1
|
Dougall AM, Brinkley TR, Clarke BD. Imported biologicals: unforeseen biosecurity risks in the laboratory. MICROBIOLOGY AUSTRALIA 2020. [DOI: 10.1071/ma20035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Imported biological products are ubiquitous necessities of modern life that can pose significant biosecurity risks to Australia. Products produced using animal material are used everywhere from enzymes in cleaning products, to cell lines and bacterial cultures used to produce vaccines and medicines. This article highlights adventitious agents of biologicals and provides an overview of the considerations and regulatory tools administered under the Biosecurity Act 2015 (Commonwealth) to manage these biosecurity risks whilst still facilitating imports of biologicals.
Collapse
|
2
|
Hunnam JC, Moore KM, Daniel P, Stevenson MA, Salmon SE. Classical swine fever in Victorian domestic pigs: evidence of disease freedom. Aust Vet J 2019; 97:447-451. [PMID: 31475336 DOI: 10.1111/avj.12871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/08/2019] [Accepted: 07/14/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Australia is currently regarded as free of classical swine fever (CSF), a highly contagious disease of pigs caused by a pestivirus. This study aimed to provide additional evidence that the Victorian domestic pig population is free of CSF. DESIGN A structured representative sero-prevalence survey of Victorian domestic pigs at slaughter. METHOD Three-hundred and ninety-one pigs from 23 holdings were sampled at the time of slaughter between March 2016 and October 2017. RESULTS All samples were negative for CSF virus Ab on ELISA. Because of uncertainty in the sensitivity of the CSF Ab ELISA, estimates of the true prevalence of CSF were calculated using Bayesian methods. The median and upper bound of the 95% credible intervals for the true prevalence of CSF was zero when the diagnostic sensitivity of the CSF Ab ELISA was assumed to range from 0.75 to 0.95. CONCLUSION These results provide evidence that the population of domestic pigs in Victoria in 2016-2017 was free of CSF.
Collapse
Affiliation(s)
- J C Hunnam
- Chief Veterinary Officer's Unit, Agriculture Victoria, Department of Economic Development, Jobs, Transport and Resources, 475 Mickleham Road, Attwood, Victoria, 3049, Australia
| | - K M Moore
- Chief Veterinary Officer's Unit, Agriculture Victoria, Department of Economic Development, Jobs, Transport and Resources, 475 Mickleham Road, Attwood, Victoria, 3049, Australia
| | - P Daniel
- Chief Veterinary Officer's Unit, Agriculture Victoria, Department of Economic Development, Jobs, Transport and Resources, 475 Mickleham Road, Attwood, Victoria, 3049, Australia
| | - M A Stevenson
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - S E Salmon
- Chief Veterinary Officer's Unit, Agriculture Victoria, Department of Economic Development, Jobs, Transport and Resources, 475 Mickleham Road, Attwood, Victoria, 3049, Australia
| |
Collapse
|
3
|
Miller RS, Pepin KM. BOARD INVITED REVIEW: Prospects for improving management of animal disease introductions using disease-dynamic models. J Anim Sci 2019; 97:2291-2307. [PMID: 30976799 PMCID: PMC6541823 DOI: 10.1093/jas/skz125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/10/2019] [Indexed: 12/27/2022] Open
Abstract
Management and policy decisions are continually made to mitigate disease introductions in animal populations despite often limited surveillance data or knowledge of disease transmission processes. Science-based management is broadly recognized as leading to more effective decisions yet application of models to actively guide disease surveillance and mitigate risks remains limited. Disease-dynamic models are an efficient method of providing information for management decisions because of their ability to integrate and evaluate multiple, complex processes simultaneously while accounting for uncertainty common in animal diseases. Here we review disease introduction pathways and transmission processes crucial for informing disease management and models at the interface of domestic animals and wildlife. We describe how disease transmission models can improve disease management and present a conceptual framework for integrating disease models into the decision process using adaptive management principles. We apply our framework to a case study of African swine fever virus in wild and domestic swine to demonstrate how disease-dynamic models can improve mitigation of introduction risk. We also identify opportunities to improve the application of disease models to support decision-making to manage disease at the interface of domestic and wild animals. First, scientists must focus on objective-driven models providing practical predictions that are useful to those managing disease. In order for practical model predictions to be incorporated into disease management a recognition that modeling is a means to improve management and outcomes is important. This will be most successful when done in a cross-disciplinary environment that includes scientists and decision-makers representing wildlife and domestic animal health. Lastly, including economic principles of value-of-information and cost-benefit analysis in disease-dynamic models can facilitate more efficient management decisions and improve communication of model forecasts. Integration of disease-dynamic models into management and decision-making processes is expected to improve surveillance systems, risk mitigations, outbreak preparedness, and outbreak response activities.
