1
|
Suckling RJ, Pamukcu C, Simmons RA, Fonseca D, Grant E, Harrison R, Shaikh SA, Khanolkar RC, Ghadbane H, Creese A, Hock M, Gligoris TG, Lepore M, Karuppiah V, Salio M. Molecular basis underpinning MR1 allomorph recognition by an MR1-restricted T cell receptor. Front Immunol 2025; 16:1547664. [PMID: 40207221 PMCID: PMC11979126 DOI: 10.3389/fimmu.2025.1547664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/21/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction The MHC-class-I-related molecule MR1 presents small metabolites of microbial and self-origin to T cells bearing semi-invariant or variant T cell receptors. One such T cell receptor, MC.7.G5, was previously shown to confer broad MR1-restricted reactivity to tumor cells but not normal cells, sparking interest in the development of non-MHC-restricted immunotherapy approaches. Methods/Results Here we provide cellular, biophysical, and crystallographic evidence that the MC.7.G5 TCR does not have pan-cancer specificity but is restricted to a rare allomorph of MR1, bearing the R9H mutation. Discussion Our results underscore the importance of in-depth characterization of MR1-reactive TCRs against targets expressing the full repertoire of MR1 allomorphs.
Collapse
|
2
|
Dolton G, Thomas H, Tan LR, Rius Rafael C, Doetsch S, Ionescu GA, Cardo LF, Crowther MD, Behiry E, Morin T, Caillaud ME, Srai D, Parolini L, Hasan MS, Fuller A, Topley K, Wall A, Hopkins JR, Omidvar N, Alvares C, Zabkiewicz J, Frater J, Szomolay B, Sewell AK. MHC-related protein 1-restricted recognition of cancer via a semi-invariant TCR-α chain. J Clin Invest 2025; 135:e181895. [PMID: 39744940 PMCID: PMC11684821 DOI: 10.1172/jci181895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/29/2024] [Indexed: 01/16/2025] Open
Abstract
The T cell antigen presentation platform MR1 consists of 6 allomorphs in humans that differ by no more than 5 amino acids. The principal function of this highly conserved molecule involves presenting microbial metabolites to the abundant mucosal-associated invariant T (MAIT) cell subset. Recent developments suggest that the role of MR1 extends to presenting antigens from cancer cells, a function dependent on the K43 residue in the MR1 antigen binding cleft. Here, we successfully cultured cancer-activated, MR1-restricted T cells from multiple donors and confirmed that they recognized a wide range of cancer types expressing the most common MR1*01 and/or MR1*02 allomorphs (over 95% of the population), while remaining inert to healthy cells including healthy B cells and monocytes. Curiously, in all but one donor these T cells were found to incorporate a conserved TCR-α chain motif, CAXYGGSQGNLIF (where X represents 3-5 amino acids), because of pairing between 10 different TRAV genes and the TRAJ42 gene segment. This semi-invariance in the TCR-α chain is reminiscent of MAIT cells and suggests recognition of a conserved antigen bound to K43.
