DOI: 10.1111/tan.14339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 06/02/2021] [Indexed: 01/16/2023]
Abstract
The major histocompatibility complex (MHC) contains many genes that play key roles in initiating and regulating immune responses. This includes the polymorphic MHCI and MHCII genes that present epitopes to CD8+ and CD4+ T-cells, respectively. Consequently, the characterisation of the repertoire of MHC genes is an important component of improving our understanding of the genetic variation that determines the outcomes of immune responses. In cattle, MHC (BoLA) research has predominantly focused on Holstein-Friesian animals (as the most economically important breed globally), although the development of high-throughput approaches has allowed the BoLA-DRB3 repertoire to be studied in a greater variety of breeds. In a previous study we reported on the development of a MiSeq-based method to enable high-throughput and high-resolution analysis of bovine MHCI repertoires. Herein, we report on the expansion of this methodology to incorporate analysis of the BoLA-DRB3 and its application to analyse MHC diversity in a large cohort of cattle from Brazil (>500 animals), including representatives from the three major Bos indicus breeds present in Brazil - Guzerat, Gir and Nelore. This large-scale description of paired MHCI-DRB3 repertoires in Bos indicus cattle has identified a small number of novel DRB3 alleles, a large number of novel MHCI alleles and haplotypes, and provided novel insights into MHCI-MHCII association - further expanding our knowledge of bovine MHC diversity.
Collapse
Affiliation(s)
- Deepali Vasoya
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Priscila Silva Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Laura Agundez Muriel
- Translational Synthetic Biology Department, Mammalian genome editing and gene therapy, Parque de Investigación Biomédica, Carrer del Dr, Barcelona, Spain
| | - Thomas Tzelos
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Christina Vrettou
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - W Ivan Morrison
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Timothy Connelley
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|