Collapse
Affiliation(s)
- Ryan S Miller
- Center for Epidemiology and Animal Health, United States Department of Agriculture-Veterinary Services, Fort Collins, CO
| | - Kim M Pepin
- National Wildlife Research Center, United States Department of Agriculture-Wildlife Services, Fort Collins, CO
| |
Collapse
|
4
|
Pittiglio C, Khomenko S, Beltran-Alcrudo D. Wild boar mapping using population-density statistics: From polygons to high resolution raster maps. PLoS One 2018; 13:e0193295. [PMID: 29768413 PMCID: PMC5955487 DOI: 10.1371/journal.pone.0193295] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 02/08/2018] [Indexed: 12/01/2022] Open
Abstract
The wild boar is an important crop raider as well as a reservoir and agent of spread of swine diseases. Due to increasing densities and expanding ranges worldwide, the related economic losses in livestock and agricultural sectors are significant and on the rise. Its management and control would strongly benefit from accurate and detailed spatial information on species distribution and abundance, which are often available only for small areas. Data are commonly available at aggregated administrative units with little or no information about the distribution of the species within the unit. In this paper, a four-step geostatistical downscaling approach is presented and used to disaggregate wild boar population density statistics from administrative units of different shape and size (polygons) to 5 km resolution raster maps by incorporating auxiliary fine scale environmental variables. 1) First a stratification method was used to define homogeneous bioclimatic regions for the analysis; 2) Under a geostatistical framework, the wild boar densities at administrative units, i.e. subnational areas, were decomposed into trend and residual components for each bioclimatic region. Quantitative relationships between wild boar data and environmental variables were estimated through multiple regression and used to derive trend components at 5 km spatial resolution. Next, the residual components (i.e., the differences between the trend components and the original wild boar data at administrative units) were downscaled at 5 km resolution using area-to-point kriging. The trend and residual components obtained at 5 km resolution were finally added to generate fine scale wild boar estimates for each bioclimatic region. 3) These maps were then mosaicked to produce a final output map of predicted wild boar densities across most of Eurasia. 4) Model accuracy was assessed at each different step using input as well as independent data. We discuss advantages and limits of the method and its potential application in animal health.
Collapse
Affiliation(s)
- Claudia Pittiglio
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, Rome, Italy
| | - Sergei Khomenko
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, Rome, Italy
| | - Daniel Beltran-Alcrudo
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, Rome, Italy
- * E-mail:
| |
Collapse
|
5
|
Brown VR, Bevins SN. A Review of Classical Swine Fever Virus and Routes of Introduction into the United States and the Potential for Virus Establishment. Front Vet Sci 2018; 5:31. [PMID: 29556501 PMCID: PMC5844918 DOI: 10.3389/fvets.2018.00031] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/15/2018] [Indexed: 11/13/2022] Open
Abstract
Classical swine fever (CSF) is caused by CSF virus (CSFV) which can be the source of substantial morbidity and mortality events in affected swine. The disease can take one of several forms (acute, chronic, or prenatal) and depending on the virulence of the inoculating strain may result in a lethal infection irrespective of the form acquired. Because of the disease-free status of the United States and the high cost of a viral incursion, a summary of US vulnerabilities for viral introduction and persistence is provided. The legal importation of live animals as well as animal products, byproducts, and animal feed serve as a potential route of viral introduction. Current import regulations are described as are mitigation strategies that are commonly utilized to prevent pathogens, including CSFV, from entering the US. The illegal movement of suids and their products as well as an event of bioterrorism are both feasible routes of viral introduction but are difficult to restrict or regulate. Ultimately, recommendations are made for data that would be useful in the event of a viral incursion. Population and density mapping for feral swine across the United States would be valuable in the event of a viral introduction or spillover; density data could further contribute to understanding the risk of infection in domestic swine. Additionally, ecological and behavioral studies, including those that evaluate the effects of anthropogenic food sources that support feral swine densities far above the carrying capacity would provide invaluable insight to our understanding of how human interventions affect feral swine populations. Further analyses to determine the sampling strategies necessary to detect low levels of antibody prevalence in feral swine would also be valuable.