Collapse
MESH Headings
- Humans
- Minor Histocompatibility Antigens/genetics
- Minor Histocompatibility Antigens/immunology
- Minor Histocompatibility Antigens/metabolism
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/metabolism
- Neoplasms/immunology
- Neoplasms/genetics
- Neoplasms/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Mucosal-Associated Invariant T Cells/immunology
- Mucosal-Associated Invariant T Cells/metabolism
- Antigen Presentation
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Amino Acid Motifs
- Cell Line, Tumor
Collapse
Affiliation(s)
- Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Hannah Thomas
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Li Rong Tan
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Cristina Rius Rafael
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Stephanie Doetsch
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Giulia-Andreea Ionescu
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Lucia F. Cardo
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Michael D. Crowther
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Enas Behiry
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Théo Morin
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Marine E. Caillaud
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Devinder Srai
- Nuffield Department of Medicine and Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Lucia Parolini
- Nuffield Department of Medicine and Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Md Samiul Hasan
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Anna Fuller
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Katie Topley
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Aaron Wall
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Jade R. Hopkins
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Nader Omidvar
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Caroline Alvares
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Joanna Zabkiewicz
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - John Frater
- Nuffield Department of Medicine and NIHR Biomedical Research Centre University of Oxford, Oxford, United Kingdom
| | - Barbara Szomolay
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunology Research Institute, Cardiff University Cardiff, United Kingdom
| | - Andrew K. Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunology Research Institute, Cardiff University Cardiff, United Kingdom
- Division of Infection and Immunity, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
3
|
McInerney MP, Awad W, Souter MNT, Kang Y, Wang CJH, Chan Yew Poa K, Abdelaal MR, Le NH, Shepherd CM, McNeice C, Meehan LJ, Nelson AG, Raynes JM, Mak JYW, McCluskey J, Chen Z, Ang CS, Fairlie DP, Le Nours J, Illing PT, Rossjohn J, Purcell AW. MR1 presents vitamin B6-related compounds for recognition by MR1-reactive T cells. Proc Natl Acad Sci U S A 2024; 121:e2414792121. [PMID: 39589872 PMCID: PMC11626183 DOI: 10.1073/pnas.2414792121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/12/2024] [Indexed: 11/28/2024] Open
Abstract
The major histocompatibility complex class I related protein (MR1) presents microbially derived vitamin B2 precursors to mucosal-associated invariant T (MAIT) cells. MR1 can also present other metabolites to activate MR1-restricted T cells expressing more diverse T cell receptors (TCRs), some with anti-tumor reactivity. However, knowledge of the range of the antigen(s) that can activate diverse MR1-reactive T cells remains incomplete. Here, we identify pyridoxal (vitamin B6) as a naturally presented MR1 ligand using unbiased mass spectrometry analyses of MR1-bound metabolites. Pyridoxal, and the related compound, pyridoxal 5-phosphate bound to MR1 and enabled cell surface upregulation of wild type MR1*01 and MR1 expressing the Arg9His polymorphism associated with the MR1*04 allotype in a manner dependent on Lys43-mediated Schiff-base formation. Crystal structures of MR1*01 in complex with pyridoxal and pyridoxal 5-phosphate showed how these ligands were accommodated within the A-pocket of MR1. T cell lines transduced with the 7.G5 TCR, which has reported "pan-cancer" specificity, were specifically activated by pyridoxal presented by antigen-presenting cells expressing MR1*01 and MR1 allotypes bearing the less common Arg9His polymorphism. 7.G5 T cells also recognized, to a lesser extent, pyridoxal 5-phosphate and, importantly, recognition of both vitamers was blocked by an anti-MR1 antibody. 7.G5 TCR reactivity toward pyridoxal was enhanced when presented by the Arg9His polymorphism-bearing MR1 allotypes. Vitamin B6, and vitamers thereof, have been associated with various cancers, and here we describe a link between this ligand, MR1, and its allomorphs, and the pan-cancer 7.G5 TCR. This work identifies an MR1 ligand that can activate a diverse MR1-restricted TCR.
Collapse
Affiliation(s)
- Mitchell P. McInerney
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Wael Awad
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Michael N. T. Souter
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC3052, Australia
| | - Yang Kang
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC3052, Australia
| | - Carl J. H. Wang
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Kean Chan Yew Poa
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Mohamed R. Abdelaal
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Ngoc H. Le
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Chloe M. Shepherd
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Conor McNeice
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Lucy J. Meehan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC3052, Australia
| | - Adam G. Nelson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC3052, Australia
| | - Jeremy M. Raynes
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Jeffrey Y. W. Mak
- Centre for Chemistry and Drug Discovery and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC3052, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC3052, Australia
| | - Ching-Seng Ang
- Mass Spectrometry and Proteomics Facility, Bio21 Institute, The University of Melbourne, Parkville, VIC3052, Australia
| | - David P. Fairlie
- Centre for Chemistry and Drug Discovery and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Jérôme Le Nours
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Patricia T. Illing
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, CardiffCF10 3AT, United Kingdom
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| |
Collapse
|
4
|
Hayee A, Kobayashi E, Motozono C, Hamana H, My HTV, Okada T, Toyooka N, Yamaguchi S, Ozawa T, Kishi H. Characterization of Tumor-Infiltrating Lymphocyte-Derived Atypical TCRs Recognizing Breast Cancer in an MR1-Dependent Manner. Cells 2024; 13:1711. [PMID: 39451228 PMCID: PMC11506377 DOI: 10.3390/cells13201711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
The MHC class I-related 1 (MR1) molecule is a non-polymorphic antigen-presenting molecule that presents several metabolites to MR1-restricted T cells, including mucosal-associated invariant T (MAIT) cells. MR1 ligands bind to MR1 molecules by forming a Schiff base with the K43 residue of MR1, which induces the folding of MR1 and its reach to the cell surface. An antagonistic MR1 ligand, Ac-6-FP, and the K43A mutation of MR1 are known to inhibit the responses of MR1-restricted T cells. In this study, we analyzed MR1-restricted TCRs obtained from tumor-infiltrating lymphocytes (TILs) from breast cancer patients. They responded to two breast cancer cell lines independently from microbial infection and did not respond to other cancer cell lines or normal breast cells. Interestingly, the reactivity of these TCRs was not inhibited by Ac-6-FP, while it was attenuated by the K43A mutation of MR1. Our findings suggest the existence of a novel class of MR1-restricted TCRs whose antigen is expressed in some breast cancer cells and binds to MR1 depending on the K43 residue of MR1 but without being influenced by Ac-6-FP. This work provides new insight into the physiological roles of MR1 and MR1-restricted T cells.
Collapse
Affiliation(s)
- Abdul Hayee
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan; (A.H.); (H.H.); (H.T.V.M.); (S.Y.); (T.O.)
| | - Eiji Kobayashi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan; (A.H.); (H.H.); (H.T.V.M.); (S.Y.); (T.O.)
- Center for Advanced Antibody Drug Development, University of Toyama, Toyama 930-0194, Japan
| | - Chihiro Motozono
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan;
| | - Hiroshi Hamana
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan; (A.H.); (H.H.); (H.T.V.M.); (S.Y.); (T.O.)
- Shinobi Therapeutics Co., Ltd., Kyoto 606-8304, Japan
| | - Ha Thi Viet My
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan; (A.H.); (H.H.); (H.T.V.M.); (S.Y.); (T.O.)
| | - Takuya Okada
- Department of Biofunctional Molecular Chemistry, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan; (T.O.); (N.T.)
| | - Naoki Toyooka
- Department of Biofunctional Molecular Chemistry, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan; (T.O.); (N.T.)
| | - Satoshi Yamaguchi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan; (A.H.); (H.H.); (H.T.V.M.); (S.Y.); (T.O.)
- Department of First Internal Medicine, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan; (A.H.); (H.H.); (H.T.V.M.); (S.Y.); (T.O.)
- Center for Advanced Antibody Drug Development, University of Toyama, Toyama 930-0194, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan; (A.H.); (H.H.); (H.T.V.M.); (S.Y.); (T.O.)