Collapse
Affiliation(s)
- Vienna R Brown
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States
| | - Sarah N Bevins
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, United States
| |
Collapse
|
6
|
Brown VR, Bevins SN. A Review of African Swine Fever and the Potential for Introduction into the United States and the Possibility of Subsequent Establishment in Feral Swine and Native Ticks. Front Vet Sci 2018; 5:11. [PMID: 29468165 PMCID: PMC5808196 DOI: 10.3389/fvets.2018.00011] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/19/2018] [Indexed: 11/26/2022] Open
Abstract
African swine fever (ASF) is caused by African swine fever virus (ASFV), which can cause substantial morbidity and mortality events in swine. The virus can be transmitted via direct and indirect contacts with infected swine, their products, or competent vector species, especially Ornithodoros ticks. Africa and much of Eastern Europe are endemic for ASF; a viral introduction to countries that are currently ASF free could have severe economic consequences due to the loss of production from infected animals and the trade restrictions that would likely be imposed as a result of an outbreak. We identified vulnerabilities that could lead to ASFV introduction or persistence in the United States or other ASF-free regions. Both legal and illegal movements of live animals, as well as the importation of animal products, byproducts, and animal feed, pose a risk of virus introduction. Each route is described, and current regulations designed to prevent ASFV and other pathogens from entering the United States are outlined. Furthermore, existing ASFV research gaps are highlighted. Laboratory experiments to evaluate multiple species of Ornithodoros ticks that have yet to be characterized would be useful to understand vector competence, host preferences, and distribution of competent soft tick vectors in relation to high pig production areas as well as regions with high feral swine (wild boar or similar) densities. Knowledge relative to antigenic viral proteins that contribute to host response and determination of immune mechanisms that lead to protection are foundational in the quest for a vaccine. Finally, sampling of illegally imported and confiscated wild suid products for ASFV could shed light on the types of products being imported and provide a more informed perspective relative to the risk of ASFV importation.
Collapse
Affiliation(s)
- Vienna R. Brown
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States
| | - Sarah N. Bevins
- Wildlife Services, National Wildlife Research Center (NWRC), Animal and Plant Health Inspection Service, United States Department of Agriculture (USDA), Fort Collins, CO, United States
| |
Collapse
|
7
|
Herzog SA, Blaizot S, Hens N. Mathematical models used to inform study design or surveillance systems in infectious diseases: a systematic review. BMC Infect Dis 2017; 17:775. [PMID: 29254504 PMCID: PMC5735541 DOI: 10.1186/s12879-017-2874-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/30/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Mathematical models offer the possibility to investigate the infectious disease dynamics over time and may help in informing design of studies. A systematic review was performed in order to determine to what extent mathematical models have been incorporated into the process of planning studies and hence inform study design for infectious diseases transmitted between humans and/or animals. METHODS We searched Ovid Medline and two trial registry platforms (Cochrane, WHO) using search terms related to infection, mathematical model, and study design from the earliest dates to October 2016. Eligible publications and registered trials included mathematical models (compartmental, individual-based, or Markov) which were described and used to inform the design of infectious disease studies. We extracted information about the investigated infection, population, model characteristics, and study design. RESULTS We identified 28 unique publications but no registered trials. Focusing on compartmental and individual-based models we found 12 observational/surveillance studies and 11 clinical trials. Infections studied were equally animal and human infectious diseases for the observational/surveillance studies, while all but one between humans for clinical trials. The mathematical models were used to inform, amongst other things, the required sample size (n = 16), the statistical power (n = 9), the frequency at which samples should be taken (n = 6), and from whom (n = 6). CONCLUSIONS Despite the fact that mathematical models have been advocated to be used at the planning stage of studies or surveillance systems, they are used scarcely. With only one exception, the publications described theoretical studies, hence, not being utilised in real studies.