- Center for Advanced Antibody Drug Development, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
5
|
Cornforth TV, Moyo N, Cole S, Lam EPS, Lobry T, Wolchinsky R, Lloyd A, Ward K, Denham EM, Masi G, Qing Yun PT, Moore C, Dhaouadi S, Besra GS, Veerapen N, Illing PT, Vivian JP, Raynes JM, Le Nours J, Purcell AW, Kundu S, Silk JD, Williams L, Papa S, Rossjohn J, Howie D, Dukes J. Conserved allomorphs of MR1 drive the specificity of MR1-restricted TCRs. Front Oncol 2024; 14:1419528. [PMID: 39445059 PMCID: PMC11496959 DOI: 10.3389/fonc.2024.1419528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/05/2024] [Indexed: 10/25/2024] Open
Abstract
Background Major histocompatibility complex class-1-related protein (MR1), unlike human leukocyte antigen (HLA) class-1, was until recently considered to be monomorphic. MR1 presents metabolites in the context of host responses to bacterial infection. MR1-restricted TCRs specific to tumor cells have been described, raising interest in their potential therapeutic application for cancer treatment. The diversity of MR1-ligand biology has broadened with the observation that single nucleotide variants (SNVs) exist within MR1 and that allelic variants can impact host immunity. Methods The TCR from a MR1-restricted T-cell clone, MC.7.G5, with reported cancer specificity and pan-cancer activity, was cloned and expressed in Jurkat E6.1 TCRαβ- β2M- CD8+ NF-κB:CFP NFAT:eGFP AP-1:mCherry cells or in human donor T cells. Functional activity of 7G5.TCR-T was demonstrated using cytotoxicity assays and by measuring cytokine release after co-culture with cancer cell lines with or without loading of previously described MR1 ligands. MR1 allele sequencing was undertaken after the amplification of the MR1 gene region by PCR. In vivo studies were undertaken at Labcorp Drug Development (Ann Arbor, MI, USA) or Epistem Ltd (Manchester, UK). Results The TCR cloned from MC.7.G5 retained MR1-restricted functional cytotoxicity as 7G5.TCR-T. However, activity was not pan-cancer, as initially reported with the clone MC.7.G5. Recognition was restricted to cells expressing a SNV of MR1 (MR1*04) and was not cancer-specific. 7G5.TCR-T and 7G5-like TCR-T cells reacted to both cancer and healthy cells endogenously expressing MR1*04 SNVs, which encode R9H and H17R substitutions. This allelic specificity could be overcome by expressing supraphysiological levels of the wild-type MR1 (MR1*01) in cell lines. Conclusions Healthy individuals harbor T cells reactive to MR1 variants displaying self-ligands expressed in cancer and benign tissues. Described "cancer-specific" MR1-restricted TCRs need further validation, covering conserved allomorphs of MR1. Ligands require identification to ensure targeting MR1 is restricted to those specific to cancer and not normal tissues. For the wider field of immunology and transplant biology, the observation that MR1*04 may behave as an alloantigen warrants further study. .
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Gurdyal S. Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Natacha Veerapen
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Patricia T. Illing
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Julian P. Vivian
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jeremy M. Raynes
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Anthony W. Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | | | | | | | - Sophie Papa
- Enara Bio Ltd., Oxford, United Kingdom
- School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, United Kingdom
| | | | | |
Collapse
|
6
|
Srinivasan S, Zhu C, McShan AC. Structure, function, and immunomodulation of the CD8 co-receptor. Front Immunol 2024; 15:1412513. [PMID: 39253084 PMCID: PMC11381289 DOI: 10.3389/fimmu.2024.1412513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Expressed on the surface of CD8+ T cells, the CD8 co-receptor is a key component of the T cells that contributes to antigen recognition, immune cell maturation, and immune cell signaling. While CD8 is widely recognized as a co-stimulatory molecule for conventional CD8+ αβ T cells, recent reports highlight its multifaceted role in both adaptive and innate immune responses. In this review, we discuss the utility of CD8 in relation to its immunomodulatory properties. We outline the unique structure and function of different CD8 domains (ectodomain, hinge, transmembrane, cytoplasmic tail) in the context of the distinct properties of CD8αα homodimers and CD8αβ heterodimers. We discuss CD8 features commonly used to construct chimeric antigen receptors for immunotherapy. We describe the molecular interactions of CD8 with classical MHC-I, non-classical MHCs, and Lck partners involved in T cell signaling. Engineered and naturally occurring CD8 mutations that alter immune responses are discussed. The applications of anti-CD8 monoclonal antibodies (mABs) that target CD8 are summarized. Finally, we examine the unique structure and function of several CD8/mAB complexes. Collectively, these findings reveal the promising immunomodulatory properties of CD8 and CD8 binding partners, not only to uncover basic immune system function, but to advance efforts towards translational research for targeted immunotherapy.