Collapse
Affiliation(s)
- Sereina A. Herzog
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Stéphanie Blaizot
- Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Niel Hens
- Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and statistical Bioinformatics, Hasselt University, Hasselt, Belgium
| |
Collapse
|
8
|
Social structure and Escherichia coli sharing in a group-living wild primate, Verreaux's sifaka. BMC Ecol 2016; 16:6. [PMID: 26868261 PMCID: PMC4751723 DOI: 10.1186/s12898-016-0059-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/28/2016] [Indexed: 12/05/2022] Open
Abstract
Background Epidemiological models often use information on host social contacts to predict the potential impact of infectious diseases on host populations and the efficiency of control measures. It can be difficult, however, to determine whether social contacts are actually meaningful predictors of transmission. We investigated the role of host social structure in the transmission of Escherichia coli in a wild population of primates, Verreaux’s sifakas (Propithecus verreauxi). Using multilocus sequence typing (MLST), we compared genetic similarities between E. coli isolates from different individuals and groups to infer transmission pathways. Results Correlation of social and transmission networks revealed that membership to the same group significantly predicted sharing of E. coli MLST sequence types (ST). Intergroup encounter rate and a measure of space-use sharing provided equally potent explanations for type sharing between social groups when closely related STs were taken into account, whereas animal age, sex and dispersal history had no influence. No antibiotic resistance was found, suggesting low rates of E. coli spillover from humans into this arboreal species. Conclusions We show that patterns of E. coli transmission reflect the social structure of this group-living lemur species. We discuss our results in the light of the species’ ecology and propose scent-marking, a type of social contact not considered in previous epidemiological studies, as a likely route of transmission between groups. However, further studies are needed to explicitly test this hypothesis and to further elucidate the relative roles of direct contact and environmental transmission in pathogen transfer. Electronic supplementary material The online version of this article (doi:10.1186/s12898-016-0059-y) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Ward MP, Garner MG, Cowled BD. Modelling foot-and-mouth disease transmission in a wild pig-domestic cattle ecosystem. Aust Vet J 2015; 93:4-12. [PMID: 25622702 DOI: 10.1111/avj.12278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To use simulation modelling to predict the potential spread and to explore control options for a foot-and-mouth disease (FMD) incursion in a mixed wild pig-domestic cattle ecosystem in northern Australia. DESIGN Based on aerial surveys, expert opinion and published data, the wild pig and grazing cattle distributions were simulated. A susceptible-infected-resistant disease-spread model was coded and parameterised according to published literature and expert opinion. METHODS A baseline scenario was simulated in which infection was introduced via wild pigs, with transmission from pigs to cattle and no disease control. Assumptions regarding disease transmission were investigated via sensitivity analyses. Predicted size and length of outbreaks were compared for different control strategies based on movement standstill, surveillance and depopulation. RESULTS In most of the simulations, FMD outbreaks were predicted to be ongoing after 6 months, with more cattle herds infected than wild pig herds (median 907 vs. 22, respectively). Assuming only pig-to-pig transmission, the infection routinely died out. In contrast, assuming cattle-to-cattle, cattle-to-pig or pig-to-cattle transmission resulted in FMD establishing and spreading in more than 75% of simulations. A control strategy targeting wild pigs only was not predicted to be successful. Control based on cattle only was successful in eradicating the disease. However, control targeting both pigs and cattle resulted in smaller outbreaks. CONCLUSIONS If FMD is controlled in cattle in the modelled ecosystem, it is likely to be self-limiting in wild pigs. However, to eradicate disease as quickly as possible, both wild pigs and cattle should be targeted for control.
Collapse
Affiliation(s)
- M P Ward
- The University of Sydney, Faculty of Veterinary Science, 425 Werombi Road, Camden, New South Wales, 2570, Australia.
| | | | | |
Collapse
|