Collapse
Affiliation(s)
- Shreyaa Srinivasan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andrew C. McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
7
|
Edmans MD, Connelley TK, Morgan S, Pediongco TJ, Jayaraman S, Juno JA, Meehan BS, Dewar PM, Maze EA, Roos EO, Paudyal B, Mak JYW, Liu L, Fairlie DP, Wang H, Corbett AJ, McCluskey J, Benedictus L, Tchilian E, Klenerman P, Eckle SBG. MAIT cell-MR1 reactivity is highly conserved across multiple divergent species. J Biol Chem 2024; 300:107338. [PMID: 38705391 PMCID: PMC11190491 DOI: 10.1016/j.jbc.2024.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells that recognize small molecule metabolites presented by major histocompatibility complex class I related protein 1 (MR1), via an αβ T cell receptor (TCR). MAIT TCRs feature an essentially invariant TCR α-chain, which is highly conserved between mammals. Similarly, MR1 is the most highly conserved major histocompatibility complex-I-like molecule. This extreme conservation, including the mode of interaction between the MAIT TCR and MR1, has been shown to allow for species-mismatched reactivities unique in T cell biology, thereby allowing the use of selected species-mismatched MR1-antigen (MR1-Ag) tetramers in comparative immunology studies. However, the pattern of cross-reactivity of species-mismatched MR1-Ag tetramers in identifying MAIT cells in diverse species has not been formally assessed. We developed novel cattle and pig MR1-Ag tetramers and utilized these alongside previously developed human, mouse, and pig-tailed macaque MR1-Ag tetramers to characterize cross-species tetramer reactivities. MR1-Ag tetramers from each species identified T cell populations in distantly related species with specificity that was comparable to species-matched MR1-Ag tetramers. However, there were subtle differences in staining characteristics with practical implications for the accurate identification of MAIT cells. Pig MR1 is sufficiently conserved across species that pig MR1-Ag tetramers identified MAIT cells from the other species. However, MAIT cells in pigs were at the limits of phenotypic detection. In the absence of sheep MR1-Ag tetramers, a MAIT cell population in sheep blood was identified phenotypically, utilizing species-mismatched MR1-Ag tetramers. Collectively, our results validate the use and define the limitations of species-mismatched MR1-Ag tetramers in comparative immunology studies.
Collapse
Affiliation(s)
- Matthew D Edmans
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom; Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom.
| | - Timothy K Connelley
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Roslin, United Kingdom
| | - Sophie Morgan
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Troi J Pediongco
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Siddharth Jayaraman
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Roslin, United Kingdom
| | - Jennifer A Juno
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Bronwyn S Meehan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Phoebe M Dewar
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Emmanuel A Maze
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Eduard O Roos
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Basudev Paudyal
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Jeffrey Y W Mak
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ligong Liu
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David P Fairlie
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Huimeng Wang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia; State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lindert Benedictus
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Roslin, United Kingdom; Faculty of Veterinary Medicine, Department of Population Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Elma Tchilian
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Konecny AJ, Huang Y, Setty M, Prlic M. Signals that control MAIT cell function in healthy and inflamed human tissues. Immunol Rev 2024; 323:138-149. [PMID: 38520075 DOI: 10.1111/imr.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells have a semi-invariant T-cell receptor that allows recognition of antigen in the context of the MHC class I-related (MR1) protein. Metabolic intermediates of the riboflavin synthesis pathway have been identified as MR1-restricted antigens with agonist properties. As riboflavin synthesis occurs in many bacterial species, but not human cells, it has been proposed that the main purpose of MAIT cells is antibacterial surveillance and protection. The majority of human MAIT cells secrete interferon-gamma (IFNg) upon activation, while some MAIT cells in tissues can also express IL-17. Given that MAIT cells are present in human barrier tissues colonized by a microbiome, MAIT cells must somehow be able to distinguish colonization from infection to ensure effector functions are only elicited when necessary. Importantly, MAIT cells have additional functional properties, including the potential to contribute to restoring tissue homeostasis by expression of CTLA-4 and secretion of the cytokine IL-22. A recent study provided compelling data indicating that the range of human MAIT cell functional properties is explained by plasticity rather than distinct lineages. This further underscores the necessity to better understand how different signals regulate MAIT cell function. In this review, we highlight what is known in regards to activating and inhibitory signals for MAIT cells with a specific focus on signals relevant to healthy and inflamed tissues. We consider the quantity, quality, and the temporal order of these signals on MAIT cell function and discuss the current limitations of computational tools to extrapolate which signals are received by MAIT cells in human tissues. Using lessons learned from conventional CD8 T cells, we also discuss how TCR signals may integrate with cytokine signals in MAIT cells to elicit distinct functional states.
Collapse
Affiliation(s)
- Andrew J Konecny
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Yin Huang
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA
| | - Manu Setty
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Cornel AM, van der Sman L, van Dinter JT, Arrabito M, Dunnebach E, van Hoesel M, Kluiver TA, Lopes AP, Dautzenberg NMM, Dekker L, van Rijn JM, van den Beemt DAMH, Buhl JL, du Chatinier A, Barneh F, Lu Y, Lo Nigro L, Krippner-Heidenreich A, Sebestyén Z, Kuball J, Hulleman E, Drost J, van Heesch S, Heidenreich OT, Peng WC, Nierkens S. Targeting pediatric cancers via T-cell recognition of the monomorphic MHC class I-related protein MR1. J Immunother Cancer 2024; 12:e007538. [PMID: 38519054 PMCID: PMC10961533 DOI: 10.1136/jitc-2023-007538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 03/24/2024] Open
Abstract
Human leukocyte antigen (HLA) restriction of conventional T-cell targeting introduces complexity in generating T-cell therapy strategies for patients with cancer with diverse HLA-backgrounds. A subpopulation of atypical, major histocompatibility complex-I related protein 1 (MR1)-restricted T-cells, distinctive from mucosal-associated invariant T-cells (MAITs), was recently identified recognizing currently unidentified MR1-presented cancer-specific metabolites. It is hypothesized that the MC.7.G5 MR1T-clone has potential as a pan-cancer, pan-population T-cell immunotherapy approach. These cells are irresponsive to healthy tissue while conferring T-cell receptor(TCR) dependent, HLA-independent cytotoxicity to a wide range of adult cancers. Studies so far are limited to adult malignancies. Here, we investigated the potential of MR1-targeting cellular therapy strategies in pediatric cancer. Bulk RNA sequencing data of primary pediatric tumors were analyzed to assess MR1 expression. In vitro pediatric tumor models were subsequently screened to evaluate their susceptibility to engineered MC.7.G5 TCR-expressing T-cells. Targeting capacity was correlated with qPCR-based MR1 mRNA and protein overexpression. RNA expression of MR1 in primary pediatric tumors varied widely within and between tumor entities. Notably, embryonal tumors exhibited significantly lower MR1 expression than other pediatric tumors. In line with this, most screened embryonal tumors displayed resistance to MR1T-targeting in vitro MR1T susceptibility was observed particularly in pediatric leukemia and diffuse midline glioma models. This study demonstrates potential of MC.7.G5 MR1T-cell immunotherapy in pediatric leukemias and diffuse midline glioma, while activity against embryonal tumors was limited. The dismal prognosis associated with relapsed/refractory leukemias and high-grade brain tumors highlights the promise to improve survival rates of children with these cancers.
Collapse
Affiliation(s)
- Annelisa M Cornel
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Loutje van der Sman
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Jip T van Dinter
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Marta Arrabito
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Center of Pediatric Hematology & Oncology, University of Catania, Catania, Italy
| | - Ester Dunnebach
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | | | - Thomas A Kluiver
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Ana P Lopes
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | | | - Linde Dekker
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Jorik M van Rijn
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | | | - Juliane L Buhl
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Aimee du Chatinier
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Farnaz Barneh
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Yuyan Lu
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Luca Lo Nigro
- Center of Pediatric Hematology & Oncology, University of Catania, Catania, Italy
| | | | - Zsolt Sebestyén
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Jurgen Kuball
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
- Department of Hematology, UMC Utrecht, Utrecht, The Netherlands
| | - Esther Hulleman
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Jarno Drost
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | | | - Olaf T Heidenreich
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Weng Chuan Peng
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Stefan Nierkens
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
10
|
McWilliam HEG, Villadangos JA. MR1 antigen presentation to MAIT cells and other MR1-restricted T cells. Nat Rev Immunol 2024; 24:178-192. [PMID: 37773272 PMCID: PMC11108705 DOI: 10.1038/s41577-023-00934-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 10/01/2023]
Abstract
MHC antigen presentation plays a fundamental role in adaptive and semi-invariant T cell immunity. Distinct MHC molecules bind antigens that differ in chemical structure, origin and location and present them to specialized T cells. MHC class I-related protein 1 (MR1) presents a range of small molecule antigens to MR1-restricted T (MR1T) lymphocytes. The best studied MR1 ligands are derived from microbial metabolism and are recognized by a major class of MR1T cells known as mucosal-associated invariant T (MAIT) cells. Here, we describe the MR1 antigen presentation pathway: the known types of antigens presented by MR1, the location where MR1-antigen complexes form, the route followed by the complexes to the cell surface, the mechanisms involved in termination of MR1 antigen presentation and the accessory cellular proteins that comprise the MR1 antigen presentation machinery. The current road map of the MR1 antigen presentation pathway reveals potential strategies for therapeutic manipulation of MR1T cell function and provides a foundation for further studies that will lead to a deeper understanding of MR1-mediated immunity.
Collapse
Affiliation(s)
- Hamish E G McWilliam
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
11
|
Awad W, Ciacchi L, McCluskey J, Fairlie DP, Rossjohn J. Molecular insights into metabolite antigen recognition by mucosal-associated invariant T cells. Curr Opin Immunol 2023; 83:102351. [PMID: 37276819 PMCID: PMC11056607 DOI: 10.1016/j.coi.2023.102351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Metabolite-based T-cell immunity is emerging as a major player in antimicrobial immunity, autoimmunity, and cancer. Here, small-molecule metabolites were identified to be captured and presented by the major histocompatibility complex class-I-related molecule (MR1) to T cells, namely mucosal-associated invariant T cells (MAIT) and diverse MR1-restricted T cells. Both MR1 and MAIT are evolutionarily conserved in many mammals, suggesting important roles in host immunity. Rational chemical modifications of these naturally occurring metabolites, termed altered metabolite ligands (AMLs), have advanced our understanding of the molecular correlates of MAIT T cell receptor (TCR)-MR1 recognition. This review provides a generalized framework for metabolite recognition and modulation of MAIT cells.
Collapse
Affiliation(s)
- Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| | - Lisa Ciacchi
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - David P Fairlie
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
12
|
Harly C, Robert J, Legoux F, Lantz O. γδ T, NKT, and MAIT Cells During Evolution: Redundancy or Specialized Functions? JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:217-225. [PMID: 35821101 PMCID: PMC7613099 DOI: 10.4049/jimmunol.2200105] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/06/2022] [Indexed: 01/17/2023]
Abstract
Innate-like T cells display characteristics of both innate lymphoid cells (ILCs) and mainstream αβ T cells, leading to overlapping functions of innate-like T cells with both subsets. In this review, we show that although innate-like T cells are probably present in all vertebrates, their main characteristics are much better known in amphibians and mammals. Innate-like T cells encompass both γδ and αβ T cells. In mammals, γδ TCRs likely coevolved with molecules of the butyrophilin family they interact with, whereas the semi-invariant TCRs of iNKT and mucosal-associated invariant T cells are evolutionarily locked with their restricting MH1b molecules, CD1d and MR1, respectively. The strong conservation of the Ag recognition systems of innate-like T cell subsets despite similar effector potentialities supports that each one fulfills nonredundant roles related to their Ag specificity.
Collapse
Affiliation(s)
- Christelle Harly
- Nantes Université, Institut National de la Santé et de la Recherche Médicale UMR1307, Centre National de la Recherche Scientifique UMR6075, Université d'Angers, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers CRCI2NA, Nantes, France;
- LabEx Immunotherapy, Graft, Oncology, Nantes, France
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Francois Legoux
- INSERM U932, Paris Sciences et Lettres Université, Institut Curie, Paris, France
| | - Olivier Lantz
- INSERM U932, Paris Sciences et Lettres Université, Institut Curie, Paris, France;
- Laboratoire d'Immunologie Clinique, Institut Curie, Paris, France; and
- Centre d'Investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| |
Collapse
|